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Abstract

In this paper, we provide evidence against the common idea that
worked examples should be designed to convey problem categories
and category-specific solution procedures. Instead we propose that in-
structional examples should be designed in a way that supports the un-
derstanding of relations between structural problem features and indi-
vidual solution steps, i.e. relations that hold below the category level.
We illustrate in the domain of probability word problems how cate-
gory-avoiding instructional examples can be constructed. In two ex-
periments we provide evidence that category-avoiding examples re-
duce cognitive load during learning and that they foster subsequent
problem-solving performance.

Problem-Type Schemata and Skill Acquisition
It has often been argued that one important prerequisite for
skilled problem solving in well-structured and knowledge-
rich domains (e.g., physics, mathematics or programming) is
the availability of problem-type schemata (Gick & Holyoak,
1983; Reed, 1993), i.e., representations of problem catego-
ries together with category-specific solution procedures.
Once a problem has been identified as belonging to a known
problem category the relevant schema is retrieved from
memory, is instantiated with the information that is specific
to the to-be-solved problem, and finally the category-
specific solution procedure attached to the schema is exe-
cuted in order to produce a solution to the problem (cf.
Derry, 1989).

Schema-based problem solving is considered to be very
efficient and therefore often seen as a marking feature of
experts’ problem solving (VanLehn, 1996). Accordingly, a
substantial amount of research has focused on the question
of how such schemata can be acquired. A ubiquitous answer
to this question is that studying concrete instances of prob-
lem categories (i.e., examples) is necessary for schema ac-
quisition (Atkinson, Derry, Renkl, & Wortham, 2000;
Sweller, van Merriënboer, & Paas, 1998).

Schema Acquisition from Worked Examples
In particular worked examples (i.e., example problems to-
gether with a step-by-step solution) play an important role in

schema acquisition (cf. Atkinson et al., 2000). However, the
mere availability of instructional examples seems not to be
sufficient to guarantee an adequate representation of prob-
lem categories and an understanding of category-specific
solution procedures. Rather, a profitable processing of
worked examples has to be ensured. Such processing is
likely to include example comparisons and example elabo-
rations as the most important activities. Many approaches to
improve the instructional design of worked examples sub-
scribe to the general doctrine of using worked examples as a
means of conveying problem categories and their associated
solution procedures by fostering these activities.

Example comparisons: Providing multiple examples al-
lows a learner to compare examples within and among
problem categories with regard to their differences and
similarities. These comparisons might enable learners to
identify the defining features of problem categories and to
avoid confusions by examples' surface features (Cummins,
1992; Quilici & Mayer, 1996). According to Bernardo
(1994, p. 379) there is "a consensus that problem-type
schemata are acquired through some inductive or generali-
zation process involving comparisons among similar or
analogous problems of one type." Without these comparison
processes learners might tend to categorize test problems
according to their surface features and in turn to apply inap-
propriate solution procedures to them.

Example elaborations: A commonly found problem is that
learners “tend to form solution procedures that consist of a
long series of steps – which are frequently tied to incidental
features of the problems – rather than more meaningful
representations that would enable them to successfully
tackle new problems” (Catrambone, 1998, p. 355). To over-
come these shallow representations of solutions, learners
have to draw inferences concerning the structure of example
solutions, the rationale behind solution procedures, and the
goals that are accomplished by individual solution steps. In
order to foster an understanding of category-specific solu-
tion procedures several methods have been suggested. One
is that solution steps can be grouped according to their
subgoals (Catrambone, 1998), which is thought to provide
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affordances for learners to self-explain the meaning of indi-
vidual solution steps (Chi, Bassok, Lewis, Reimann, &
Glaser, 1989). A second is that instructional explanations
can be introduced to supplement self-explanations generated
by the learner (Renkl, 2002). Both methods aim at over-
coming the transfer problem that frequently occurs when
learners attempt to solve novel problems that do not fall into
known problem categories and that require an adaptation of
the procedure illustrated by worked examples.

