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Abstract 

Comparisons over commutative expressions constitute a 
special problem in analogical mapping. The unique character 
of these comparisons stems from the nature of commutative 
expressions themselves, which encapsulate particular 
dimensions of similarity between their arguments. In this 
paper, we describe commutative matching mechanisms for 
two analogical mapping systems (SME and MAGI), and 
demonstrate how use of these mechanisms can allow 
analogical mapping to scale over descriptions with lots of 
self-similar relational structure. We also discuss the cognitive 
implications of these mechanisms. 

Introduction 
There are currently several models of analogy and similarity 
that utilize some form of structural mapping (Falkenhainer, 
Forbus, & Gentner, 1989; Ferguson, 1994; Forbus, 
Ferguson, & Gentner, 1994; French, 1995; Gentner, 1983; 
Holyoak & Thagard, 1989; Hummel & Holyoak, 1997; 
Keane & Brayshaw, 1988; Kokinov & Petrov, 2001; 
Mitchell, 1993; Veale & Keane, 1997). These systems have 
been used to model a wide variety of phenomena, including 
analogy, similarity, metaphor, and symmetry detection. In 
all these systems, comparison is understood as a process that 
looks for similar systems of relational structure. 

One type of relational structure, however, has only 
received limited attention in the study of analogy: matches 
of commutative relational expressions (hereafter called 
commutative matches). This is unfortunate, because 
commutative matches appear to be an interesting and 
unusual problem in analogical mapping systems. A 
commutative expression, such as equal-length(line1,line2) 
or group(circle1, circle2, circle3), by its very definition 
represents a kind of encapsulated self-similarity, since all its 
arguments are interchangeable and thus alike.  

Consequently, commutative expressions represent both 
an opportunity and a problem for structure mapping 
systems. If the encapsulated similarity can be harnessed 
effectively in the mapping process, it adds to the power of 
the model. Alternatively, that encapsulated similarity can 
also, as we shall see, severely hamper a structure mapping 
model if not handled correctly. Either result also has 
implications for human analogical reasoning. 

In this paper, we describe the commutative matching 
mechanisms built for two analogical mapping models: the 
MAGI symmetry detection model (Ferguson, in 
preparation) and the Structure Mapping Engine (SME; 
Forbus, Ferguson & Gentner, 1994, in preparation).  

Why commutative expressions make structure 
mapping difficult 
The difficulty of commutative matches is a byproduct of 
how structure mapping constraints are enforced by SME and 
other structure mapping models. SME creates a mapping as 
a set of alignments between expressions and entities in two 
descriptions (the base and target). The constraints of 
structure mapping are as follows: 

Identicality: Only expressions with identical predicates, 
or functional expressions that share a parent match, may be 
matched to one another. 

One-to-one: Each base item must match only one target 
item, and vice-versa. 

Parallel connectivity: Each matched expression must 
also map all its arguments. 

Systematicity: Mappings should encourage deeper, 
interconnected systems of matches over shallow, less 
connected sets of matches. 

To enforce these constraints, SME constructs mappings 
in a local-to-global process. SME begins by building local 
match hypotheses (MHs) between potentially matching 
expressions. These MHs are then gathered into rooted trees 
of matched expressions called kernel mappings. Kernel 
mappings are in turn used to construct global mappings. 

The “anatomy” of mapped expressions in SME is 
demonstrated in Figure 1. SME builds an MH between each 
pair of expressions or entities that meet the identicality 
constraint (such as the two above relations and their paired 
arguments). These MHs reflect the structure of the 
expressions that they match, so that sets of MHs tend to 
form rooted match trees (kernel mappings).   
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Figure 1: Anatomy of an SME mapping between 
base and target expressions (non-commutative). 
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Figure 1 shows a match between non-commutative 
relational expressions. SME’s representation language, 
however, defines both non-commutative and commutative 
relations. 1 

It is at the kernel mapping stage that commutative 
matches introduce complications into the mapping process. 
Kernels that map non-commutative expressions are 
guaranteed, once created, to be structurally consistent (i.e., 
to meet the one-to-one, identicality, and parallel 
connectivity constraints). Sets of consistent kernels are then 
gathered via a greedy merge process (Forbus & Oblinger, 
1990) to maximize the systematicity of the resulting global 
mapping. 

