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Abstract 

An expression-induction model was used to simulate the 
evolution of basic color terms in order to test Berlin and 
Kay’s (1969) hypothesis that the typological patterns 
observed in basic color term systems are produced by a 
process of cultural evolution under the influence of universal 
aspects of human neurophysiology. Ten agents were 
simulated, each of which could learn color term denotations 
by generalizing from examples using Bayesian inference. 
Conversations between these agents, in which agents would 
learn from one-another, were simulated over several 
generations, and the languages emerging at the end of each 
simulation were investigated. The proportion of color terms 
of each type correlated closely with the equivalent 
frequencies found in the world color survey, and most of the 
emergent languages could be placed on one of the 
evolutionary trajectories proposed by Kay and Maffi (1999). 
The simulation therefore demonstrates how typological 
patterns can emerge as a result of learning biases acting over 
a period of time. 

Introduction 
This paper describes computational modeling experiments 
performed to explain the typological patterns observed in 
the color term systems of human languages. Color terms are 
simply words which are used to denote the property of 
color, and in most languages, a special subset of such words 
can be identified, which Berlin and Kay (1969) named basic 
color terms. Berlin and Kay listed a number of criteria 
which they used to distinguish basic color terms from other 
words used to denote color. They considered color terms to 
be basic only i f they were known by all speakers of the 
language and were highly salient psychologically, and if 
they did not just name a subset of the colors denoted by 
another color word and their meanings were not predictable 
from the meanings of their component parts. Application of 
these criteria seems to distinguish clearly between basic and 
non-basic color terms in most languages, although there can 
still remain some questionable cases. English has 11 basic 
color words, red, yellow, green, blue, orange, purple, pink, 
brown, grey, black and white. Terms such as crimson, 
blonde and royal blue are not considered to be basic. 

Basic color terms have prototype properties (Taylor, 
1989) as there is usually a single color, the prototype, which 
speakers of the language consider to be the best example of 
the color term. Colors become increasingly less good 
examples of the color category as they become more 
dissimilar to the prototype, and the category boundaries are 
fuzzy, as speakers are unsure about the exact range of colors 
denoted by each color term. 

There has been a considerable amount of research into the 
properties of basic color terms cross-linguistically. Perhaps 
the most important study was that of Berlin and Kay (1969). 
They examined a sample of 98 languages, and found that 
there was very wide variation between the color terms of 
different languages, in that the actual ranges of color 
denoted by each term differed between languages. However, 
they found that this variation was certainly not completely 
random. While the number of color terms varied between 
languages, which combination of color terms existed in any 
given language seemed to be at least partly predictable. 

Berlin and Kay found that all languages have between 2 
and 11 basic color terms. For 20 of the languages in their 
study, they asked informants to map both the outer 
boundary of each of the basic color terms on an array of 
Munsell color chips, and to identify the best or most typical 
example (the prototype) of each term. They discovered that 
the boundaries of the areas of color denoted by color terms 
varied greatly between languages, but that the locations of 
the prototypes of most basic color terms were clustered in a 
few parts of the color space.  

A further finding emerged when Berlin and Kay 
investigated the combination of color terms existing in any 
particular language. They produced the implicational 
hierarchy shown in Figure 1 to explain the regularities 
which they found. All languages appeared to have terms 
with their prototypes at black and white, but some languages 
had no other basic color terms. However, if a language had a 
term for any of the colors further right in the hierarchy, it 
always had terms for all the colors appearing to the left of 
that point. 

Berlin and Kay proposed that this hierarchy described the 
general patterns seen in color term systems cross-
linguistically, but they did acknowledge the existence of 
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Figure 1. Berlin and Kay’s Implicational Hierarchy. 
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some exceptional languages which could not be placed on 
the hierarchy. Since Berlin and Kay published their original 
study, there has been a great deal of interest in basic color 
terms, and much more data has been collected. These 
studies have in large part confirmed Berlin and Kay’ s 
original findings, though several modifications have been 
made to the hierarchy to accommodate languages of types 
which were not attested in the original study. 