However, even when using the abovementioned instruc-
tional devices, it remains difficult for learners to recognize
problem categories and to understand their associated solu-
tion procedures. Therefore, we have begun exploring a more
radical approach to the design of useful instructional exam-
ples in this paper by abandoning the general idea that
worked examples should aim at conveying problem catego-
ries and category-specific solution procedures. We are ex-
perimentally comparing traditional category-focusing exam-

ples  with category-avoiding examples. Our results shed
some general doubts on the instructional approach of using
the concept of problem-type schemata as a basis for tailor-
ing example-based instruction.

What we mean by category-avoiding examples in contrast
to category-focusing examples will be illustrated in the next
two sections in the domain of probability word problems
Probability word problems deal with calculating the prob-
ability of individual and complex events. The probability of
some individual event in a random experiment can be cal-
culated by dividing the number of acceptable outcomes by
the number of possible outcomes. A series of random ex-
periments - where each random experiment consists of a
selection process that yields one individual event – results in
a complex event. How the probability of complex events is
calculated can be explained by either using a category-
focusing example format or a category-avoiding example
format (for an illustration see Table 1).

Table 1: Category-focusing and category-avoiding instructional examples used for experimentation

100M-SPRINT EXAMPLE
At the Olympics 7 sprinters participate in the 100m-sprint. What is the probability

of correctly guessing the winner of the gold, the silver, and the bronze medals?

CATEGORY-FOCUSING EXAMPLE CATEGORY-AVOIDING EXAMPLE

IDENTIFY TASK FEATURES

This problem is a permutation-without-replacement problem.
Problems of this type have two important features: First, the order
of selection is important, and second, there is no replacement of
selected elements. We are not interested only in finding out just
which 3 of the 7 sprinters win medals, rather we want to know
specifically which sprinter wins which medal. Therefore, the order
of selection matters. A sprinter can win at most only one medal.
Thus, this problem is a problem without replacement. That is, after
a sprinter wins a medal he is not eligible for being selected again.

APPLY FORMULA

For this type of problem the following formula should be applied:
A = n!/(n-k)! with n being the number of all sprinters and k being
the number of sprinters that have to be correctly guessed.

INSERT VALUES

In the given example there are 7 sprinters to choose from. This is
the set of elements for selection (n = 7). As we want to find out the
probability of correctly guessing the winner of the gold, the silver,
and the bronze medals, 3 sprinters out of these 7 sprinters have to
be selected. Therefore, the number of selected sprinters equals k =
3. Inserting these values into the formula for permutation without
replacement yields 7! / (7- 3)! = 210 possible permutations.

CALCULATE PROBABILITY

In order to calculate the probability of correctly guessing the win-
ner of each of the three medals, divide 1 (the particular permutation
we are interested in) by the number of possible permutations. Thus,
the probability of getting this permutation (the winner of each of
the three medals) equals 1/210.

FIND 1ST EVENT PROBABILITY

In order to find the first event probability you have to consider the
number of acceptable choices and the pool of possible choices. The
number of acceptable choices is 1 because only 1 sprinter can win the
gold medal. The pool of possible choices is 7 because 7 sprinters
participate in the 100m-sprint. Thus, the probability of correctly
guessing the winner of the gold medal is 1/7.

FIND 2ND EVENT PROBABILITY

In order to find the second event probability you again have to con-
sider the number of acceptable choices. The number of acceptable
choices is still 1 because only 1 sprinter can win the silver medal. The
pool of possible choices is reduced to 6 because only the remaining 6
sprinters participating in the 100m-sprint are eligible to receive the
silver medal. Thus, the probability of correctly guessing the winner of
the silver medal is 1/6.

FIND 3RD EVENT PROBABILITY

In order to find the third event probability you again have to consider
the number of acceptable choices. The number of acceptable choices
is still 1 because only 1 sprinter can win the bronze medal. The pool
of possible choices is reduced to 5 because only the remaining 5
sprinters participating in the 100m-sprint are eligible to receive the
bronze medal. Thus, the probability of correctly guessing the winner
of the bronze medal is 1/5.

CALCULATE THE OVERALL PROBABILITY

The overall probability is calculated by multiplying all individual
event probabilities. Thus, the overall probability of correctly guessing
the winner of each of the three medals is 1/7 * 1/6 * 1/5 = 1/210.

