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Abstract Cognitive psychologists have investigated how hu-

mans perceive and process information, and artificial in-
This paper outlines our approach to a novel application telligence researchers have implemented systems that ex-
of plan inference, recognizing the intended message of hibit intelligent behavior. Although cognitive modelling
Soalch by cognitve peyohologiels have been eorporated S CENtralto projects such as SOAR [SOAR, 2003], ACT-
into the )c/iesi%]n of c?u?lsystegr]n. Our work is par? of a R [ACT-R, 2003], an(_:l EPIC [EPIC, 2003], too often AI
larger project to develop an interactive natural language researchers do not incorporate the results of cognitive
system that provides an alternative means for individuals psychology research into artificial intelligence systems.
with sight-impairments to access the content of informa-  This paper outlines our approach to recognizing the in-
tion graphics. tended message of an information graphic, focusing on

how results from research by cognitive psychologists

. have been incorporated into the design of our system.
Introduction

Information graphics (line graphs, bar charts, etc.) are Information Graphics as Language

pervasive in popular media such as newspaper and mad:s noted by Clark [1996], language is more than just
azine articles. Our analysis of a corpus of informationwords. It is any “signal” (or lack of signal when one is
graphics from such documents indicates that informatioreXpected), where a signal is a deliberate action that is
graphics generally have a communicative goal (for exdntended to convey a message. Language research has
ample, to convince a viewer that a particular mutual fundposited that a speaker or writer executes a speech act
has an upward trend and that the fund’s performance ighose intended meaning he expects the listener to be
better than that of the S&P-500 and so is a good buy) an@ble to deduce, and that the listener identifies the in-
that information graphics often carry information con- tended meaning by reasoning about the observed sig-
tent that is not available from the text alone. Unfortu- hals and the mutual beliefs of author and interpreter
nately, individuals with impaired eyesight have limited [Grice, 1969, Clark, 1996]. Applying Clark's view of
access to information graphics and thus cannot fully utilanguage to information graphics, it is reasonable to pre-
lize this information resource. Although some projectssume that the author of an information graphic similarly
have attempted to reproduce the image in an alternativexpects the viewer to deduce from the graphic the mes-
medium, such as via soundscapes [Meijer, 1992], thesgage that he intended to convey by reasoning about the
approaches are ineffective with complex graphics suct@raphic itself, the salience of entities in the graphic, and
as multiple line graphs and they require the user to demutual beliefs.

velop a “mental map” of the information graphic, which ~ Beginning with the seminal work of Wilensky [1981]
puts congenitally blind users at a disadvantage since theytho recognized the importance of inferring characters’
do not have the personal knowledge to assist them in thgoals in order to understand a story and Perrault and
interpretation of the image [Kennel, 1996]. The overall Allen [1980] who developed a system for deducing the
goal of our project is an interactive natural language sysintended meaning of an indirect speech act, researchers
tem that will provide the user with the same knowledgehave applied plan inference techniques to a variety of
about an information graphic, to any desired degree oproblems associated with understanding discourse and
detail, that would be obtained by viewing it. The envi- dialogue. Given domain knowledge in the form of oper-
sioned interactive system would infer the intended mesators that decompose goals into a sequence of subgoals,
sage of the information graphic, provide an initial sum-along with evidence in the form of an observed action
mary including the intended message along with notabldsuch as a character’s action in a story or a speech act), a

features of the graphic, and then respond to follow-upPlan inference system chains backwards on the plan op-
guestions from the user. erators to deduce one or more high-level goals that might