This system works well for sets of non-commutative 
expressions. However, for commutative matches, the 
situation is more complex, because kernel mappings that 
contain commutative matches cannot guarantee structural 
consistency, since they must also maintain the 
commutativity of the matched expressions themselves, 
which in turn may violate the one-to-one constraint. 

We can see the problem clearly in Figure 2, which 
depicts commutative matches in SME.  In contrast to Figure 
1 where the parent match is structurally consistent with all 
the child matches, in Figure 2-A’s commutative match, not 

                                                           
1 A commutative predicate defined in SME assumes that all its 

arguments are interchangeable. Some frame-based representation 
languages (e.g., Kokinov & Petrov, 2001), allow a selected subset 
of the relation’s arguments to be interchangeable. 

all the child matches (shown as dotted lines) are structurally 
consistent with one another. One MH, for example, matches 
L1 to L3, while another matches L1 to L2. Together these 
matches violate the one-to-one constraint. 

This problem is exacerbated if there are multiple levels 
of commutative expressions—a common occurrence in 
visual representations such as the corner groups represented 
in Figure 2-B. In this case, in which the grouped corner 
expressions are matched, entity correspondences cannot be 
determined without choosing the particular corner 
expressions to match, which in turn are indeterminate 
because the set expressions are also commutative. 

This problem is actually a special case of the much 
larger problem of mapping self-similar relational structure, 
which we will return to in the discussion. 

Here we describe the commutative matching mechanism 
developed for the SME 3 (Forbus et al., 1994) and MAGI 
(Ferguson, in preparation) mapping systems. As a contrast, 
we also include a brief description of the mechanism used in 
SME 2 (Falkenhainer et al., 1989), which is different and 
has not previously been described in depth (this description 
is based instead on the SME 2 source code). 

Commutative matches in SME 2 
The original Structure-Mapping Engine (Falkenhainer et al., 
1989), or SME 2,  handles commutative matches in three 
stages: 1) generating a set of child matches; 2) generating 
the argument match permutation sets; and 3) cloning the 
commutative MH for each match permutation set. 

In stage 1, SME creates match hypotheses for all 
possible pairings of the arguments sets.  So, when two 
commutative “parent” expressions with N arguments are 
matched, the match hypothesis for them creates N2 child 
match hypotheses.  

In stage 2, SME generates the argument match 
permutation sets. This is designed to solve the child 
selection problem: exactly which N of the N2 child matches 
should be accepted in the global mapping? To handle this, it 
generates all consistent sets of N child matches from the set 
of N2 matches. For commutative matches with N arguments, 
there are N! possible permutation sets.  

In the final stage, SME then “clones” the commutative 
match hypothesis. Instead of simply treating all the child 
matches as children of the commutative match, SME creates 
a number of “clones” of the original commutative match, 
each of which contains a single permutation of the 
commutative match’s arguments. 

Each clone is by definition structurally inconsistent with 
all the others (pairwise they violate the one-to-one 
constraint, since for each pair of permutations, there must be 
at least one base item that is mapped to different target 
items). For this reason, the clones will not interfere with 
each other in the construction of mappings—no more than 
one clone can be used in any particular kernel or global 
mapping. 

While this mechanism has a very high computational 
cost, it is not without its advantages. While expensive, the 
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Figure 2: Why commutative matches in structure 
mapping are problematic. 
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time and memory costs depend solely on the number and 
arity of the commutative matches, which are commonly 
used, but are often a small subset of any given base or 
target. In addition, for many commutative matches, the 
identicality constraint limits the number of interpretations to 
a handful early in the process, reducing processing cost. 
Finally, once the cloned matches are built, they are 
structurally consistent, which means that SME can treat the 
cloned commutatives matches just like non-commutative 
matches, greatly simplifying later processing. 