Note: In experimental conditions with instructional explanations the example solutions contained all information stated in the
respective table column. Conditions without instructional explanations contained only the information printed in bold.
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Category-Focusing Examples
As has been already noted by Atkinson and Catrambone
(2000), mathematical problem solving is often characterized
by “computationally-friendly” solution approaches in which
multiple solution steps are collapsed into a single formula.
Although these formulas might allow one to easily calculate
solutions by simply inserting the correct variable values
there are also serious drawbacks to this approach. Most
importantly, formulas are usually restricted to solving a
narrow range of problems that fall into predefined problem
categories corresponding to the solution formula.

Like many topics, the calculation of complex-event prob-
abilities is usually taught by means of this type of category-
specific solution formulas. The approach is to calculate the
probability of complex events by dividing the number of
acceptable complex events by the number of possible com-
plex events. Category-specific solution formulas are needed
for calculating the number of possible complex events. In
the materials used for experimentation we distinguish be-
tween four different problem categories (permutations and
combinations, each with and without replacement) that
differ with regard to two structural features: The first is,
whether the order in which elements are selected is impor-
tant, the second is, whether selected elements are replaced
after selection. The solution procedure based on these cate-
gories comprises four steps that are illustrated in the cate-
gory-focusing example in the left column of Table 1,
namely (1) identify task features, (2) apply formula, (3)
insert values, and (4) calculate probability.

This solution approach is a convenient and fast way of
calculating complex-event probabilities. Category-focusing
examples are well suited to explain how to categorize prob-
lems and apply category-specific solution formulas. How-
ever, there are at least two difficulties in learning with these
category-focusing examples: cognitive load and molar rep-
resentations of solution procedures.

Studying category-focusing examples usually requires
learners to consider multiple structural problem features at
the same time in order to understand the problem’s category
membership. During schema acquisition all information
units that are to be integrated into that schema have to be
simultaneously activated in working memory (Sweller et al.,
1998). Therefore, category-focusing examples may result in
substantial cognitive load depending on the number of
structural problem features that have to be kept in mind
concurrently. Unfortunately, cognitive load prevents learn-
ers from engaging in profitable processes of comparing and
elaborating examples that might be necessary for under-
standing problem categories and solution procedures.

Category-focusing examples typically result in a molar
representation of solution procedures. For instance, one has
to have knowledge on all defining structural features of a
problem before being able to decide on a formula needed for
its solution. Therefore, relations below the category level
might be poorly understood, i.e., relations holding irrespec-

tive of category membership such as relations between
structural problem features and individual solution steps. As
a result, learners may not acquire the knowledge necessary
to directly translate individual structural problem features
into characteristics of the problem solution in a modular
way. Consequently, they might fail to adapt solution proce-
dures to novel problems beyond the known problem catego-
ries. Based on these concerns we developed a category-
avoiding example format that does not require learners to
consider multiple structural problem features simultaneously
and that focuses on individual solution steps and their rela-
tion to individual structural problem features across the
boundaries of problem categories.

Category-Avoiding Examples
Compared to traditional “molar” examples the category-
avoiding examples we constructed are “modular” because
solution procedures are broken down into smaller meaning-
ful groups of solution steps that can be understood in isola-
tion and that can be separately transferred when solving
novel problems. This format should help learners to orga-
nize their problem-solving knowledge in a way that is inde-
pendent of problem categories and generalizes across prob-
lems in a domain. In this respect, category-avoiding exam-
ples conform to the subgoal learning model that proposes to
group sets of solutions steps according to the subgoals they
aim to achieve in the solution procedure (Catrambone,
1998). This approach aims at conveying general problem-
solving strategies that apply at the level of individual solu-
tion steps and that might allow learners to derive solutions
for different types of problems on their own.

In order to explain the calculation of complex-event prob-
abilities without referring to problem categories we relied
on the fact that problems in probability theory can be solved
by breaking down complex events into sets of individual
events. The solution procedure based on this category-
avoiding approach comprises four steps that are illustrated
in the category-avoiding example in the right column of
Table 1. In this example the probability of a complex event
is calculated by determining the probabilities of all individ-
ual events that make up the complex event (step 1 to 3) and
then multiplying these individual-event probabilities to
calculate the overall probability (step 4).