have led the agent to perform the observed action as part

1The work of the second author was supported by the NaOf an overall plan for achieving his goal(s). _
tional Science Foundation under Grant No. 0132821. When designing an information graphic, the designer
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has one or more high-level communicative goals. Con-This can be done through a variety of techniques such
sequently, he constructs an information graphic that has choice of graphic type (for example, bar chart versus
believes will enable the viewer to perform certain per-pie chart) and the organization and presentation of data.
ceptual and cognitive tasks which, along with otherlf, for instance, the graphic designer wants the viewer to
knowledge, will enable the viewer to recognize the mes{ind the exact value represented by the top of a bar in
sage that the designer intends the graphic to convew bar chart, this task could be made easier by annotat-
[Kerpedjiev and Roth, 2000]. Byerceptual tasksve  ing the bar with its exact value. If the graphic designer
mean tasks that can be performed by simply viewing thevants the viewer to compare the relative values of two
graphic, such as finding the top of a bar in a bar chart; bybars, this task could be facilitated by putting the bars im-
cognitive tasksve mean tasks that are done via mentalmediately beside each other and highlighting the bars to
computations, such as computing the difference betweedraw attention to them.
two numbers. In order to apply plan inference techniques to recog-
In our research, we extend plan inference techniquesgizing the intended message of an information graphic,
(that have been used successfully on natural languagee must identify the evidence in the graphic that should
discourse) to inferring intention from information graph- be used to start the plan inference process. Our method-
ics. Our plan operators capture knowledge about howlogy is to apply the results of research from cognitive
the graphic designer’s goal of conveying a message capsychology to construct rules that estimate the effort re-
be achieved via the viewer performing certain perceptuatjuired for different perceptual tasks within a given infor-
and cognitive tasks, as well as knowledge about how pemnation graphic, and thereby identify the perceptual tasks
ceptual and cognitive tasks decompose into sets of simthat the graphic designer has best enabled in the graphic.
pler tasks. Using these plan operators, we can chain fror®ur working hypothesis is that treasiestasks are good
evidence provided by the information graphic to eventu-candidates for tasks that the viewer was intended to per-
ally reach a high-level goal that captures the message uderm, since the designer went to the effort of making
derlying the graphic in the same way that plan inferenceghem easy to accomplish. We can then use this set of the
systems chain from a speech act to the probable goaksasiest perceptual tasks along with any unusually salient
of the speaker. However, extending plan inference techtasks (discussed later in this paper) as a starting point for
nigues to the recognition of intentions from information our plan inference process. By reasoning about the more
graphics is not a straightforward task [Elzer et al., 2003].complex tasks in which the these perceptual tasks play
Several questions must be addressed: a role, we can hypothesize the message that the graphic
1. What should constitute the evidence from the graphiaesigner intended the viewer to extract from the graphic.
that should be used to start the plan inference processThe component of our system that is responsible for es-
2. How can evidence be used to guide the search througtimating effort is called APTE (Analysis of Perceptual
the space of possible plans that could be produced vidask Effort).
chaining?
In addressing each of these questions, we have made re-  Analysis of Perceptual Task Effort
course to results from cognitive psychology research.  The goal of APTE is to determine whether a task is easy
. . or hard with respect to other perceptual tasks that could
Starting Point for Plan Inference be performed from an information graphic. In order to
Given a set of data, the graphic designer has many alteestimate the relative effort involved in performing a task,
native ways of designing a graphic. As Larkin and Simonwe adopt a GOMS-like approach [Card et al., 1983], de-
[1987] note, information graphics that are information- composing each task into a set of expected component
ally equivalent (all of the information in one graphic can tasks. Following other cognitive psychology research,
also be inferred from the other) are not necessarily comwe take the principle measure of the effort involved in
putationally equivalent (enabling the same inferences t@erforming a task as the amount of time that it takes to
be drawn quickly and easily). Peebles and Cheng [iperform the task, and our effort estimates are based on
press] take this one step further by observing that evetime estimates for the component tasks. Wherever pos-
in graphics that are informationally equivalent, the de-sible, we utilize the estimates applied by Lohse [1993]
sign of the graphic can affect viewers’ performance ofin his UCIE system, a cognitive model of information
graph reading tasks. Much of this can be attributed tagraphic perception that was intended to simulate and
the fact that design choices made while constructing agpredict human performance on graphic comprehension
information graphic will facilitate some perceptual taskstasks. In doing this, we are not attempting to develop a
more than others. Following the AutoBrief work on gen- predictive model of our own — our aim is to be able to
erating graphics to achieve communicative goals, we hyidentify the tasks that the designer would expect to have
pothesize that the designer chooses a design that best faest facilitated by his design choices in order to apply
cilitates the tasks that are most important to conveyinghat information to the plan inference process.
his intended message, subject to the constraints imposed
by competing tasks [Kerpedjiev and Roth, 2000]. Structure of Rules
We contend that the designer made these choices IAPTE contains a set of rules that estimate how well a
order to make “important” tasks as easy as possibletask is enabled in an information graphic. Each rule
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Rule-1:Estimate effort for task Perceive-dependent-valuefver>, <g>, <att>, <e>, <v>)
Graphic-type: bar-chart
Gloss: Compute effort for finding the exact valkug> for attribute<att> represented by toge>
of a bar<b> in graph<g>
B1-1: IF the top of bakb> is annotated with a value,
THEN effort=150 + 300
B1-2: IF the top<e> of bar<b> aligns with a labelled tick mark on the dependent axis,
THEN effort=scan + 150 + 300