A very large survey of the color term systems of 110 
minor languages, the World Color Survey (Kay, Berlin, and 
Merrifield, 1991), has now produced a wealth of high 
quality data allowing a much more complete picture of color 
term systems worldwide to be obtained. Using this new 
data, Kay and Maffi (1999) produced a new classification of 
color term systems, which has modified the original 
hierarchy of Berlin and Kay (1969) considerably, but which 
still shows that the attested color term systems are only a 
small subset of those which are logically possible.  

There appear to be six fundamental colors, corresponding 
to the colors which are usually the prototypes of red, yellow, 
green, blue, black and white color terms. The order of 
emergence of terms containing these fundamental colors is 
fairly predictable, but the order of emergence of other basic 
color terms, such as purple and orange terms, is less 
predictable. Kay and Maffi’s (1999) classification of color 
term systems was made by considering only terms whose 
denotation included at least one of the fundamental colors, 
but Kay, Berlin and Merrifield (1991) noted that purple and 
brown terms tend to emerge before orange or pink ones. 

Kay and Maffi (1999) found that 83% of the languages in 
the World Color Survey lie somewhere along the trajectory 
shown in Figure 2, which represents a progression in which 
languages evolve from a state in which they contain only 
two basic color terms, to states in which each of the 
fundamental colors is represented by a different basic color 
term. Kay and Maffi also proposed side branches to the 
main trajectory in order to accommodate some less common 
language types, such as those containing yellow-green-blue, 
yellow-green or black-blue composites. There were four 
languages which Kay and Maffi were unable to place 
anywhere on their trajectories, and which were simply 
classed as exceptions. This paper attempts to address the 
issue of what causes these typological patterns, by relating 
them to fundamental properties of the human visual system.  

 
Figure 2. The Main Line of the Evolutionary Trajectory. 

 
De Valois and Jacobs (1968) showed that Macaque 

monkeys had four kinds of opponent cells, each of which 
responded maximally in the presence of light of a particular 
red, yellow, green or blue hue. Kay and McDaniel (1978) 
proposed that the output of the opponent cells would map 
directly to fuzzy set membership in color term categories. 

However, this proposal appears to be too restrictive, because 
it implies a limited set of universal color categories, while 
the empirical evidence shows that the boundaries of color 
term denotations are quite variable, and that it is only the 
prototypes of color terms that are consistent across 
languages. 

Four special red, yellow, green and blue hues have also 
been identified by psychological evidence, and they are 
termed unique hues, because they can’ t be described as 
blends of other colors. Heider (1971) showed that children 
are more likely to pick unique hues rather than other colors 
out of selections of color chips, and so she proposed that 
unique hues are especially salient. In Heider (1972) she 
showed that people are best able to pick out a previously 
seen color from an array of color chips when that color is a 
unique hue, which suggested that unique hues can be 
remembered more easily than other colors. We should note 
that Heider did not distinguish between the four unique hues 
and the colors which formed the prototypes of color terms 
such as purple and orange, but a large amount of other 
evidence points to the special status of unique hues. Also 
Kay and Maffi (1999) have questioned whether the unique 
hues apparent from the linguistic and psychological studies 
really correspond to those found using neurophysiological 
techniques. However, the consensus of opinion seems to be 
that the four unique hues have a special psychological 
status, regardless of its cause. 

The computer model described in this paper is a kind of 
expression-induction model. These models, the first of 
which was described in Hurford (1987), aim to simulate 
cultural evolution of language, usually over a number of 
generations. They contain several agents, each of which is 
capable both of learning some aspect of language, and also 
using the language which they have learned to express 
themselves, hence creating example utterances from which 
other agents can learn. Usually expression-induction models 
are run several times, so that the general properties of the 
languages which emerge in them can be observed. If all the 
emergent languages have a particular property which is also 
a universal in real languages, or if the emergent languages 
show a limited range of variation, reflecting typological 
patterns, then the model can be said to explain why these 
universals or typological patterns exist. Expression-
induction models have been developed to account for a wide 
range of linguistic phenomenon. Belpaeme (2002) used such 
a model to simulate color term evolution, but his model did 
not account for typological patterns. 