When calculating a particular individual-event probability
one has to take into account how the number of possible and
acceptable choices change from the preceding to the current
trial. These changes depend on whether previously selected
objects are replaced or not after having been selected and
on whether there is more than one acceptable choice in a
given trial. The fact that these two questions correspond to
the structural features of the probability problems makes it
easier to adapt this approach to novel problems. The solu-
tion procedure illustrated by category-avoiding examples
does not require one to categorize problems before solving
them. Rather, decisions with regard to individual structural
problem features can be directly translated into modifica-
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tions of individual solution steps (i.e., changes of possible
and acceptable choices from trial to trial). The reasoning
exemplified in the category-avoiding examples thus should
help learners to understand relations below the category
level that hold irrespectively of category membership.

Assumptions with regard to the relative effectiveness of
the two example formats were tested in two experiments
that will be described in the remainder of the paper.

Overview of Experiments
Experiment 1 was a preliminary study to test whether cate-
gory-avoiding examples lead to better problem-solving
performance for isomorphic as well as for novel problems.
This was expected because category-avoiding examples (1)
should reduce cognitive load during learning thereby al-
lowing cognitive resources to be devoted to profitable ex-
ample processing and, (2) should foster an understanding of
how structural problem features translate into individual
solution steps. Experiment 1 is only roughly sketched as the
focus of the paper is on Experiment 2. In Experiment 2 we
tried to directly test whether category-focusing examples are
associated with a higher level of cognitive load. Addition-
ally, we explored the role of instructional explanations,
which should be especially helpful for category-focusing
examples: Whereas learners with category-avoiding exam-
ples have sufficient cognitive resources available to engage
in self-explanations, learners with category-focusing exam-
ples may suffer from cognitive overload when trying to
understand molar solution procedures.

Experiment 1
This preliminary experimental study yielded evidence that
category-avoiding examples have the potential to outper-
form category-focusing examples with regard to later prob-
lem solving (details reported in Gerjets, Scheiter, & Klein-
beck, in press). In this study a hypertext-based learning and
problem-solving environment (HYPERCO M B , Gerjets,
Scheiter, & Tack, 2000) was used for experimentation.
HYPERCOMB provided an introduction to probability theory
followed by two worked examples for each of the problem
categories covered. Participant then had to solve six test
problems. To find out whether learners needed to look up
example information (e.g., solution formulas) during prob-
lem solving we allowed them to re-examine instructional
examples in the test phase. Substantial re-examination times
might indicate higher memory demands associated with an
example format. After having solved the test problems a
knowledge test had to be filled in that assessed declarative
knowledge concerning probability theory. The same test
was administered to assess participants’ prior knowledge at
the beginning of the experiment.

As a first independent variable, the format of instructional
examples was varied between subjects by either providing
category-focusing or category-avoiding examples. As a
second independent variable, participants were assigned to
groups with either high or low prior knowledge. Addition-

ally, transfer distance was varied within subjects by having
participants solve three isomorphic and three novel test
problems. Isomorphic test problems differed from the in-
structional examples only with regard to their surface fea-
tures. Novel test problems were constructed in a way that
two complex-event probabilities had to be considered whose
outcomes had to be multiplied in order to calculate the re-
quired probability. An example of a novel test problem is
the following tennis problem: “A tennis club has 20 mem-
bers, 9 women and 11 men, all of them with different last
names. For a friendly game against another club a team has
to be organized that consists of 2 women and 3 men. The
tennis players are chosen by chance. What is the probability
of building up a team that consists of Mrs. Miller, Mrs.
Jackson, Mr. Byrne, Mr. Thomson and Mr. Myles?”

Performance for solving the test problems and for the de-
clarative knowledge test was recorded. Additionally, exam-
ple-study time, time spent re-examining examples during
problem solving, and problem-solving time were obtained
by means of logfile analysis.