Figure 1: A rule for estimating effort for the primitive perceptual t®skceive-value

Rule-2:Estimate effort for task Perceive-info-to-interpolatgéwer>,<g>,<axis>,<e>,<l1>,<l,>,<f>)
Graphic-type: bar-chart
Gloss: Compute effort for finding the information needed for interpolation, including the labglsand<Il>>
on either side of entityxe> on axis<axis> in graph<g>, and the fractioncf> that is the distance
betweenxl;> and entity<e> on <axis> relative to the distance betweetl; > and<l,>
B2-1: IF <axis> is labelled with values THEN effort=scan + 150 + ((230 + 150 + 300) x 2)

Figure 2: A rule for estimating effort for the primitive perceptual t&skceive-info-to-interpolate

250
the top of the bar would be to read the annotated value,

200 7 162 although it could also be obtained by scanning across to
150 150 the tick mark on the dependent axis. When multiple con-
ditions are applicable, the first condition that is satisfied
100 1 will be applied to calculate the effort estimate, thereby
estimating the least expected effort required to perform
50 1 the task.
0 A T T T T

Applying Estimates of Component Tasks

_ ) ; Researchers have examined many different perceptual
Figure 3: Information Graphic Example tasks, although often studying individual perceptual
tasks in isolation. As mentioned earlier, we have fol-
lowed Lohse’s approach [1993] in breaking down our
captures a perceptual task that can be performed on tasks into component tasks. We then utilize existing time
particular type of information graphic (line graph, bar estimates (primarily the estimates applied in Lohse’s
chart, and so forth), along with the conditions (designUCIE system [1993]) for those component tasks wher-
choices) that affect the difficulty of performing that task. ever possible. For some perceptual tasks, this has been
The conditions for the tasks are ordered so that the coma sufficient foundation for our rules. For example, we
ditions producing the lowest estimates of effort appeardeveloped effort estimates for the rule shown in Figure
first. Often several conditions within a single rule will 1 in this manner. In the case of condition-computation
be satisfied — this might occur, for example, in the rulepair B1-1, finding the exact value for a bar where the
shown in Figure 1 which estimates the effort of deter-bar is annotated with the value, the effort is estimated as
mining the exact value represented by the top of a bar irt50 units for discriminating the label (based on work by
a bar chart. Condition-computation pair B1-1 estimated_ohse [1993]) and 300 units for recognizing a 6-letter
the effort involved when the bar is annotated with theword [John and Newell, 1990]. In the case of B1-2, find-
value; this condition is illustrated by the bars that are aning the exact value for a bar where the top of the bar
notated with their values in the bar chart in Figure 3. Theis aligned with a tick mark on the axis, the effort es-
second condition-computation pair, B1-2, is applicabletimate includes scanning over to the dependent axis in
when the top of the bar aligns with a labelled tick mark order to read the value (measured in terms of distance
on the dependent axis (in a vertical bar chart, the depenn order to estimate the degrees of visual arc scanned
dent axis is the y-axis); this condition is illustrated by all [Kosslyn, 1989]) in addition to the effort of discriminat-
bars except the second bar in Figure 3. If the top of a baing and recognizing the label.

both falls on a tick mark and has its value annotated at Notice that the rule shown in Figure 1 does not cover
the top of the bar (as in the fourth bar in the bar chart inthe situation where the viewer must interpolate between
Figure 3), the easiest way to get the value represented iyvo labelled values on the dependent axis. Performing

1260 1270 1280 1990 2000
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Goal: Find-valuekviewer>, <g>, <e>, <ds>, <att>, <v>)

Gloss: Given graphical elemente> in graphic <g>, <viewer> can find the value<v> in
datasekds> of attribute<att> for <e>

Data-req: Natural-quantitative-ordering(att>)

Display-const:  Ordered-values-on-axis@>, <axis>, <att>)

Body: 1. Perceive-info-to-interpolatefiewer>,<g>,<axis>,<e>,<l1>,<l>>,<f>)