A Bayesian Model of Color Term Acquisition 
The acquisitional part of the expression induction model of 
color term evolution learns the denotations of color words, 
but it learns in a similar way to a concept learning program 
developed by Tenenbaum (1999). In order to create the 
acquisitional model it was necessary to make a number of 
assumptions about how children learn color words. It was 
assumed that, before people begin to learn the meanings of 
color terms, they must have some sort of conceptual color 
space. We experience color as having a three-dimensional 
structure, where the three dimensions are hue, saturation 
and lightness. The Bayesian model is at present concerned 

white-red-yellow    +    black-green-blue 

white   +    red-yellow    +    black-green-blue 

white    +    red-yellow    +    black    +    green-blue 

white    +    red    +    yellow    +    black    +    green-blue 

white    +    red    +    yellow    +    black    +    green    +    blue 
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only with the dimension of hue, which is a circular 
dimension, as shown in Figure 3. This simplification, which 
is the primary limitation of the model, means that it is not 
possible to account for the meanings of some color terms, 
such as black or white, but the acquisition of red, orange, 
yellow, green, blue and purple terms can still be modeled.  

 
Figure 3. The Conceptual Color Space. 

 
Another assumption is that the unique hues are not evenly 

spaced in the color space. The color space was divided into 
40 discrete colors, and so each individual color could be 
indexed with a number between 1 and 40. Using this 
coordinate system, the red unique hue point was placed at 
hue 7, yellow at 19, green at 26, and blue at 30, so that the 
largest distance between adjacent unique hue points is 17 
units between blue and red, and the smallest is just 4 units 
between green and blue.  

The motivation for placing the unique hues at these points 
is primarily that it results in an explanation of the 
typological patterns, as will be shown below. MacLaury 
(1997) reported that there is some evidence to suggest that 
the green and blue unique hues are in some way closer than 
any of the other hues are to each other, but there is no clear 
objective way to measure distances in the conceptual color 
space, and so we could obtain different conceptual distances 
depending on what method was used to measure them. 

The special salience and memorability of the unique hues 
was simulated by associating with each color a probability 
corresponding to how likely a person was to remember an 
example of it. These values will be written Rc, and were set 
at 0.05 for colors which did not correspond to unique hue 
points, and at 1 for unique hues, so that it was 20 times as 
likely that examples of unique hues would be remembered 
as examples of other colors. 

The next issue to be considered is what data is available 
from which people can learn color words. Children are 
typically not taught the full range of the denotations of each 
word they know explicitly, in terms of exactly what it can 
and cannot be used to denote, and so they must learn the 
meanings of color words primarily by observing what colors 
other people use those words to refer to. Hence the data 
from which the model learns consists of examples of colors 
which a color term can denote. Learning then involves 
generalizing from those examples to the full range of colors 
which come within the word’s denotation. Because it is 
possible that some examples could be erroneous, a 
parameter, p, was added to the model, which corresponds to 

a learner’s belief concerning the probability that each 
individual example is correct. 

The model learns using Bayes’  rule, given in (1). Each 
word is learned separately from all the others, and so the 
data, d, will consist of all the observed example colors for 
one color word, and the hypothesis, h, will correspond to the 
range of color which the word denotes. Hypotheses can vary 
in size from taking up one unit of the color space, to 
including the whole of the color space, and can correspond 
to any contiguous range of colors. It is proposed that 
children will consider all such hypotheses to be equally 
likely a priori, so that the model has no inbuilt bias to prefer 
color terms corresponding to one part of the color space as 
opposed to any another, and so the term P(h)  will have the 
same value for all hypotheses. 

(1) 
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hPhdP
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The probability of the data with respect to a hypothesis, 
P(d | h), will depend on how accurately the hypothesis 
predicts the observed examples. If an example is accurate, 
then it must appear within the range of the hypothesis. If 
that is all we know about an example, then it’s equally 
likely for that example to have been observed on any of the 
colors with the range of the hypothesis1, assuming that the 
hypothesis is correct. However, because some examples will 
be forgotten, the proportion of examples which we would 
expect to have remembered for each particular color would 
be equal to the probability of remembering examples of that 
color, divided by the sum of the probabilities of 
remembering examples on all the colors within the range of 
the hypothesis, which will be written as Rh. This ratio, 
which is given in (2), would correspond to the probability of 
an example, when that example was within the range of the 
hypothesis, and when we knew both that the hypothesis was 
correct, and that the example was accurate. 

