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Abstract

This paper presents a Bayesian satisficing model of when
a problem-solver stops planning and begins acting.
Existing knowledge about the environment is
incrementally updated by new observations, and
performance improves as a consequence of better
knowledge about the environment. The model aims at
bridging the gap between machine learning and cognitive
science by adopting the bounded rationality framework
(Simon, 1956), which assumes that cognition tends to
exploit the characteristics of the environment without
engaging in psychologically implausible computations.
Empirical studies were conducted when human subjects
learned to find the fastest path in a simple map (only one
was reported in this paper). The model fit the human
learning and performance well and provided insights into
the mechanisms behind learning and performance in
problem solving.

Introduction

Problem-solving research shows that people seldom
plan out complete sequences of actions before acting on
the world (Hayes-Roth & Hayes-Roth, 1979; Roberson
& Black, 1986). Instead, problem solvers construct
partial plans, execute the actions, and plan on further as
they act. Problem-solving behavior can therefore be cast
somewhere along the planning continuum. At one
extreme, a single action is decided and executed based
purely on the current state of the problem. This results
in highly reactive behavior that can respond quickly to
the changing external world. However, this may lead to
inefficient solutions to the problem. At the other
extreme of the planning continuum, a complete
sequence of actions is planned out before any action is
executed. This results in highly efficient performance,
as the best sequence of actions can be chosen and
executed. However, the costs associated with planning
often nullify the benefits of planning. Interleaving of
planning and acting allows a balancing of problem-
solving performance and planning cost involved in the
search of actions.

This paper focuses on a class of problems that can be
solved relatively easily, but requires sufficient planning
to find an efficient solution path. For example, finding a
route from Pittsburgh to New York City is relatively
easy (there are many possible routes to choose from),
but finding the fastest route may require some planning
ahead (to find out traffic conditions in different routes).
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A number of successful methods have been proposed
to obtain the optimal level of planning given sufficient
information about the problem-solving environment
(Sun & Giles, 2001), but most of them adopt some
variations of the dynamic programming approach that
requires extensive backward search to find the optimal
solution (e.g. Kopf, 1988). Although these methods are
often able to lead to optimal solutions, the computations
involved is clearly beyond the capacity of the human
cognitive system. Psychological research, however, did
find that people are able to change their level of
planning in response to the characteristics of the
environment to improve problem-solving performance
(Kirsh & Maglio, Gunnzelman & Anderson, 2002). For
example, Kirsh and Maglio found that expert players of
the interactive video game Tetris outperformed novice
players by better cost-benefit tradeoffs between mental
planning and external planning (information-seeking
actions). Gunzelmann and Anderson also found that
their subjects increased the level of planning in the
Tower-of-Hanoi task as they learned that it increased
the efficiency of their solutions. In summary, the results
suggest that (1) people are sensitive to the cost and
benefit of planning, (2) people learn to perform better
cost-benefit tradeoffs through experience, and (3) good
cost-benefit tradeoffs are often critical to performance.

The studies of how people perform cost-benefit
tradeoffs have been of great interests to researchers in
the domains of problem solving and decision-making
(Christensen-Szalanski, J. J. J., 1980; Beach, L. R., &
Mitchell, T. R., 1978; Payne, Bettman, & Johnson,
1993). Recently, a growing number of researchers have
adopted the rational approach to explain cost-benefit
tradeoffs in decision making behavior and strategy
selection (Anderson, 1990; Lovett & Anderson, 1996;
O'Hara & Payne, 1998; Fu & Gray, 2000). The major
assumption of the rational approach is that people are
well adapted to statistical characteristics of their
environment, and computations in the human cognitive
system perform in ways that are optimal in response to
the demand of the environment. Under the rational
framework, planning should stop as soon as the cost of
further planning exceeds the benefit that further
planning could bring. Since continued search of the
problem space takes place at increasing cost, searching
should stop and execution should begin once the
expected benefit of further search drops below a certain
level. At this point, the problem solver "satisifices" on



the current level of planning with no guarantee that it is
the global best (Simon, 1956; Russell & Wefald, 1991).
Similarly, biologists have long entertained the
hypothesis that animals forage for resources in a near-
optimal manner, given the distribution and
replenishment rate of the resources, and the energy cost
to obtain the resources (Krebs & Davis, 1978). For
example, hummingbirds have been shown to forage
flowers in a region until the rate of return is below the
average for all flowers, and then forage another regions
with greater-than-average return (Pyke, 1978).

