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Abstract

To a robot, the world is a sea of ambiguity, in which it will
sink or swim depending on the robustness of its percep-
tual abilities. But robust machine perception has proven
difficult to achieve. This paper argues that robots must be
given not just particular perceptual competences, but the
tools to forge those competences out of raw physical ex-
periences. Three important tools for extending a robot’s
perceptual abilities whose importance have been recog-
nized individually are related and brought together. The
first is active perception, where the robot employs motor
action to reliably perceive properties of the world that it
otherwise could not. The second is development, where
experience is used to improve perception. The third is
interpersonal influences, where the robot’s percepts are
guided by those of an external agent. Examples are given
for object segmentation, object recognition, and orienta-
tion sensitivity; initial work on action understanding is
also described.

Introduction
Perception is key to intelligent behavior. While the field
of Artificial Intelligence has made impressive strides in
replicating some aspects of cognition, such as planning
and plan execution, machine perception remains distress-
ingly brittle and task-specific. This paper directly ad-
dresses this brittleness by supporting perception through
active, developmental, and interpersonal means.

Suppose there is some property P of the environment
whose value the robot cannot usually determine. Further
suppose that in some very special situations, the robot
can reliably determine the property. Then there is the
potential for the robot to collect training data from such
special situations, and learn other more robust ways to
determine the property P . This process will be referred
to as “developmental perception” in this paper.

Active and interpersonal perception both act as
sources of the “special situations” that allow the robot
to temporarily reach beyond its current perceptual abil-
ities, giving the opportunity for development to occur.
Active perception refers to the use of motor action to
simplify perception (Ballard, 1991), and has proven its
worth many times in the history of robotics. It allows the
robot to experience percepts that it (initially) could not
without the motor action. Interpersonal perception refers
to mechanisms whereby the robot’s perceptual abilities
can be influenced by those around it, such as a human
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Figure 1: The robots Kismet (top) and Cog (bottom).
Kismet is an expressive anthropomorphic head useful for
human interaction work; Cog is an upper torso humanoid
more adept at object interaction.

“caregiver”. For example, it may be necessary to correct
category boundaries or communicate the structure of a
complex activity.

By placing all of perception within a developmental
framework, perceptual competence becomes the result
of experience evoked by a set of behaviors and predis-
positions. If the machinery of development is sufficient
to reliably lead to the perceptual competence in the first
place, then it is likely to be able to regenerate it in some-
what changed circumstances, thus avoiding brittleness.

The robots
This work is implemented on two robots, Cog and
Kismet (see Figure 1), Cog is an upper torso humanoid
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Figure 2: Cartoon motivation (top) for active segmenta-
tion (bottom). Human vision is excellent at figure/ground
separation (top left), but machine vision is not (top cen-
ter). Coherent motion is a powerful cue (top right) and
the robot can invoke it by simply reaching out and pok-
ing around. The lower row of images show the process-
ing steps involved. The moment of impact between the
robot arm and an object, if it occurs, is easily detected –
and then the total motion after contact, when compared
to the motion before contact and grouped using a mini-
mum cut approach, gives a very good indication of the
object boundary (Fitzpatrick, 2003).

(Brooks et al., 1999) that has previously been applied to
tasks such as visually-guided pointing (Marjanović et al.,
1996), and rhythmic operations such as turning a crank
or driving a slinky (Williamson, 1998). Kismet is an
“infant-like” robot whose form and behavior is designed
to elicit nurturing responses from humans (Breazeal
et al., 2001). It is essentially an active vision head aug-
mented with expressive facial features so that it can both
send and receive human-like social cues.

Active perception
The most well-known instance of active perception is ac-
tive vision. The term “active vision” is essentially syn-
onymous with moving cameras. Active vision work on
Cog is oriented towards opening up the potentially rich
area of manipulation-aided vision, which is still largely
unexplored. But there is much to be gained by tak-
ing advantage of the fact that robots are actors in their
environment, not simply passive observers. They have
the opportunity to examine the world using causality,
by performing probing actions and learning from the re-
sponse. In conjunction with a developmental framework,
this could allow the robot’s experience to expand out-
ward from its sensors into its environment, from its own
arm to the objects it encounters, and from those objects
both back to the robot itself and outwards to other actors
that encounter those same objects.