(2) 
h

c

R
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Erroneous examples are equally likely to be observed 
anywhere in the color space, and so the probability of an 
erroneous example being remembered at any particular 
color, is equal to the probability of remembering an example 
if it occurs at that color, divided by the sum of the 
probabilities of remembering examples of all colors 
throughout the color space (Rt). This ratio is expressed in 
(3). 

(3) 
t

c

R

R
 

(2) and (3) apply when we know whether an example is 
accurate or not, but in reality, when a person has 
remembered an example they won’ t be sure whether it is 
accurate. If we see an example outside of the hypothesis 
space, we know that it must be inaccurate. Because the 
probability that an example is accurate is p, the probability 

                                                        
1 This assumes that people are equally likely to observe 
examples of colors anywhere in the color space. 
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that it is not accurate is (1-p). Hence the overall probability 
of an example, e, which comes outside of the range of a 
hypothesis, is given by multiplying (3) by this value, as 
shown in (4).  

(4) 
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)|(
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If an example is within the scope of the hypothesis then 
we can’ t be sure whether it is accurate or not (because it 
could have come within the range of the hypothesis simply 
by chance). So, in the case of such an example, we have to 
add its probability assuming that it is accurate, to what its 
probability would be if it was erroneous, each of which 
must be weighted by the probability of examples being 
accurate (p), or inaccurate (1-p). The resulting overall 
probability of such examples is given by (5). 
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Equations (4) and (5) allow us to calculate the 
probabilities of individual examples with respect to a 
hypothesis, but usually we will have several examples for a 
particular color word, so we need to combine these 
individual probabilities to obtain an overall probability for 
all the data. This can be done simply by multiplying 
together the probabilities of each individual example, e, 
from the set of all examples, E, as shown in (6). For every 
example we must use either equation (4) or (5) to calculate 
P(e | h), depending on whether or not the example is within 
the scope of the hypothesis. 

(6) ∏
∈

=
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In order to determine hypotheses' a posteriori 
probabilities, we also need to be able to calculate the 
probability of the data irrespective of any particular 
hypothesis, P(d). We can calculate this probability by 
multiplying the probability of the data given each individual 
hypothesis by the a priori probability of the hypothesis, and 
then totaling the resulting probabilities for each hypothesis 
in the set of all possible hypotheses, H. This is expressed 
mathematically in (7). 
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If we substitute (7) into Bayes’  rule, we obtain equation 
(8), which we can simplify by canceling out the constant 
terms P(h) and P(hi). (The h’ s of equation (7) now have a 
subscript i to distinguish them from the specific hypothesis 
under consideration, h. However, as the a priori probability 
of all hypotheses is equal, each P(hi) will be equal to P(h).) 
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Equation (8) lets us calculate the probability of individual 
hypotheses corresponding to possible denotations of the 
color word. However, if we use the standard Bayesian 
procedure of hypothesis averaging, it is possible to calculate 
how likely it is that any particular color can be denoted by 
the color word. We can do this by calculating the a 

posteriori probability of each hypothesis which includes the 
color within its range, and adding together all these 
probabilities. This will determine the overall probability that 
the color comes within the denotation of the color word. If 
such values are calculated for all colors, then we can derive 
a fuzzy set by equating the probabilities with degree of 
membership in the set.  

