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Abstract

Comparisons over commutative expressions constitute a
special problem in analogical mapping. The unique character
of these comparisons stems from the nature of commutative
expressions themselves, which encapsulate particular
dimensions of similarity between their arguments. In this
paper, we describe commutative matching mechanisms for
two analogical mapping systems (SME and MAGI), and
demonstrate how use of these mechanisms can allow
analogical mapping to scale over descriptions with lots of
self-similar relational structure. We also discuss the cognitive
implications of these mechanisms.

Introduction

There are currently several models of analogy and similarity
that utilize some form of structural mapping (Falkenhainer,
Forbus, & Gentner, 1989; Ferguson, 1994; Forbus,
Ferguson, & Gentner, 1994; French, 1995; Gentner, 1983;
Holyoak & Thagard, 1989; Hummel & Holyoak, 1997;
Keane & Brayshaw, 1988; Kokinov & Petrov, 2001;
Mitchell, 1993; Veale & Keane, 1997). These systems have
been used to model a wide variety of phenomena, including
analogy, similarity, metaphor, and symmetry detection. In
all these systems, comparison is understood as a process that
looks for similar systems of relational structure.

One type of relational structure, however, has only
received limited attention in the study of analogy: matches
of commutative relational expressions (hereafter called
commutative matches). This is unfortunate, because
commutative matches appear to be an interesting and
unusual problem in analogical mapping systems. A
commutative expression, such as equal-length(linel,line2)
or group(circlel, circle2, circle3), by its very definition
represents a kind of encapsulated self-similarity, since all its
arguments are interchangeable and thus alike.

Consequently, commutative expressions represent both
an opportunity and a problem for structure mapping
systems. If the encapsulated similarity can be harnessed
effectively in the mapping process, it adds to the power of
the model. Alternatively, that encapsulated similarity can
also, as we shall see, severely hamper a structure mapping
model if not handled correctly. Either result also has
implications for human analogical reasoning.

In this paper, we describe the commutative matching
mechanisms built for two analogical mapping models: the
MAGI symmetry detection model (Ferguson, in
preparation) and the Structure Mapping Engine (SME;
Forbus, Ferguson & Gentner, 1994, in preparation).
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Why commutative expressions make structure
mapping difficult

The difficulty of commutative matches is a byproduct of
how structure mapping constraints are enforced by SME and
other structure mapping models. SME creates a mapping as
a set of alignments between expressions and entities in two
descriptions (the base and targer). The constraints of
structure mapping are as follows:

Identicality: Only expressions with identical predicates,
or functional expressions that share a parent match, may be
matched to one another.

One-to-one: Each base item must match only one target
item, and vice-versa.

Parallel connectivity: Each matched expression must
also map all its arguments.

Systematicity: Mappings should encourage deeper,
interconnected systems of matches over shallow, less
connected sets of matches.

To enforce these constraints, SME constructs mappings
in a local-to-global process. SME begins by building local
match hypotheses (MHs) between potentially matching
expressions. These MHs are then gathered into rooted trees
of matched expressions called kernel mappings. Kernel
mappings are in turn used to construct global mappings.

The “anatomy” of mapped expressions in SME is
demonstrated in Figure 1. SME builds an MH between each
pair of expressions or entities that meet the identicality
constraint (such as the two above relations and their paired
arguments). These MHs reflect the structure of the
expressions that they match, so that sets of MHs tend to
form rooted match trees (kernel mappings).
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Figure 1: Anatomy of an SME mapping between
base and target expressions (non-commutative).




Figure 1 shows a match between non-commutative
relational expressions. SME’s representation language,
however, defines both non-commutative and commutative
relations. '

It is at the kernel mapping stage that commutative
matches introduce complications into the mapping process.
Kernels that map non-commutative expressions are
guaranteed, once created, to be structurally consistent (i.e.,
to meet the one-to-one, identicality, and parallel
connectivity constraints). Sets of consistent kernels are then
gathered via a greedy merge process (Forbus & Oblinger,
1990) to maximize the systematicity of the resulting global
mapping.

This system works well for sets of non-commutative
expressions. However, for commutative matches, the
situation is more complex, because kernel mappings that
contain commutative matches cannot guarantee structural
consistency, since they must also maintain the
commutativity of the matched expressions themselves,
which in turn may violate the one-to-one constraint.

We can see the problem clearly in Figure 2, which
depicts commutative matches in SME. In contrast to Figure
1 where the parent match is structurally consistent with all
the child matches, in Figure 2-A’s commutative match, not

(B) Second-level commutative expression match

Figure 2: Why commutative matches in structure
mapping are problematic.