Learning with category-avoiding examples led to better
problem-solving performance accompanied by less exam-
ple-study time and less time for re-examining examples
during problem solving. This could be shown independently
of learners’ prior knowledge and of transfer distance. There
were no differences between the example-format groups
with regard to declarative knowledge acquisition. Similarly,
there were no differences in problem-solving time. These
findings confirm the expected superiority of the category-
avoiding example format with regard to learning demands
and subsequent problem-solving performance.

Experiment 2
Experiment 2 was conducted to further explore three issues.
First, we wished to obtain direct evidence for the assump-
tion of reduced cognitive load when studying category-
avoiding examples. Second, we wanted to test the predicted
interaction between example formats and instructional ex-
planations. Third, a possible artifact had to be ruled out: The
increased time for re-examining category-focusing examples
during problem-solving in Experiment 1 revealed that this
example format may impose higher memory demands onto
learners. These demands might be responsible for perform-
ance impairments because they may interfere with example
processing. To rule out this explanation we provided learn-
ers in the category-focusing condition of Experiment 2 with
formulas as a memory aid during problem solving. The
formula list should reduce the memory burden compared to
re-examine instructional materials during problem solving
(the approach used in Experiment 1).

Method

Participants Participants were 68 students (28 female, 40
male) at the Georgia Institute of Technology who partici-
pated for course credit. Average age was 19.6 years.
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Materials and procedure A slightly modified version of
HYPERCOMB was used for this experiment. Two worked
examples were provided for each of the four problem cate-
gories taught. After studying these examples participants
solved three isomorphic and six novel test problems. Input
fields were used to fill in the problem solutions as fractions
(e.g., 1/210). Participants were given no opportunity to re-
examine instructional examples in the test phase. Instead,
formulas were provided during problem solving for those
participants who had to apply solution formulas (i.e., those
learning with category-focusing examples). After solving
the test problems, participants took a knowledge test that
assessed declarative knowledge on probability theory. The
same test was used to assess participants’ prior knowledge
at the beginning of the experiment.

Design and dependent measures As a first independent
variable the format of the instructional examples during the
learning phase of HYPERCOMB was varied between subjects.
The worked examples were either presented in the category-
focusing or the category-avoiding example format. As a
second independent variable the degree of instructional
explanations was varied between subjects. The instructional
examples were presented either with instructional explana-
tions that provided detailed justifications for solution steps
or the examples were presented in a rather condensed ver-
sion that focused on the mathematical structure of example
solutions without providing instructional explanations (see
Table 1). The examples used in Experiment 1 fell in be-
tween these two extremes with regard to the degree of in-
structional explanations. Additionally, transfer distance was
varied within subjects.

Performance for problem solving and for the declarative
knowledge test was recorded. Example-study time, and
problem-solving time were obtained by means of logfile
analysis. Additionally, different aspects of cognitive load
were assessed after the problem-solving phase by adminis-
tering a modified version of the NASA-TLX (Hart & Stav-
eland, 1988). Each of the three cognitive load items that are
described in more detail in the results section was rated on a
scale ranging from 0 to 100.

Results
Initially we analyzed participants’ prior knowledge (see
Table 2) by means of an ANOVA (example format x in-
structional explanations), which yielded no significant main
effects or interactions. Possible performance differences
between the experimental conditions can thus be interpreted
unambiguously as effects of the instructional materials.

Performance data In order to determine the influence of
the three independent variables on problem-solving per-
formance for isomorphic and novel test problems, a MA-
NOVA (example format x instructional explanations x
transfer distance) was conducted. As expected, participants
who had learned with category-avoiding examples clearly
outperformed participants learning with category-focused
examples (F(1,64) = 13.73; MSE = 1204.81; p < .001). There
was, however, no effect of instructional explanations nor

was there an interaction between the two factors (both Fs <
1). Additionally, isomorphic problems were easier to solve
than novel problems (F(1,64) = 78.60; M SE = 386.80; p <
.001). The interaction between example format and transfer
distance failed to reach statistical significance (F(1,64) =
2.56; MSE = 386.80; p < .15). There were no other interac-
tions (all Fs £ 1).