The ability of the model to learn color term systems was 
investigated by presenting it with examples corresponding 
to the color term system of Urdu, and the learned color term 
system is shown in Figure 4. Example colors were generated 
based on the denotations of Urdu color terms shown on a 
chart in Berlin and Kay (1969), and these examples were 
passed to the model until it had remembered 40 of them. 
Each of the color terms which contains a unique hue point 
has that point as its prototype, and the degree of 
membership declines gradually moving away from this 
point, which is consistent with empirical findings. This 
shows that the model is able to learn the color term system 
of a real language, but it does not explain the typological 
data, because color term systems of unattested types could 
also be learned by the model.  
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Figure 4. Learned Denotations for Urdu Color Terms.  
(Y-axis shows degree of membership in color category.) 

Simulating Color Term Evolution 
In order to simulate a whole community of people, ten 
copies of the acquisitional model were created, each of 
which acted as an agent. Conversations between the agents 
were simulated over several generations, and at the 
conclusion of these simulations the emergent languages 
were analyzed to determine whether they reproduced the 
typological patterns identified by Kay and Maffi (1999). 

In the initial state of the model, each agent had observed a 
different color term together with one completely random 
example of it, and each agent was assigned a random age 
between zero and the maximum age which agents could live 
to. The simulations proceeded by first selecting one agent at 
random to speak, and another to hear. A color for the 
speaker to name would then be chosen. The color would be 
randomly selected, but each unique hue was chosen 20 
times more often than each of the other colors. The speaker 
would then find the word which they thought most likely to 
be the correct label for the color, based on all the color 
examples which it had observed up to that point. This word, 
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together with the corresponding color, would then be 
observed by the hearer and remembered by it as an example. 
One time in every thousand, instead of the speaker choosing 
the best word based on the observations they had made, it 
would be creative instead, and make up a new word. 

A parameter in the model controlled how long each agent 
lived for, measured in terms of how many times an agent 
would speak during its lifetime. The actual life span of each 
agent was varied randomly by an amount of up to 20% 
either above or below the chosen average life span. Once an 
agent reached the end of its life span it would be replaced by 
a new agent which had not observed any color term 
examples. (If an agent was chosen as the speaker before it 
had observed any color terms, then the program would just 
go back and choose another agent instead.)  

These simulations were repeated 425 times, with the 
average lifespan set variously at 18, 20, 22, 24, 25, 27, 30, 
35, 40, 50, 60, 70, 80, 90, 100, 110 or 120, with 25 separate 
simulations being made in each condition. The simulations 
were all run for a time equal to twenty average life-spans, 
and the results reported below are based on the languages 
spoken by the agents at the end of the simulations. 
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Figure 5. Number of Color Terms in Emergent Languages. 

 
In order to analyze the results it was necessary to develop 

some procedures for classifying the languages emerging in 
the simulations. Throughout all the analyses, only agents 
whose age was greater than or equal to half the average 
lifespan were included, and only color terms for which they 
had observed at least 4 examples were considered. Using 
these criteria, the mean number of color words spoken by 
agents for each setting of the life expectancy parameter, was 
calculated, and these means are plotted in Figure 5. There is 
a clear positive correlation between how often agents used 
color terms and the number of color terms in their language. 
This effect is not because more color terms allowed the 
agents to communicate more accurately, as the agents were 
not rewarded for successful communication. This suggests 
that languages with large numbers of color terms may have 
so many color terms simply because the people who speak 
those languages frequently talk about color, rather than 
because of any functional benefit arising from a larger color 
vocabulary. 

In order to investigate whether the typological patterns 
identified by Kay and Maffi (1999) were replicated in the 
simulations, it was necessary to classify each language in 
terms of which kinds of basic color terms it contained. For 
every hue, the color term which the agent would use to 
name that hue was found, and the denotation of each color 
term was then considered to be the smallest range of colors 
which included all those hues which that term would name. 
(This could potentially include some hues which would be 
named by a different color term, because there might be 
another term which had greater confidence values for some 
of the hues within the range of hues named by the first 
term.) Color terms were classified as red, yellow, green or 
blue if their denotations included the corresponding unique 
hue. Terms whose denotations didn’ t include any unique 
hue points were classified as orange, lime, turquoise or 
purple, depending on which unique hue points their 
denotations came between. If a color term included more 
than one unique hue point it would be classified as a 
composite of those unique hue points, for example red-
yellow or yellow-green-blue. 