As a concrete example of this idea, Cog was given a
simple “poking” behavior, whereby it selects locations
in its environment, and sweeps through them with its
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Figure 3: If the robot is engaged in a known activity
(left), there may be sufficient constraint to identify novel
elements within that activity. Similarly, if known el-
ements take part in some unfamiliar activity, tracking
those can help characterize that activity. Potentially, de-
velopment is an open-ended loop of such discoveries.

arm (Fitzpatrick and Metta, 2002). If an object is within
the area swept, then the motion signature generated by
the impact of the arm with that object greatly simpli-
fies segmenting that object from its background, and ob-
taining a reasonable estimate of its boundary (see Fig-
ure 2). The image processing involved relies only on
the ability to fixate the robot’s gaze in the direction of
its arm. This coordination is easy to achieve either as a
hard-wired primitive or through learning (Fitzpatrick and
Metta, 2002). Within this context, it is possible to collect
excellent views of the objects the robot pokes, and the
robot’s own arm.

Figure/ground separation is a long-standing problem
in computer vision, due to the fundamental ambiguities
involved in interpreting the 2D projection of a 3D world.
No matter how good a passive system is at segmentation,
there will be times when only an active approach will
work, since visual appearance can be arbitrarily decep-
tive.

Developmental perception
The previous section showed how, with a particular be-
havior, the robot could reliably segment objects from
the background (even if it is similar in appearance) by
poking them. It can determine the shape of an object
boundary in this special situation, even though it can-
not do this normally. This is precisely the kind of situa-
tion that a developmental framework could exploit. Fig-
ure 3 shows how an open-ended developmental cycle
might be possible. Particular, familiar situations allow
the robot to perceive something about objects and actors
(such as a human or the robot itself) that could not be per-
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Figure 4: The top row shows sample views of a toy
car that the robot sees during poking. Many such views
are collected and segmented as described in (Fitzpatrick,
2003). The views are aligned to give an average pro-
totype for the car (and the robot arm and human hand
that acts upon it). To give a sense of the quality of the
data, the bottom row shows the segmented views that are
the best match with these prototypes. The car, the robot
arm, and the hand belong to fundamentally different cat-
egories. The arm and hand cause movement (are actors),
the car suffers movement (is an object), and the arm is
under the robot’s control (is part of the self).

ceived outside those situations. These objects and actors
can be tracked into other, less familiar situations, which
can then be characterized and used for further discovery.
Throughout, existing perceptual capabilities (“primitive
features”) can be refined as opportunities arise.

As a specific example of development, the segmented
views provided by poking of objects and actors by pok-
ing can be collected and clustered as shown in Figure 4.
Such views are precisely what is needed to train up an ob-
ject detection and recognition system, and follow those
objects and actors into other, non-poking contexts (Fitz-
patrick, 2003).

As well as giving information about the appearance of
objects, the segmented views of objects can be pooled
to train up detectors for more basic visual features – for
example, edge orientation. Once an object boundary is
known, the appearance of the edge between the object
and the background can be sampled along it, and labelled
with the orientation of the boundary in their neighbor-
hood. Figure 5 shows an orientation filter trained up from
such data that can work at much finer scales than nor-
mally possible when the filter is derived from an ideal
edge model such as that of (Chen et al., 2000). The “cat-
alog” of edge appearances found shows that the most fre-
quent edge appearances is an “ideal” straight, noise-free
edge, as might be expected (top of Figure 5) – but a re-
markable diversity of other forms also occur which are
far less obvious (bottom of Figure 5).

Interpersonal perception
Perception is not a completely objective process; there
are choices to be made. For example, whether two ob-

Figure 5: The empirical appearance of edges. Each 4×4
grid represents the possible appearance of an edge, quan-
tized to just two luminance levels. The dark line cen-
tered in the grid is the average orientation that patch was
observed to have in the training data. The upper set of
patches are the most frequent ones that occur in training
data consisting of about 500 object segmentations. The
lower set of patches are a selection of patterns chosen to
illustrated the diversity of possible patterns that can oc-
cur. The oriented features represented include edges, thin
lines, thick lines, zig-zags, corners etc. It is difficult to
imagine a set of conventional filters that could respond
correctly to the full range of features seen here – all of
which appeared multiple times in object boundaries in
real images.

jects are judged to be the same depends on which of
their many features are considered essential and which
are considered incidental. For a robot to be useful, it
should draw the same distinctions a human would for a
given task. To achieve this, there must be mechanisms
that allow the robot’s perceptual judgements to be chan-
neled and moulded by a caregiver. This is also useful in
situations where the robot’s own abilities are simply not
up to the challenge, and need a helping hand.