Learning and performance

One useful approach to study how people adapt their
behavior to the contingencies of a situation is
reinforcement learning. During reinforcement learning,
the problem solver learns by observing the
consequences of their actions over time, and improves
their choice of actions with experience. One of the
challenges that arises in reinforcement learning and not
in other kinds of learning is the tradeoff between
exploration and exploitation. In reinforcement learning
situations, the learner has to take both learning and
performance into account — the problem solver has to
learn about the environment to improve performance in
the long run and take advantage of the knowledge
gained to improve immediate performance. A number
of computational methods have been explored (e.g.
Sutton & Barto, 1998) to investigate the efficiency of
learning from interacting with the environment from the
machine learning perspectives. The current paper
attempts to bridge the gap between computational
methods in machine learning and the rational approach
in cognitive science by assuming that the human
cognitive system is well adapted to the demands of the
environments. By making these assumptions, complex
computations can often be replaced by simple
mechanisms that exploit the structure of the
environment while maintaining the same level of
performance (e.g. Anderson, 1990; Gigerenzer &
Selten, 2000). Based on this assumption, the model
attempts to characterize both learning and performance
when human subjects adapt to the environment with
some simple, psychologically plausible mechanisms.

The Bayesian Satisficing Model

The current analysis focuses on how optimal
performance can be achieved through an adaptation
process in which information is incrementally
accumulated from the environment. The adaptation
process has the dual goals of (1) learning the
characteristics of the environment and (2) improving
performance by choosing better actions to solve the
problem. For learning, the adaptation process has a
mechanism that combines new information obtained
from the environment with existing knowledge; for
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performance, a decision criterion is used that allows the
person to choose actions based on the existing
knowledge of the environment. Specifically, when
deciding how much planning one should do during
problem solving, the model has a mechanism that
updates the knowledge about the relationship between
the amount of planning and the execution cost of
actions, and a decision criterion on when to stop
planning given the existing knowledge.

The model assumes that the problem-solver updates
the existing knowledge about the environment through a
Bayesian combination of new information from the
environment and the existing knowledge. For
simplicity, some assumptions about the environment are
made. First, it is assumed that the problem is solved by
the combination of general heuristics (such as hill-
climbing) and special heuristics based on information
obtained from planning. It is assumed that special
heuristics are likely to be more efficient than general
heuristics, and the more planning the problem solver
does, the less effort will be required to accomplish the
task. It is also assumed that the problem can always be
solved (even with no planning). All other possible
variables that may influence the perception of the
amount of effort required to solve the problem are
assumed to be constant.

Learning in the Bayesian satisficing model is
concerned with estimating the amount of effort (the
acting costs) required to solve the problem from
information observed from the environment. The model
assumes that the function describing the amount of
effort required to solve the problem has an exponential
relationship with the number of steps of planning (n).
Mathematically, f(n,B) can be calculated by

A -0
f(n,B) = Ee B (eq1: function of the amount of
effort required to solve the problem)

where A is a proportionality constant. B is related to the
amount of effort saved per each step of planning. For
example, for a given n, the higher the value of B, the
lower the value of f(n,B) will be. The exponential
distribution also has the characteristic that there is
diminishing return in the amount of effort one can save
per each additional step of planning’.

To account for the randomness in the perception of
the actual effort a noise term s is added to f(n,B). s isa
random variable following a normal distribution with

! The exponential distribution implies unrealistically that with
sufficiently large n, the execution cost will be close to zero.
However, it is assumed that n will never be too large with the
stopping criterion. Additionally, Figure 3 suggests that the
exponential distribution is a good approximation at least to the
specific task used in the experiment.



mean equals zero, and standard deviation equals t. The
value of t can be considered a free parameter. The
uncertainties of B in equation 1 are represented by a
gamma distribution. The gamma distribution is a two-
parameter general distribution that describes the
uncertainties of B in a general environment. The gamma
and exponential distribution are standard non-
informative distributions in Bayesian analysis (e.g. see
Berger, 1985), which make minimal assumptions on the
structure of the environment. However, based on these
assumptions, models of the mechanisms that respond
optimally to the characteristics of the environment can
be constructed.