In order to examine the influence of example formats and
instructional explanations on the acquisition of declarative
knowledge an ANOVA was conducted for performance in
the knowledge test. There was a non-significant trend for
the category-avoiding example format to foster knowledge
acquisition (F(1,64) = 3.34; M SE = 176.40; p < .10). There
were no other significant effects (both Fs < 1).

Table 2: Results of Experiments 2

Instructional Explanations Without With

Example format Focus Avoid Focus Avoid

Prior knowledge (in % correct) 54.1 55.6 57.2 55.6

Performance (in % correct)
- Isomorphic Problems 43.1 70.6 47.1 74.5
- Novel Problems 25.5 35.3 15.7 39.2
- Knowledge Test 64.2 67.9 63.1 71.1

Time measures (in sec)
- Example study 418 273 659 370
- Problem solving 1514 1334 1524 1354

Cognitive load (in scale values)
- Task demands 37.4 40.3 40.0 21.2
- Task effort 33.2 31.8 34.7 16.2
- Stress 25.9 15.9 22.1 12.1

Time data A two-factor ANOVA (example format x in-
structional explanation) was conducted for example-study
time as well as for problem-solving time. Not only were
participants learning with a category-avoiding example
format more successfully with regard to problem-solving
performance, but they also needed far less time studying the
examples than participants learning with category-focused
examples (F(1,64) = 10.45; MSE = 76560.56; p < .001). Rather
naturally, the more instructional explanations were provided
to participants the longer they needed to process them (F(1,64)

= 6.35; MSE = 76560.56; p < .05). There was no interaction
between the two factors (F(1,64) = 1.13; MSE = 76560.56; p >
.25). With regard to problem-solving time we obtained no
main effect for either example format (F(1,64) = 1.72; MSE =
303501.60; p > .15) or instructional explanations (F < 1) nor
was there an interaction (F < 1).

Cognitive load scales First, with regard to the task demands
associated with the learning task, both main effects failed to
reach statistical significance (example format: F(1,64) = 2.38;
MSE = 450.87; p > .10; instructional explanations: F(1,64) =
2.56; MSE = 450.87; p > .10). However, a significant inter-
action (F(1,64) = 2.38; MSE = 450.87; p < .05) indicated that
participants judged the learning task as being less demand-
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ing in the category-avoiding example format than in the
category-focused format when learning with instructional
explanations, whereas there was no difference between the
two example formats when no explanations were given.
Second, with regard to the effort participants believed they
had to invest in the task, they indicated that they had to
work less hard in order to understand the instructional con-
tents when learning with category-avoiding examples (F(1,64)

= 4.21; MSE = 403.81; p < .05). There was no main effect
for instructional explanations (F(1,64) = 2.10; MSE = 403.81;
p > .15). Finally, participants experienced less stress during
learning with category-avoiding examples (F(1,64) = 4.96;
MSE = 342.65; p < .05) whereas there neither was a main
effect of instructional explanations nor an interaction (F <
1).

Discussion
In this paper, we provided evidence for abandoning the
general idea that worked examples should aim a conveying
problem categories and category-specific solution proce-
dures. Instead we propose that it is better to design instruc-
tional examples in a way that supports the understanding of
relations between structural problem features and individual
solution steps, i.e. relations that hold below the category
level. This category-avoiding example approach allows one
to free up cognitive resources as indicated by our cognitive
load results. These cognitive resources can in turn be de-
voted to profitable processes such as comparing and elabo-
rating examples. Furthermore, the knowledge resulting from
studying these types of examples can be more easily adapted
to novel problems because of their modularity. The addi-
tional provision of instructional explanations was not very
helpful in fostering skill acquisition – a finding that fits
rather well into the existing literature. We provided empiri-
cal evidence for the superiority of category-avoiding exam-
ples in the domain of probability word problems. We are
aware, however, that the example solutions we used might
differ in more ways than just the category-focusing/avoiding
dimension. For instance, the category-avoiding example
solutions involve a good deal of repetition that might also
reduce working-memory load.  We plan to explore these
differences in greater detail in follow-up work. Additionally,
we will investigate how the approach of designing category-
avoiding examples (that is based on the idea of conveying
more general problem-solving strategies that can be applied
irrespective of category membership) can be used within a
wider range of well-structured and knowledge-rich domains.
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