" A commutative predicate defined in SME assumes that all its
arguments are interchangeable. Some frame-based representation
languages (e.g., Kokinov & Petrov, 2001), allow a selected subset
of the relation’s arguments to be interchangeable.
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all the child matches (shown as dotted lines) are structurally
consistent with one another. One MH, for example, matches
L1 to L3, while another matches L1 to L2. Together these
matches violate the one-to-one constraint.

This problem is exacerbated if there are multiple levels
of commutative expressions—a common occurrence in
visual representations such as the corner groups represented
in Figure 2-B. In this case, in which the grouped corner
expressions are matched, entity correspondences cannot be
determined without choosing the particular corner
expressions to match, which in turn are indeterminate
because the set expressions are also commutative.

This problem is actually a special case of the much
larger problem of mapping self-similar relational structure,
which we will return to in the discussion.

Here we describe the commutative matching mechanism
developed for the SME 3 (Forbus et al., 1994) and MAGI
(Ferguson, in preparation) mapping systems. As a contrast,
we also include a brief description of the mechanism used in
SME 2 (Falkenhainer et al., 1989), which is different and
has not previously been described in depth (this description
is based instead on the SME 2 source code).

Commutative matches in SME 2

The original Structure-Mapping Engine (Falkenhainer et al.,
1989), or SME 2, handles commutative matches in three
stages: 1) generating a set of child matches; 2) generating
the argument match permutation sets; and 3) cloning the
commutative MH for each match permutation set.

In stage 1, SME creates match hypotheses for all
possible pairings of the arguments sets. So, when two
commutative “parent” expressions with N arguments are
matched, the match hypothesis for them creates N* child
match hypotheses.

In stage 2, SME generates the argument match
permutation sets. This is designed to solve the child
selection problem: exactly which N of the N* child matches
should be accepted in the global mapping? To handle this, it
generates all consistent sets of N child matches from the set
of N* matches. For commutative matches with N arguments,
there are N! possible permutation sets.

In the final stage, SME then “clones” the commutative
match hypothesis. Instead of simply treating all the child
matches as children of the commutative match, SME creates
a number of “clones” of the original commutative match,
each of which contains a single permutation of the
commutative match’s arguments.

Each clone is by definition structurally inconsistent with
all the others (pairwise they violate the one-to-one
constraint, since for each pair of permutations, there must be
at least one base item that is mapped to different target
items). For this reason, the clones will not interfere with
each other in the construction of mappings—no more than
one clone can be used in any particular kernel or global
mapping.

While this mechanism has a very high computational
cost, it is not without its advantages. While expensive, the



time and memory costs depend solely on the number and
arity of the commutative matches, which are commonly
used, but are often a small subset of any given base or
target. In addition, for many commutative matches, the
identicality constraint limits the number of interpretations to
a handful early in the process, reducing processing cost.
Finally, once the cloned matches are built, they are
structurally consistent, which means that SME can treat the
cloned commutatives matches just like non-commutative
matches, greatly simplifying later processing.

Commutative matches in SME 3

The handling of commutative expressions was significantly
revised in SME 3 (Forbus et al., 1994), although the exact
mechanism has not been previously published. SME 3 is
also known as incremental or I-SME.

SME 3 takes a different approach than SME 2 to
commutative matches. For commutative matches, SME 3
does not attempt to solve the problem by ensuring that all
argument permutations are considered. Instead, it handles
permutation sets only when forced to, using lazy resolution
of commutative matches.

To avoid creating explicit match permutations, SME 3
uses a commutatives table to encode them implicitly (Figure
3). This method, which is similar to lazy evaluation methods
in associative-commutative unification (Lincoln &
Christian, 1989), creates a matrix of matching base and
target items (Figure 3-A). Each table cell represents a
potential MH. By the one-to-one constraint, only one item
in each row and column can be true. To make this table
notation work better with our mapping notation, we tilt the
table clockwise into a diamond shape (B), and use “+” and
“-” to indicate valid and invalid MHs, respectively.

L3 L4 L1 L3

_ mm
# L2 L4
L1 MH(L1,L3) | MH(L1,L4)

in MH(L2,L3) | MH(L2,L4)

(A) B

Figure 3: A commutatives table represents all potential
child matches for a single commutative match. (A)
shows the full table. (B) is a simplified version, rotated
clockwise to aid clarity.

We can now easily demonstrate the utility of SME 3°s
mechanism. For example, consider the match between the
commutative expressions corner(L1,L2) and corner(L3,1.4)
depicted in Figure 4. Here, the match table takes the place of
the multiple match hypotheses shown in Figure 2-A. The
table itself is connected to the parent match by a possible-
children link (indicated by the double line).