The optimal number of steps of planning (nep) with
respect to the current distributions of B can be
calculated. If wy, is the cost of a unit step of planning,
the optimal decision rule to stop planning is when the
cost of an additional step of planning exceeds its
expected benefit. Mathematically, planning will stop as
soon as n satisfies the following equation:

f(n-1) - f(n) <w, ..... (eg2: the stopping criterion)
After the execution of actions, the acting cost can be
obtained. Based on the information, the model updates
the distribution of B using Bayes’ theorem.
Mathematically, if p(B') is the updated distribution, then

f B)p(B
(@)= o [B)0(E)
Of (N [B) (BB

which can be calculated for each ng, chosen according
to the stopping criterion stated above. p(B") can then be
used as the prior distribution of B for the next cycle of
selection of ngy, and p(B') can be calculated, and so on.
The updated distributions, with more information, will
describe the environment better, and therefore generate
a better value for nyy. The adaptation process continues
and ngy will approach a value that is tuned to the
characteristics of the environment (see Figure 1).

The above stopping criterion is a local decision rule
that guarantees that performance is optimal given the
existing knowledge about the environment. The
Bayesian learning process updates the global
information, f(n), with new information obtained from
the result of the local decision rule. The Bayesian
satisficing model therefore combines performance and
learning through an incremental update of knowledge of
the environment. Global representation of the
environment is improved through Bayesian learning and
performance is improved through a simple local
decision rule, which greatly simplifies the computations
involved in many machine-learning approaches.

(eg3: Bayesian learning)
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Problem-solver

" Learning
Execution > Nopt,
cost f(nopt|B) b(B) = f(nopt)p(B)
T d(nopt/B)p(B) dB
Environment l
T Performance
Nopt < f(n) - f(n+1) <wn

Figure 1. The Bayesian satisficing model — learning is
through the Bayes’ theorem, and performance is based
on an optimal stopping criterion. Execution cost is
sampled from the environment and used as estimate for
f(nopt |B) for each cycle of learning.

The Bayesian satisficing model therefore nicely
combines optimally learning and performance given the
characteristics of the environment. The Bayesian
learning equation combines optimally the uncertainties
in existing knowledge and uncertainties in new
observations. The stopping criterion also assumes that
the decision on the level of planning is optimal given
the existing knowledge. These two components of the
model therefore provide a unified account of learning
and performance in adaptive planning.

The Task

A simple map-navigation task was chosen as shown in
Figure 2. Simple hill-climbing strategies (i.e. no
planning) are always sufficient to finish the task, but it
does not guarantee to yield the fastest path. With
sufficient experience, one learns the speeds of different
routes and turns, and will be able to improve
performance by a better choice of solution paths.
Subjects are given a start station (the blue dot) and a
destination (the yellow dot) in each trial, and are asked
to travel from the start station to the destination.
Subjects can choose to go to any one of the adjacent
stations directly connected to the current station. To go
to one of the adjacent stations, subjects have to point the
mouse cursor to the station, press and hold down the
mouse key. A red line will be drawn from the current
station (the red dot) to the station clicked. The speeds of
the train lines and the transfers are indicated by the
speed of the movement of the red line. When the red
line reaches the station, the station turns red and
becomes the current station.

Subjects can use the transfer at the intersection of the
train lines to change direction. When subjects are at a
transfer station, he/she can go to another train line or
stay on the same train line. Subjects are told that there
are two kinds of transfers, the pink transfers and the
orange transfers, and one of them is faster than the
other. However, they are not told which one is faster.
When the trial starts, the colors of the transfers are
covered (i.e. in black). The color of a transfer will be
shown when the subject is at the transfer station or
when the subject clicks on the transfer. As soon as the



experiment starts, the subject can check the color of any
transfer in the map anytime before they reach the
destination. Figure 2 shows the two kinds of transfers
randomly located in the map. The colors are uncovered
for illustration purpose only. At any time during the
experiment, the subject can see at most one transfer
uncovered.

There are two major manipulations of the experiment
— planning and acting costs. The task is constructed so
that increasing the amount of planning will decrease the
cost of acting, and vice versa. Cost is measured by the
time to completion of the task, which is the sum of the
planning and acting costs. Given the design of the task,
subjects have to trade-off planning costs and acting
costs to maximize performance.