The next stage of the analysis consisted of determining 
which color terms the language spoken by each community 
as whole could be said to contain. This was not 
straightforward because, like with real color term systems 
(MacLaury, 1997), the agents did not agree exactly on the 
denotation of each word, and nor did they necessarily use 
identical sets of color words. A color term was included in 
the analysis only i f at least half the agents had observed at 
least four examples of it. If all the agents did not agree on 
the classification of a term, then that classification which 
was supported by the greatest number of people would be 
chosen. If two or more possible classifications were 
supported by equal numbers of people, then if one of the 
terms contained fewer unique hue points it would be chosen, 
but otherwise the whole language would be excluded from 
the analysis. Agents who had not observed at least four 
examples of two or more color terms were also not 
considered. After the application of all these criteria, a 
unique classification was obtained for the languages 
emerging in 420 of the 425 runs of the simulation. 

The proportion of terms which were classified as being of 
each type in all the emergent languages is shown in Figure 
6. Figure 6 also contains equivalent data from the world 
color survey (WCS), as reported in Kay and Maffi (1999). 
Kay and Maffi did not take account of color terms which 
did not contain a unique hue point in making their 
classifications, hence the relevant data on these terms does 
not appear here, and the counts of color terms for the world 
color survey do not include terms from languages which 
were in transition between evolutionary stages, or which did 
not fit on the evolutionary trajectories at all. Color terms 
which are either achromatic or distinguished from other 
colors on the basis of some dimension other than hue have 
simply been excluded from the analysis, while composite 
terms which included, white or black and one or more 
unique hues were treated as if they only contained the 
unique hue. 

Figure 6 clearly shows a close relation between the 
frequency of each term in the world color survey and in the 
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simulations. The key differences are that the simulations 
produce somewhat too many Yellow-Green-Blue 
composites, and too few Green-Blue ones. There were 80 
purple terms in emergent languages, but only 20 orange 
ones, which is consistent with the finding that purple terms 
tend to emerge before orange ones. There were no turquoise 
terms, which is also in line with expectations, as no 
language has a turquoise basic color term. 

The simulations did produce a few terms of types which 
have not been attested empirically. There was 1 Blue-Red 
composite, 1 Red-Yellow-Green composite, 3 Green-Blue-
Red composites and 4 Lime terms. The presence of a small 
number of previously unattested color terms should not be 
surprising. The evolutionary model does not place absolute 
restrictions on the types of color terms which can evolve, 
but simply introduces biases, so that some kinds of color 
term emerge much more frequently than others. If the 
typological patterns seen in real languages are produced in 
the same kind of way, we would expect to occasionally 
discover new types of color terms as we looked at greater 
numbers of languages. As linguists have examined the color 
terms of more and more languages, color terms of types 
which were not found in Berlin and Kay’s original survey 
have been discovered, but it is possible that some very rare 
types of color term remain undiscovered. 

Looking at the languages overall, 340 could be placed on 
Kay and Maffi’s (1999) evolutionary trajectories. 9 
languages deviated from the trajectories because they 
contained unattested color terms, 35 because no term 
consistently named one or more of the unique hues, and 37 
because there was more than one term which could name 
one of the unique hues, or there was more than one purple 
term. What is clear from these results is that there is a small 
set of color term systems which occur very frequently, and 
that the color term systems of the majority of languages can 
be classified as belonging to one of these types. A 
significant number of languages diverge from the 
trajectories in some way or another, but this is consistent 
with empirical findings. 

Conclusion 
The computer model has shown that the typological patterns 
observed in basic color term systems can be explained if it 
is assumed that the unique hues are not evenly spaced in the 
conceptual color space and that people remember the unique 

hues better than other colors. These assumptions produced 
learning biases which affected the way that languages 
evolved. The language which each agent in the simulation 
learned was a product both of the agent’s learning 
mechanism, and of the language spoken by the other agents, 
and this suggests that human languages can be understood 
only as a product of both innate biases and cultural 
pressures interacting over a period of several generations.  
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Figure 6. Percentage of Color Terms of each type in the Simulations and the World Color Survey. 
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