As soon as one match is chosen or eliminated, the
commutative match is fully constrained and can be
integrated into the rest of the match. Suppose that
MH(L1,L3) (i.e., a match between L1 and L3) is invalid.
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Then MH(L1,L4) and MH(L2,L3) are true, and we can
create a consistent and complete match tree for the figure
(Figure 5). Similarly, for a second-order commutative
match, we can determine the set of correspondences as
particular possible matches are eliminated (Figure 6).

The use of lazy resolution of commutative matches has
some interesting implications. Suppose that the arguments
do not fully resolve and are left partially or fully ambiguous.
In SME 2, all permutations would be considered, and each
might be included in a mapping. In SME 3, however, the
commutative match is purposely left unresolved, with the
assumption that it represents a many-to-many match where
the particular individual correspondences are not only
unknown, but also unimportant.

It may seem strange that SME 3 simply keeps the
commutative matches unresolved, but this result appears to
be a closer fit to human comparisons than SME 2’s model.

Figure 4: A commutative match utilizing a
commutativity table

Figure 6: Mapping of a second-order data structure
using commutative tables



Take, for example, an analogy that compares a basketball
team with a baseball team. All five basketball players
correspond to all nine baseball players, and without further
constraining matches, which baseball player corresponds to
which basketball player is unimportant. If additional
information is added, two players may be placed into a
specific match—for example, if a basketball guard and the
baseball pitcher had both suffered recent injuries. But in
general, a person making this comparison would simply not
consider enforcing a one-to-one match.

Along with being more cognitively plausible, we can
demonstrate how this commutative match mechanism
makes analogical mapping more tractable. In addition, our
example shows how the commutative mechanism implicitly
forms a group-based many-to-many mapping.

Here, we use a modified version of the oft-used analogy
between an atom and a solar system (Falkenhainer et al.,
1989). The original versions of these descriptions (Figure 7)
have only one electron and one planet. Using these
descriptions as the beginning template, we constructed two
description sets. Each set contained instances with 1 to 10
electrons (for the atom descriptions) or 1 to 10 planets (for
the solar system descriptions). In the repeated structure set,
each planet or electron is represented separately by
repeating the description for each repeating element. In the
commutative expression set, the electrons and planets were
represented by a single commutative and relation.

We ran each set of atom/solar-system comparisons using
SME 3 on a 2.6 GHz Windows 2000 Workstation running
Franz Allegro Common Lisp, recording for each run the
processing time, the number of MHs produced, and the
memory used.

The result was a clear victory for commutative
expressions. As Figure 8 (processing time) and Figure 9
(total MHs created) show, the use of repeating structure
scales poorly in SME. This is not unexpected—again, this
kind of self-similar structure is a problem for all structural
matchers, not just SME. In contrast, the performance of the
set using commutative expressions is relatively flat for less
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Figure 8: Processing time (in msec) for comparisons with
repeating  structure vs. comparison  utilizing
commutative expressions.
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Solar-System:

(cause (gravity (mass sun) (mass planetl))
(attracts sun planetl))
(greater (temperature sun)
(temperatureplanetl))
(cause
(and (greater (mass sun) (mass planetl))
(attracts sun planetl))
(revolve-around planetl sun))

Rutherford-Atom:
(cause
(opposite-sign (charge nucleus)
(charge electron))
(attracts nucleus electron))
(cause
(and (greater (mass nucleus)
(mass electron))
(attracts nucleus electron))
(revolve-around electron nucleus))

Figure 7: Relational used for the

simulation.

descriptions

than 8 items, and in general takes a fraction of the
computational resources of the mappings using repeated
structure. Similar results were found for memory use. These
results show that, for large amounts of repeating relational
structure, commutative expressions make mapping tractable,
allowing it to scale in a way that repeated structure does not.

In addition, the repeating structure mappings attempted
to match each electron and each planet specifically, while
the code using the commutative expressions matched all the
relational structure found in the repeating structure
condition, but did not resolve the mapping of the set of
planets to the set of electrons. In other words, while
retaining a structural match of the whole system of relations,
it also saw the planets and electrons as a many-to-many
group match, where there was no reason to match any
particular electron to any particular planet. Again, we argue
that this is a cognitively plausible result.

This example, then, shows the utility and cognitive
plausibility of the mechanism.
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Figure 9: Number of match hypotheses produced for
comparisons with repeating structure vs. comparisons
utilizing commutative expressions.



Commutative matching in MAGI

Commutative expressions are even more difficult to handle
in systems that, instead of mapping base and target
descriptions, find self-similarity within a single description.