Yellow = End

Pink Transfer S—

£ o=
L]

Red = Current s

.'-ﬂ-':-:-a-‘:.: -.'n--n.:-a-.
Blue = Start
Figure 2. The map used in the experiment. There are
two kinds of transfers, one in orange and the other in
pink. In the actual experiment, the colors of the transfers
are covered. There are 4 pink transfers and 12 orange
transfers in each map.

Planning is measured by the number of mouse clicks
that check the colors of the transfers. The cost of
planning is manipulated by adding a lockout time after
the transfer station is clicked. For example, a 1-second
lockout time requires the subject to hold down the
mouse button for one second before he/she can see the
color of the transfer. The cost of acting is manipulated
by the speed of the slow transfers. When the slow
transfer is much slower than the fast transfer, the effect
of planning will be larger because using the fast transfer
allows the subject to solve the map much faster than
when using the slow transfer.

The Experiment

The experiment was a 2x3 between-subject design. The
two between-subject independent variables were
Planning Cost (information access cost) and Acting
Cost (difference between the speeds of the fast and slow
transfers). (In the rest of the paper, the high Planning
Cost and high Acting cost condition will be referred to
as Hi-Hi, the low Planning Cost and medium Acting
Cost condition will be referred to as Lo-Med, etc). The
dependent variable was the amount of planning, as
measured by the number of mouse clicks to uncover the
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transfer (a more comprehensive set of analyses can be
found in Fu, 2003). Each subject solved 8 blocks of 8
maps. The first seven maps of each block had 12 slow
transfers and 4 fast transfers, and there was always one
and only one path that contained only fast transfers, and
it was always the fastest path. Planning was necessary
to find the fastest path (which uses only fast transfers)
on these maps, and the shortest path was never the
fastest path. These maps were called the round-about-
fastest maps. The locations of the start and end stations
were randomized in all maps. The eighth map had no
fast transfer and will be called the all-slow maps. The
all-slow maps showed how much planning the subjects
would do when they could not find any fast transfer, and
thus allowed the measure of how subjects' decisions to
stop planning differed in different conditions and how
they changed through experience.

Before the experiment begins, each subject was given
a practice trial. The Planning Cost was set according to
the condition the subject was in (i.e. either with or
without the 1-second lockout time). Subjects were told
that the task was to go from the start station (the blue
dot) to the end station (the yellow dot) as fast as
possible, and they were timed during each map.
Subjects were told that there were two kinds of transfer,
one was orange and the other was pink, and that one
kind was faster than the other. However, they were not
told which one was faster. This was not to bias the
subject on the use of any one kind of the transfer. Half
of the transfers (eight) in the practice trial were orange
and the other half (eight) were pink, but the actual speed
of the orange and pink transfers were the same in the
practice trial. They were shown how to go from one
station to another, as well as how to uncover the color
of the transfers. Subjects were then asked to solve the
map by themselves. Subjects were instructed to solve
each map as fast as possible.

Parameters for the environments

Simulations were conducted to estimate the relationship
between the amount of planning (n) and the execution
cost (C) for map-navigation task (Figure 3). When no
planning was done (i.e. n=0), the execution cost was
estimated to be the time to go from the start station to
the end station using the shortest path (i.e. hill-
climbing). For n>0, the following simulation was
conducted to obtain the curves in Figure 3. First, one of
the transfers on the same train line of the start station
would be randomly selected. This would be counted as
one planning step, and n will be incremented. For n=1,
planning would stop here. If the transfer selected was
fast, the transfer would be used; and from the selected
transfer, the hill-climbing heuristic would be used to
find the path from the selected transfer to the end station
(i.e the shortest path from the selected transfer to the
end station would be used). The execution cost could



then be calculated. If the selected transfer was slow,
then the shortest path from the start station to the end
station would be selected. For n = 2, planning will
continue depending on whether the first transfer was
fast or slow. If the first selected transfer was fast, then
one of the transfers would be selected on the train line
connected by the selected transfer. If the first selected
transfer was slow, another transfer would be selected on
the same train line of the start station. This would
continue for higher values of n and the corresponding
execution costs could be obtained. The simulations were
run 100 times because of the stochasticity involved in
the selection of transfer. The curves in Figure 3 were
used to approximate the function f(n) in the model fits
presented below.