Commutative matches in SME 3 
The handling of commutative expressions was significantly 
revised in SME 3 (Forbus et al., 1994), although the exact 
mechanism has not been previously published.  SME 3 is 
also known as incremental or I-SME.  

SME 3 takes a different approach than SME 2 to 
commutative matches. For commutative matches, SME 3 
does not attempt to solve the problem by ensuring that all 
argument permutations are considered. Instead, it handles 
permutation sets only when forced to, using lazy resolution 
of commutative matches.  

To avoid creating explicit match permutations, SME 3 
uses a commutatives table to encode them implicitly (Figure 
3). This method, which is similar to lazy evaluation methods 
in associative-commutative unification (Lincoln & 
Christian, 1989), creates a matrix of matching base and 
target items (Figure 3-A). Each table cell represents a 
potential MH. By the one-to-one constraint, only one item 
in each row and column can be true. To make this table 
notation work better with our mapping notation, we tilt the 
table clockwise into a diamond shape (B), and use “+” and 
“-” to indicate valid and invalid MHs, respectively. 

We can now easily demonstrate the utility of SME 3’s 
mechanism. For example, consider the match between the 
commutative expressions corner(L1,L2) and corner(L3,L4) 
depicted in Figure 4. Here, the match table takes the place of 
the multiple match hypotheses shown in Figure 2-A. The 
table itself is connected to the parent match by a possible-
children link (indicated by the double line). 

As soon as one match is chosen or eliminated, the 
commutative match is fully constrained and can be 
integrated into the rest of the match.  Suppose that 
MH(L1,L3) (i.e., a match between L1 and L3) is invalid.  

Then MH(L1,L4) and MH(L2,L3) are true, and we can 
create a consistent and complete match tree for the figure 
(Figure 5). Similarly, for a second-order commutative 
match, we can determine the set of correspondences as 
particular possible matches are eliminated (Figure 6). 

The use of lazy resolution of commutative matches has 
some interesting implications. Suppose that the arguments 
do not fully resolve and are left partially or fully ambiguous. 
In SME 2, all permutations would be considered, and each 
might be included in a mapping. In SME 3, however, the 
commutative match is purposely left unresolved, with the 
assumption that it represents a many-to-many match where 
the particular individual correspondences are not only 
unknown, but also unimportant. 

It may seem strange that SME 3 simply keeps the 
commutative matches unresolved, but this result appears to 
be a closer fit to human comparisons than SME 2’s model. 
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Figure 3: A commutatives table represents all potential 
child matches for a single commutative match.  (A) 
shows the full table. (B) is a simplified version, rotated 
clockwise to aid clarity.         
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Figure 4: A commutative match utilizing a 
commutativity table 
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Figure 5: Resolved binary commutative match 
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Take, for example, an analogy that compares a basketball 
team with a baseball team. All five basketball players 
correspond to all nine baseball players, and without further 
constraining matches, which baseball player corresponds to 
which basketball player is unimportant. If additional 
information is added, two players may be placed into a 
specific match—for example, if a basketball guard and the 
baseball pitcher had both suffered recent injuries. But in 
general, a person making this comparison would simply not 
consider enforcing a one-to-one match. 

Along with being more cognitively plausible, we can 
demonstrate how this commutative match mechanism 
makes analogical mapping more tractable. In addition, our 
example shows how the commutative mechanism implicitly 
forms a group-based many-to-many mapping. 