2. Interpolategviewer>, <l1>, <lo>, <f>, <v>)

Figure 4: Plan operator that employs both perceptual and cognitive subgoals

interpolation to find the exact value represented by thewo elements are intended to be processed independently,
top of a bar involves 1) the perceptual task of finding thethen distant perceptual proximity is advised. Violating
intersecting location on the axis and recognizing the twahe principle will increase the effort required for a viewer
surrounding labels and 2) the mental or cognitive task oto process the information contained in the display.
interpolating to find the appropriate value. In our system, We assume that the graphic designer attempted to fol-
this more complex goal of finding the value representedow the proximity compatibility principle in designing
by a bar in a bar chart via interpolation is captured by thethe information graphic so as to facilitate intended tasks
plan operator shown in Figure 4, whose body consists ohAnd make them easier to perform than if the principle
the perceptual tasgerceive-info-to-interpolatand the  were violated. This assumption is reflected in the rule
cognitive tasknterpolate Associated with th@erceive-  shown in Figure 5, where the effort required to perform
info-to-interpolatetask is an APTE rule (Figure 2) for the integrated task of determining the relative difference
estimating the effort to perform this perceptual task; sim-between two bars is different based on the spatial prox-
ilarly, there is a cognitive rule (not discussed in this pa-imity of the two bars. If the bars are adjacent, the effort
per) for estimating the effort associated with the cogni-of doing the comparison will be lower than if the bars are
tive taskinterpolate We developed the effort estimate not adjacent. We also apply this principle when defin-
for the perceive-info-to-interpolatéask by applying es- ing the effort of performing the same perceptual tasks
timates for the component tasks — the effort of the scarpn different types of information graphics. For exam-
to the dependent axis (based on [Kosslyn, 1989]), the efple, the elements (points) in a line graph have a higher
fort of discriminating the intersection location on the axis perceptual proximity than the bars in a bar chart (this ex-
(150 units based on [Lohse, 1993]), plus the effort ofample of perceptual proximity applies the Gestalt law of
the saccade to each label (230 units [Russo, 1978]) alongood continuation [Pomerantz and Kubovy, 1986]). This
with the effort involved in discriminating and recogniz- means that it will be easier to perform integrated tasks
ing the labels. The cumulative effort associated with thewith the points on a line in a line graph than it will be to
Find-valuegoal will be the sum of the effort associated perform the same task with the bars in a bar chart.

with each subgoal in the body of the operator (Figure 4). \weper's Law [Cleveland, 1985] has also played a criti-
loiti . hol inciol cal role in our rules. Many of the tasks for which we have
Exploiting Cognitive Psychology Principles had to develop effort estimates, including the comparison

For more complex tasks that have not been explicitlytaSkS described above, involve discriminating between
studied by cognitive psychologists, we have applied extwo or more graphical elements; these tasks require the
isting principles and laws in the development of our rulesviewer to make comparative judgments of length, area,
for estimating perceptual effort. An example of this is @nd angle. In order to define the conditions affecting
the class of comparison tasks (for example, finding thehe complexity of these judgments, we have applied We-
maximum or minimum value represented by the tops ofber's Law [Cleveland, 1985]. One of the implications
the bars in a bar chart or comparing the tops of two bar®f Weber's Law is that a fixed percentage increase in
to determine the relative difference in value), where theline length or area is required to enable discrimination
proximity compatibility principle espoused by Wickens between two entities with a particular probability (and
and Carswell []_995] p|ays a major role. This princip|e the probability of discrimination is affected not by ob-

is based on two types of proximitperceptual proximity ~ ject size, but by the percentage increase). Weber’s Law
refers to how perceptually similar two elements of a dis-has influenced the thresholds used in rules for estimat-
play are (in terms of spatial closeness, color, shape, etcifg effort such aRkule-3in Figure 5 where thresholds in
while processing proximityefers to how closely linked the percentage difference in the height of the bars influ-
the two elements are in terms of completing a particulaence the effort required to perceptually discriminate the
task. If the elements must be used together (integratedglative difference between the values represented by the
in order to complete a task, they have close processin§ars.

proximity. The proximity compatibility principle states In some cases, the optimal combination of component
that if there is close processing proximity between twotasks (also representing the optimal scan path) does not
elements, then close perceptual proximity is advised. Itake into account the escalating complexity captured by
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Rule-3: Estimate effort for task Perceive-relative-dififfjewer>, <g>, <el>, <e2>, <bl>, <b2>, <r>, <d>)
Graphic-type: bar-chart
Gloss: Compute effort for finding the relative difference> in value (greater than/less than/equal to)
and degree<d> of difference (high/low/none) represented by the tegd> and<e2> of two bars
<b1> and<b2> in graph<g>
B3-1: IF bar<b1> and bar<b2> are adjacent and the height difference-80%
THEN effort=92 + 230
B3-2: IF bar<bl> and bar<b2> are adjacent and the height difference-5%
THEN effort=92 + 460
B3-3: IF bar<b1> and bar<b2> are not adjacent and the height difference-20%
THEN effort=92 + 460
B3-4: IF bar<bl> and bar<b2> are not adjacent and the height difference &%
THEN effort=92 + 690