MAGI is a system that models symmetry and repetition
detection as structure mapping (Ferguson, 1994, in
preparation). MAGI has been used in a variety of domains,
including diagrams illustrating physical laws (Ferguson &
Forbus, 1998), logic circuits diagrams (Ferguson, 1994),
and children’s fables (Ferguson, 2001). It has also been used
to model perceptual symmetry phenomena, including effects
of qualitative visual structure (Ferguson, Aminoff, &
Gentner, 1996) and the preference for symmetry about the
vertical axis (Ferguson, 2000).

MAGI performs symmetry mapping by mapping a
description back onto itself to find the maximal area of self-
similarity. It also utilizes two additional mapping
constraints:

Limited self-matching: An expression is not allowed to
map to itself unless that self-match is the result of two non-
identical parent matches.

Maximal differentiation: Symmetry mappings should
maximize the interconnectivity and size of structure on
either side of a symmetry mapping, and minimize the
amount of relational structure that crosses across the two
mapped portions.

If commutative mapping in SME is difficult,
commutative mapping in MAGI is doubly hard. We must
not only control for matches between commutative
expressions, but also between a commutative expression and
itself. MAGI allows a commutative expression to match
itself, but only with the proviso that its arguments be
permuted to avoid self-matching of its arguments. The
limited self-match constraint is designed to block the
largest, and yet also most uninformative possible mapping:
a complete self-match, where every item maps to itself.

However, a simple extension of SME’s mechanism
suffices to handle these conditions. Figure 10 shows two
corner relations (assumed now to be in the same description
rather than in two descriptions). The corners can map to one
another, as before, but in a twist that only occurs in a
symmetry mapping, they may also map to themselves.

In this case, the commutatives for MAGI have to ensure
that the limited self-match constraint is enforced—that an
expression not match to itself unless its parent or child
matches are not self-matches.

Therefore, to enforce the proviso that the commutative
matches not completely self-match, binary commutatives
(such as the corner self-matches in Figure 10) are
constrained so that their arguments map to one another.

The result is that the mapping actually uses three
commutative tables. The center table matches the corners to
each other, and at the time depicted, the commutative match
is unresolved. In addition, each corner relation has a
commutative table handling the match to itself. In each of
those tables, however, the limited self-match over a binary
predicate has automatically resolved them so that the self-
match permutes its arguments.

The careful reader will notice that because of this,
commutative binary self-matches will always resolve.
Given the frequency of binary commutative predicates in
visual representations (e.g., corner, parallel, perpendicular,
intersects, and beside) this greatly increases the efficiency
of MAGI’s mapping algorithm.

We note that the current implementation enforces the
proviso only in the case of binary commutatives. Higher
arities have thus far proved difficult and inefficient, and are
an area of future research. The proviso is difficult to enforce
because a local non-self match can have a global effect—if
one commutative somewhere in a kernel mapping does not
map an argument to itself, the entire kernel meets the
limited self-matching constraint. However, the frequency of
binary commutatives in visual domains still makes the
existing mechanism extremely useful.

Discussion

It is interesting to note that the solution of commutative
expression matches has often been overlooked in cognitive
models of analogical mapping. Most existing systems ignore
the problem entirely (Hofstadter & Mitchell, 1992; Holyoak
& Thagard, 1989; Hummel & Holyoak, 1997; Keane &
Brayshaw, 1988; Veale & Keane, 1997), although the
Copycat and Tabletop systems explicitly address grouping
(Mitchell, 1993; French, 1995), and ACME addresses
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Figure 10: Example of commutative mapping in MAGI. Corners can map to each
other commutatives, but may also map to themselves with the proviso that their
arguments do not self-match.
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many-to-many matches (Holyoak & Thagard, 1989).

This is true even though descriptions in the analogical
mapping literature often involve domains that contain some
form of symmetry or repetition. These domains include
solar systems (Gentner, 1983), multiple radiation beams or
lasers (Holyoak & Thagard, 1989), arches (which are often
symmetric) (Winston, 1980), and series of turbines and
batteries (Bhatta & Goel, 1997).

The problem of mapping commutative expressions is but
one instance of a more general problem in analogical
reasoning, that of mapping descriptions that themselves are
self-similar. Descriptions of everyday events and objects
often contain inner regularities and symmetries.

While some researchers have usefully noted the NP-hard
nature of structure-mapping (Veale & Keane, 1997), an
assessment of the effect of repeating relational structure
may prove to be a more pragmatic result in the long run.
Simply put, the complexity of structure mapping increases
significantly as repeating structure is added, but the proper
use of commutative expressions (and perhaps other
grouping techniques as well!) can address that limitation.
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