Here, we use a modified version of the oft-used analogy 
between an atom and a solar system (Falkenhainer et al., 
1989). The original versions of these descriptions (Figure 7) 
have only one electron and one planet. Using these 
descriptions as the beginning template, we constructed two 
description sets. Each set contained instances with 1 to 10 
electrons (for the atom descriptions) or 1 to 10 planets (for 
the solar system descriptions). In the repeated structure set, 
each planet or electron is represented separately by 
repeating the description for each repeating element. In the 
commutative expression set, the electrons and planets were 
represented by a single commutative and relation.  

We ran each set of atom/solar-system comparisons using 
SME 3 on a 2.6 GHz Windows 2000 Workstation running 
Franz Allegro Common Lisp, recording for each run the 
processing time, the number of MHs produced, and the 
memory used.  

The result was a clear victory for commutative 
expressions. As Figure 8 (processing time) and Figure 9 
(total MHs created) show, the use of repeating structure 
scales poorly in SME. This is not unexpected—again, this 
kind of self-similar structure is a problem for all structural 
matchers, not just SME. In contrast, the performance of the 
set using commutative expressions is relatively flat for less 

than 8 items, and in general takes a fraction of the 
computational resources of the mappings using repeated 
structure. Similar results were found for memory use. These 
results show that, for large amounts of repeating relational 
structure, commutative expressions make mapping tractable, 
allowing it to scale in a way that repeated structure does not.  

In addition, the repeating structure mappings attempted 
to match each electron and each planet specifically, while 
the code using the commutative expressions matched all the 
relational structure found in the repeating structure 
condition, but did not resolve the mapping of the set of 
planets to the set of electrons. In other words, while 
retaining a structural match of the whole system of relations, 
it also saw the planets and electrons as a many-to-many 
group match, where there was no reason to match any 
particular electron to any particular planet. Again, we argue 
that this is a cognitively plausible result. 

This example, then, shows the utility and cognitive 
plausibility of the mechanism.  

Solar-System: 
 (cause (gravity (mass sun) (mass planet1))  
        (attracts sun planet1)) 
 (greater (temperature sun)  
          (temperatureplanet1)) 
 (cause  
    (and (greater (mass sun) (mass planet1))  
         (attracts sun planet1))  
    (revolve-around planet1 sun)) 
 
 Rutherford-Atom: 
 (cause  
   (opposite-sign (charge nucleus)  
                  (charge electron)) 
   (attracts nucleus electron)) 
   (cause  
      (and (greater (mass nucleus) 
                    (mass electron)) 
     (attracts nucleus electron)) 
 (revolve-around electron nucleus)) 

Figure 7: Relational descriptions used for the 
simulation. 
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Figure 8: Processing time (in msec) for comparisons with 
repeating structure vs. comparison utilizing 
commutative expressions. 
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Figure 9: Number of match hypotheses produced for 
comparisons with repeating structure vs. comparisons 
utilizing commutative expressions. 
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Commutative matching in MAGI 
Commutative expressions are even more difficult to handle 
in systems that, instead of mapping base and target 
descriptions, find self-similarity within a single description.  

MAGI is a system that models symmetry and repetition 
detection as structure mapping (Ferguson, 1994, in 
preparation). MAGI has been used in a variety of domains, 
including diagrams illustrating physical laws (Ferguson & 
Forbus, 1998), logic circuits diagrams (Ferguson, 1994), 
and children’s fables (Ferguson, 2001). It has also been used 
to model perceptual symmetry phenomena, including effects 
of qualitative visual structure (Ferguson, Aminoff, & 
Gentner, 1996) and the preference for symmetry about the 
vertical axis (Ferguson, 2000). 

MAGI performs symmetry mapping by mapping a 
description back onto itself to find the maximal area of self-
similarity. It also utilizes two additional mapping 
constraints: 

Limited self-matching: An expression is not allowed to 
map to itself unless that self-match is the result of two non-
identical parent matches. 

Maximal differentiation: Symmetry mappings should 
maximize the interconnectivity and size of structure on 
either side of a symmetry mapping, and minimize the 
amount of relational structure that crosses across the two 
mapped portions. 