The most relevant literature at the intersection of com-
munication, perception and development is that of lan-
guage acquisition. It has been observed that language
acquisition involves a search through a large search
space of models guided by relatively sparse feedback
and few examples. This so-called “poverty of the stim-
ulus” relative to the complexity of the models being ac-
quired is taken to imply that infants must have a good
search strategy, with biases well matched to the na-
ture of appropriate solution. This is a claim of innate
constraints, and is historically controversial. Examples
stressing under-determination in language learning in-
clude Quine’s “Gavagai” example (Quine, 1960), where
Quine invites us to imagine ourselves walking with a
native guide in a foreign country, and seeing a rabbit
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Human speech Human action Robot speech Robot action
. . . . . . . . . . . .
say yellow [shows yellow toy] yen [looks at toy]
say yellow yelo
yes! say green green
. . . . . . . . . . . .
yellow [shows yellow toy] yelo [looks at toy]
left [moves toy left] left [tracks toy]
green [shows green toy] green [looks at toy]
right [moves toy right] right [tracks toy]
yellow [shows yellow toy] yelo [looks at toy]
left [moves toy left] left [tracks toy]
. . . . . . . . . . . .
yellow [shows yellow toy] yelo [looks at toy]
next? ahm left? [nods left]
yes! [moves toy left] left!
green [shows green toy] green [looks at toy]
next? ahm right? [nods right]
yes! [moves toy right] right!
. . . . . .

Left Yelo

GreenRight

Figure 6: Extracts from a dialogue with Kismet. The first extract (say yellow...) illustrates how the robot’s active
vocabulary was extended. The second extract shows how a simple sorting activity was annotated for the robot. The
final extract shows the robot being tested on its understanding of the form of the activity. The robot’s utterances were
transcribed phonetically, but are written in a simple form here for clarity. To the right is shown the very simple state
machine model of the activity deduced by the robot.

pass just as the guide says “gavagai” – and then consider
all the possible meanings this utterance might have. It
is possible over time to learn from such situations (see
(Steels and Kaplan, 1999) for an example of a robotic im-
plementation). Pragmatic constraints can help speed the
learner out of this sea of ambiguity. For example, (Mark-
man, 1989) proposes a set of particular constraints in-
fants might use to map words on to meanings. These con-
straints are along the style of the following (with many
variations, elaborations and caveats) :-

• Whole-object assumption. If an adult labels some-
thing, assume they are referring to the whole object
and not a part of it. categories” as opposed to thematic
relationships. For example when child is asked to find
“dog”, may fetch the cat, but won’t fetch dog-food.

• Mutual exclusivity. Assume objects have only one la-
bel. So look for an unnamed object to apply a new
label to.

These constraints are intended to explain a spurt in
vocabulary acquisition where infants begin to acquire
words from one or a few examples – so-called fast-
mapping. They are advanced not as absolute rules, but
as biases on search.

Tomasello raises several objections to the constraint-
based approach represented by Markman (Tomasello,
1997). Tomasello favors a “social-pragmatic” model of
language acquisition that places language in the context
of other joint referential activity, such as shared attention.
He rejects the “word to meaning mapping” formulation
of language acquisition. Rather, Tomasello proposes that
language is used to invite others to experience the world
in a particular way. From (Tomasello, 1997) :-

The social-pragmatic approach to the problem of
referential indeterminacy ... begins by rejecting
truth conditional semantics in the form of the map-
ping metaphor (the child maps word onto world),
adopting instead an experientialist and conceptual-
ist view of language in which linguistic symbols are
used by human beings to invite others to experi-
ence situations in particular ways. Thus, attempt-
ing to map word to world will not help in situa-
tions in which the very same piece of real estate
may be called: “the shore” (by a sailor), “the coast”
(by a hiker), “the ground” (by a skydiver), and “the
beach” (by a sunbather).

Regardless of the utility of Tomasello’s theory for its
proper domain, language acquisition in infants, it seems
a useful mindset for tackling interpersonal perception,
which is in essence all about inviting the robot to view
the world in a particular way.

Tomasello and his collaborators developed a series of
experiments designed to systematically undermine the
constraints approach to learning as typified by Markman
and others. The experiments investigate word learning
among children in the context of various games. The ex-
periments are instructive in showing a range of situations
in which simple rules based directly on gaze or affect
would fail in at least one case or other. The experiments
all avoid giving children (18-24 months old) ostentative
naming contexts, and rather requiring them to pull out
meanings from the “flow of interaction”.

For example, in one experiment, an adult makes eye-
contact with a child subject and says “Let’s go find the
toma.” They then go to a row of buckets, each if which
contains an object with which the child is not familiar.
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Figure 7: Perceptual judgements are fundamentally
about identity: what is the same, what is different. Iden-
tity judgements should depend (at least) on activity, lo-
cation, appearance, and verbal context. These in turn can
be influenced by a caregiver.