Figure 5: A rule for estimating effort for the primitive perceptual tRekceive-relative-diff

the conditions of the rule. For example, the optimal scarmade recourse to the work of Kosslyn [1994] who de-
path would be the same for all conditionsRiile-3(Fig-  scribed the nerve cells in the visual system as 'difference
ure 5) even though the difficulty of making the required detectors,” responding first to features of a display that
perceptual judgment can vary greatly. Therefore, wherare brighter, darker or otherwise different from their sur-
estimating the effort in such cases, we estimate the excoundings. Kosslyn's work suggests that when an ele-
pected number of saccades that will be required by thenent has been made salient (such as the red bar(s) in a
average viewer in order to perform the necessary percegbar chart), the viewer’s eye is naturally drawn to that ele-
tual judgment. Thus the effort estimates shown in Figurement before any information about the bar (for example,
5 show the estimate of 92 units to perform a perceptuaits label) is even known. To capture this natural percep-
judgment [Welford, 1973] along with a multiple of 230 tual behavior, we include any perceptual tasks that can
units where 230 represents the estimate for a single sate performed using the salient items of a graph and the

cade [Russo, 1978]. effort estimates for those tasks generated by APTE in the
set of tasks used to begin our plan inference process.
Output When performing plan inference, chaining among the

APTE takes as input an XML representation of the in-operators produces a search space that is quite large;
formation graphic provided by the vision component of methods must be developed to guide the search. Sev-
our system. APTE rules are applied to produce an efforeral criteria come into play in evaluating a partial plan,
estimate for each applicable rule (some tasks will not bavhere a partial plan consists of the tasks in the oper-
able to be performed perceptually on a given graphic)ators along a candidate path. One of the measures is
The lowest effort instantiation is chosen for each taskthe effort involved in performing a partial plan, which
that can be performed. So for tasks like finding the ex-is estimated as the sum of the effort assigned to the
act value represented by the top of the bar where the taskomponent tasks. The proximity compatibility princi-
could be performed on any bar in the bar chart, the baple [Wickens and Carswell, 1995] also plays a vital role
producing the lowest possible effort estimate will be cho-in evaluating partial plans. Since this principle posits
sen. If the bars are not annotated with values, this wouldhat similarly encoded elements should be processed to-
be the bar with the shortest scan to the dependent axigether, partial plans that use the similarly encoded evi-
This is consistent with the idea that the graphic designedence in an integrated fashion are rated higher than those
will make the important tasks easy to perform. The set otthat do not. For example, given an information graphic
lowest effort tasks form part of the evidence used as inthat contains two red bars, a plan that involves compar-
put to the plan inference process, which can then chain ting the two red bars will be rated higher than a plan that
higher level goals whose operators contain one or morentails finding the value of just one of the red bars. This
of these tasks as subgoals. reflects the fact that the first plan embodies the proximity
. compatibility principle by integrating the similarly en-
Additional Impact coded elements into a single task.
We have also exploited the ideas put forth by cogni- .
tive psychologists in several other areas of our system. Conclusion
For example, designers of information graphics employThis paper presented a novel application of cognitive
salience techniques to highlight particular items in thepsychology research to the problem of recognizing the
display; this can be done by coloring specific bars inintended message underlying an information graphic. In
a bar chart or by drawing an arrow to an element of afuture work, we will consider the impact on graph in-
graphic. To account for salient entities in a graphic, weterpretation of the designer’s beliefs about the knowl-
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edge and skills of the intended audience, since individualLarkin and Simon, 1987]Larkin, J. H. and Simon,
differences have been shown to impact the graph com- H. A. (1987). Why a diagram is (sometimes) worth
prehension process [Shah, 2002]. Our work is part of a a thousand word<Cognitive Sciengel1:65-99.

larger project to develop an interactive natural language .

system that provides an alternative means for individual§Lohse, 1993]Lohse, G. L. (1993). A cognitive model
with sight-impairments to access the content of informa- for understanding graphical perception.Human-
tion graphics; the system will provide an initial summary ~ Computer Interaction8:353—-388.

containing the intended message of the graphic alon%\/leijer 1992] Meijer, P. B. (1992). An experimen-
with other important salient characteristics, and will re- tal s’ystem for aud'itor.y irﬁage rebresentatiorlEEE
spond to follow-up questions about the graphic’s content. Transactions on Biomedical Engineerir@9(2):112—
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