If commutative mapping in SME is difficult, 
commutative mapping in MAGI is doubly hard. We must 
not only control for matches between commutative 
expressions, but also between a commutative expression and 
itself. MAGI allows a commutative expression to match 
itself, but only with the proviso that its arguments be 
permuted to avoid self-matching of its arguments. The 
limited self-match constraint is designed to block the 
largest, and yet also most uninformative possible mapping: 
a complete self-match, where every item maps to itself. 

However, a simple extension of SME’s mechanism 
suffices to handle these conditions. Figure 10 shows two 
corner relations (assumed now to be in the same description 
rather than in two descriptions). The corners can map to one 
another, as before, but in a twist that only occurs in a 
symmetry mapping, they may also map to themselves. 

In this case, the commutatives for MAGI have to ensure 
that the limited self-match constraint is enforced—that an 
expression not match to itself unless its parent or child 
matches are not self-matches.  

Therefore, to enforce the proviso that the commutative 
matches not completely self-match, binary commutatives 
(such as the corner self-matches in Figure 10) are 
constrained so that their arguments map to one another. 

The result is that the mapping actually uses three 
commutative tables. The center table matches the corners to 
each other, and at the time depicted, the commutative match 
is unresolved. In addition, each corner relation has a 
commutative table handling the match to itself. In each of 
those tables, however, the limited self-match over a binary 
predicate has automatically resolved them so that the self-
match permutes its arguments. 

The careful reader will notice that because of this, 
commutative binary self-matches will always resolve.  
Given the frequency of binary commutative predicates in 
visual representations (e.g., corner, parallel, perpendicular, 
intersects, and beside) this greatly increases the efficiency 
of MAGI’s mapping algorithm. 

We note that the current implementation enforces the 
proviso only in the case of binary commutatives. Higher 
arities have thus far proved difficult and inefficient, and are 
an area of future research. The proviso is difficult to enforce 
because a local non-self match can have a global effect—if 
one commutative somewhere in a kernel mapping does not 
map an argument to itself, the entire kernel meets the 
limited self-matching constraint. However, the frequency of 
binary commutatives in visual domains still makes the 
existing mechanism extremely useful. 

Discussion 
It is interesting to note that the solution of commutative 
expression matches has often been overlooked in cognitive 
models of analogical mapping. Most existing systems ignore 
the problem entirely (Hofstadter & Mitchell, 1992; Holyoak 
& Thagard, 1989; Hummel & Holyoak, 1997; Keane & 
Brayshaw, 1988; Veale & Keane, 1997), although the 
Copycat and Tabletop systems explicitly address grouping 
(Mitchell, 1993; French, 1995), and ACME addresses 
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Figure 10: Example of commutative mapping in MAGI.  Corners can map to each 
other commutatives, but may also map to themselves with the proviso that their 
arguments do not self-match. 
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many-to-many matches (Holyoak & Thagard, 1989). 
This is true even though descriptions in the analogical 

mapping literature often involve domains that contain some 
form of symmetry or repetition. These domains include 
solar systems (Gentner, 1983), multiple radiation beams or 
lasers (Holyoak & Thagard, 1989), arches (which are often 
symmetric) (Winston, 1980), and series of turbines and 
batteries (Bhatta & Goel, 1997).  

The problem of mapping commutative expressions is but 
one instance of a more general problem in analogical 
reasoning, that of mapping descriptions that themselves are 
self-similar. Descriptions of everyday events and objects 
often contain inner regularities and symmetries.  

While some researchers have usefully noted the NP-hard 
nature of structure-mapping (Veale & Keane, 1997), an 
assessment of the effect of repeating relational structure 
may prove to be a more pragmatic result in the long run. 
Simply put, the complexity of structure mapping increases 
significantly as repeating structure is added, but the proper 
use of commutative expressions (and perhaps other 
grouping techniques as well!) can address that limitation. 
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