One of these objects is randomly designated the “toma”.
If the session is a control, the adult goes directly to the
bucket containing the toma, finds it excitedly and hands
it to the child. Otherwise, the adult first goes to two
other buckets in sequence, each time taking out the ob-
ject, scowling at it, and replacing it, before “finding” the
toma. Later, the child is tested for for the ability to com-
prehend and produce the new word appropriately. The
results show equally good performance in the test and
control scenarios. Tomasello argues that this situation
counts against children using simple word learning rules
such as “the object the adult is looking at while saying
the novel word,” “the first new object the adult looks at
after saying the novel word,” “the first new object the in-
fant sees after hearing the novel word,” or such variants.

Tomasello’s theories and experiments are provocative,
and suggest an approach quite different from the simple
associative learning that is most often seen in robotics.
Work on interpersonal perception on Cog draws heav-
ily on (a grossly simplified caricature of) these ideas.
The basic idea for interpersonal perception drawn from
Tomasello’s work is that information about the iden-
tity of an object needs to be easily coordinated between
perception of activity, location, speech, and appearance
(Figure 7). Without this flexibility, it is hard to imagine
how scenarios such as the experiment described above or
others proposed (Tomasello, 1997) could be dealt with.

It is currently unreasonable to expect the robot to un-
derstand the “flow of interaction” without help. Unaided
segmentation of activity is a very challenging problem
(see (Goldberg and Mataric, 1999) for one effort in the
robotic domain). The human interacting with the robot
can greatly simplify the task by making the structure of
the activity unambiguous. Two mechanisms for this are
particularly easy to deal with: vocalizations and location.
If places and words are used consistently in an activity,
then it is straightforward to model the basic “flow of in-
teraction” they define. Figure 6 shows an example of this
for a very simple sorting activity, implemented on the
robot Kismet. Note that words are used here without the
robot needing to know their meanings – it is sufficient
that they be used consistently enough for the structure of
the task to be made obvious.

Location marked,
Target present

Robot looks away Robot looks back,
Target is gone

Target reappears

Figure 8: Keeping track of locations. Circles with cross-
hairs represent locations that contain a particular object.
If the object is removed, this is detected using color his-
tograms (Swain and Ballard, 1991), and is indicated by a
small circle without a cross-hair. The upper row is a car-
toon sequence to illustrate what is happening in the views
below, which are taken directly from Cog’s egocentric
map. Initially a yellow car is present on the table in front
of Cog. The robot looks away to the door, and when it
looks back, the car is no longer present. It then reappears
and is immediately detected. This behavior, along with
object tracking (which has also been implemented), give
the basics of a representation of the robot’s workspace.

The ability to interact verbally is currently being
ported from Kismet to Cog, so that interpersonal percep-
tion can be integrated fully with the active and develop-
mental work described earlier. Cog already has a well
developed means to keep track of physical locations in
an egocentric coordinate frame (see Figure 8). It is antic-
ipated that this will be important in communicating the
structure of activities to the robot, since even for adult
humans cognition can often be traded off with physi-
cal space (Pelz, 1995; Kirsh, 1995). Recent work has
focused on communicating the structure of search ac-
tivity to the robot, and then using that to learn from a
Tomasello-inspired ‘find the toma’ episode (Fitzpatrick,
2003).

Conclusions
This paper presented a snapshot of ongoing work to cre-
ate an active, developing, malleable perceptual system
for a robot. There is much remaining work to do. The im-
mediate technical goal is to further develop mechanisms
for communicating the structure of simple activities to a
robot, translating this structure into a set of supervised
learning problems for parts of the task which are diffi-
cult to communicate directly, and finally solving those
problems with the guidance of a protocol for inducing
feature selection. Figure 9 shows a schematic for how
this may be achieved. The basic idea is for the robot to
interact with the instructor vocally and through a shared
workspace to acquire a “sequencing model” of an activ-
ity or task, and then to ground that model based on a

412



Sequencing ModelInstructor

Task
Modeling

Task
Grounding

Perceptual
System

Perceptual Network

Demonstrated
Task

Task Learning Mechanism 

State
Grounding

Training
Data 

Figure 9: A summary of how task learning will be im-
plemented. The instructor demonstrates the task while
providing verbal and spatial cues. The cues are used to
construct a model of the task. Generic machine learning
methods are then used to ground this model in the robot’s
perceptual network, guided by previously grounded fea-
ture selection cues. The idea is to avoid ever presenting
the robot with a hard learning problem; the learning algo-
rithms are intended to be “decoders” allowing the human
to communicate changes in representation, rather than to
learn in the conventional sense.

demonstration of the task. This goal of this work is not
to deal with general-purpose problem solving ability –
for which better models are available (Clancey, 2002) –
but to capture something of the quite general statistical
learning abilities of young infants (Kirkham et al., 2002).
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