Execution cost (seconds)
125

High Benefit
100 -|

MeqoBenefit
75407 \‘c«“o'x& T
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o oy’ ~o- o
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---------------------
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of steps of planning
Figure 3. The relationship between the number of steps
of planning and the execution cost obtained from the
simulations for the map-navigation task. Each point in
the figure represents the mean of the results from 100
simulations.

Results

Since modeling the results from the round-about-fastest
maps require more elaborate strategies construction, this
paper focuses on the results from the all-slow maps.
Since there was no fast transfer in the all-slow maps, the
major factor affecting the decision on how much to plan
would be affected solely by subjects’ perception of the
expected cost and benefit of planning. The dependent
measure was the amount of planning (measured by the
number of mouse clicks that uncovered the color of the
transfers). The initial parameters for the prior gamma
distribution were set to a = 10, b=2. The value of t (the
standard deviation of the noise term in f(n|B)) is set to
be 2.5. These were free parameters chosen to better fit
the data. The same set of parameters was used to fit two
other sets of data, providing constraints to the model.
However, due to space limitation, only the first set of
data was presented here. The model fit is shown in
Figure 4.
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Figure 4. The amount of planning in the all-slow maps
done by the human subjects and the model in the map-
navigation task.

The main effects of Cost and Benefit were significant
(F(1, 84) = 37.95, MSE = 2645.53, p < 0.01 and F (2,
84) = 34.39, MSE = 2397.386, p < 0.01 respectively).
Subject planned more when the cost was low and when
the benefit was high. The results showed that subjects'
decisions on when to stop planning were sensitive to the
cost and benefit of planning. The fit of the model to the
empirical data was good, R?> = 0.92, RMSE = 0.21,
suggesting that the model captured subjects perception
of the expected cost and benefit of planning well. It also
shows that the model captured the cost-benefit tradeoffs
well.

Amount of planning

Subjects

154 &L Lo-Hi

10

Tlr8 Trl16 Trl24 Trl32 Trl40 Trl48 Trl54

Trials

Figure 5. The amount of planning in the all-slow maps
across trials done by the human subjects and the model
in the map-navigation task. R*=0.78, RMSE = 2.64.

Figure 5 shows the model fit to the amount of
planning across trials. The fit to the empirical data was
good, R? = 0.78, RMSE = 0.64. It shows that not only
did the model fit the average performance of the
subjects well; it also fit the learning of the subjects well
across different experimental conditions. Given the free
parameters of the model were mainly the parameters for
the prior gamma distribution (which were the same in
all experimental conditions) and the noise parameter,
the fit for both performance and learning suggest that
the Bayesian satisficing model did a good job



characterizing the behavior of the subjects. The same
model (with the same parameters) was run to fit two
more sets of data (see Fu, 2003), which provides further
constraints to the model. However, due to space
limitations, they were not reported in this paper.

Conclusions and discussions

The above results provided evidence that the
interleaving of planning and acting is adaptive. Subjects
were willing to plan more when the benefit was high,
and plan less when the cost was low. Subjects also
showed continued adaptation to the environment with
experience. Overall, the Bayesian satisficing model
provides a good account of the cost-benefit tradeoffs in
planning, and it adapts to similar amount of planning as
the subjects in different environments. The model also
generated learning curves similar to those of the
subjects.

The Bayesian satisficing model is similar to the
reinforcement learning approach in machine learning.
However, it is rested on the rational assumption, under
which the human cognitive system is assumed to be
well adapted to the characteristic of the environment.
Specifically, both the Bayesian learning computations
and the stopping criterion were optimal given the
existing knowledge and new observations of the
environment. The Bayesian learning takes into account
the uncertainties in both the existing knowledge and
new observation. The stopping criterion takes advantage
of the existing knowledge by choosing a level of
planning so that further planning does not justify its
cost. The overall model therefore nicely combines both
learning of the characteristics of the environment and
immediate performance.

Similarly to other models based on the rational
assumption, the human cognitive system does not
necessarily perform the computations involved as
specified in the model. Instead, the computations
involved should reflect what the cognitive system
should do if the system is well adapted to the
characteristics of the environment. For the same reason,
the distributions used in the current model may not be
general to all problem-solving situations. However, the
current endeavor seems to suggest that with minimal
assumptions of the environment, the Bayesian
adaptation approach seem to be able to characterize
human adaptation to new environments well.
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