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Abstract

Visual analogies are analogies based on visual sim-
ilarity. Galatea is a computer program that ad-
dresses the transfer task in visual analogies in the
context of problem solving. Each source case in
Galatea contains a problem-solving procedure, rep-
resented as a series of knowledge states and trans-
formations between them. Source cases and target
problems are represented in a symbolic language
whose primitives pertain only to spatial objects and
relations, and operations on them. Given visual
representations of a source case and a target prob-
lem, and a mapping between the first knowledge
state in the source and the target, Galatea adapts
and transfers the problem solving procedure in the
source to the target. In this paper, we describe
some representation issues that arose in developing
Galatea and its answers to them.

Introduction

Imagine that a cognitive agent is trying to figure out
how to put a battery into a tape recorder, and has
access to a source case in which film is put into a
camera. One way the two situations are similar is
that they visually resemble each other: the battery
and the film canister are shaped like cylinders, and
the tape recorder and the camera are shaped like
rectangular prisms with cylindrical holes in them.
This visual similarity is more relevant to the prob-
lem than, say, any functional similarity between the
devices in the two situations. This is an example
of visual analogy, i.e., an analogy based on visual
similarity.

One issue in visual analogy is how might an agent
use visual similarity between two situations to trans-
fer the problem-solving procedure in a source case to
the target problem? Note that this issue is more
general than the hypothetical example mentioned
above. For example, source cases in many design do-
mains contain drawings, diagrams, animations, pho-
tographs, videos, etc., and instructions for assem-
bling complex artifacts often are presented to peo-
ple in a completely diagrammatic from. Thus, es-
tablishing transfer of problem solutions using visual
knowledge is a fairly general task.

Galatea is a computer program that addresses the
transfer task in visual analogies in the context of
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problem solving. The development of Galatea raised
several representation issues such as the modality of
the representation, and the levels of abstraction and
aggregation in the representation. These issues are
common to many content-based theories of analogi-
cal reasoning. In this paper, first we briefly describe
Galatea and then discuss the representation issues
that arose in developing it.

Galatea: A Computer System

Galatea is an operational program written in LISP.
It implements the transfer of problem-solving proce-
dures between visual analogs. The problem-solving
procedure contained in a source case is represented
as a series of knowledge states and transformations
between them. Each knowledge state is represented
as a symbolic image or s-image. The reasoner takes
as input a source case, an initial knowledge state in
the target problem, and an analogical mapping be-
tween the s-image representing the first knowledge
state in the source case and the initial knowledge
state in the target problem. Galatea adapts and
transfers the visual transformations from the source
to the target, creating new target s-images along the
way. Figure 1 illustrates Galatea’s input and output
for the Duncker (1926) fortress/tumor problem.!
Covlan (the Cognitive Visual Language) provides
Galatea with an ontology of visual primitives and
transformations. Covlan’s ontology of primitive vi-
sual elements includes: polygon, rectangle, triangle,
ellipse, circle, arrow, line, point, spline, and text.
The elements are frame-like structures with slots
that can hold values. For example, a triangle has a
location, size, height, width, and orientation. Each

'In the Duncker (1926) problem, subjects read a story
about a general who must overthrow a dictator in a
fortress. His army is poised to attack along one of many
roads leading to the fortress when the general finds that
the roads are mined such that large groups passing over
will set them off. To solve the problem, the general
breaks the army into smaller groups and they take dif-
ferent roads simultaneously and arrive together at the
fortress. Participants are then given a tumor problem,
in which a tumor must be destroyed with a ray of radia-
tion, but the ray will destroy healthy tissue on the way
in, killing the patient. The analogous solution is to have
several weaker rays converging on the tumor.
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Figure 1: This Figure shows Galatea’s input and output for the Duncker problem. The top series of s-images
in the Figure shows the visual representation of the solved fortress problem. The bottom series shows the
target tumor problem. The bottom left s-image is the initial state of the tumor problem. The shaded box

shows the output of the system.

transformation In Covlan is a operation (function)
with arguments. Most transformations operate on
some object, and many have additional arguments
as well. These transformations implement normal
graphics manipulations such as translation, rotation,
scaling, and adding and removing visual elements.

Figure 2 illustrates a portion of final s-image in the
tumor series generated by Galatea for the Duncker
problem. The representation consists of a series of
propositions, indicated in the Figure as labeled ar-
rows connecting two elements. The objects in the
s-image each have a location and are connected to a
primitive visual element type with a looks-like rela-
tion. Each ray, represented as an arrow, also has
a thickness — in this s-image, thin. Each arrow
also has start and end points, also with locations
(not shown in the figure). Not shown in figure are
the maps that connect the elements of this s-image
to the previous s-image, as well as the maps to the
analogous source s-image.

Algorithm

1. Identify the first s-immages of the target and
source cases.

2. Identify the transformations and associated
arguments in the current s-image of the
source case. This step finds out how the source
case gets from the current s-image to the next
s-image. In the Duncker example, the transfor-
mation is decompose, with four as the number-of-
resultants argument (not shown).

. Identify the objects of the transformations.
The object of the transformation is what object
the transformation acts upon. For the decompose
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transformation is the soldier-pathl (the thick ar-
row in the top left s-image in Figure 1.)

Identify the corresponding objects in the
target problem. The ray! (the thick arrow in
the bottom left s-image) is the corresponding com-
ponent of the source case’s soldier-pathl, as speci-
fied by the correspondences between the s-images
(not shown). A single object can be mapped to
any number of other objects. If the object in ques-
tion is mapped to more than one other object in
the target, then the transformation is applied to
all of them in the next step.

Apply the transformation with the argu-
ments to the target problem component.
A new s-image is generated for the target prob-
lem (bottom middle) to record the effects of the
transformation. The decompose transformation is
applied to the rayl, with the argument four. The
result can be seen in the bottom middle s-image
in Figure 1. The new rays are created for this s-
image. Adaptation of the arguments can happen
in three ways, as described above: If the argument
is an object of the source s-image, then its analog
is found. If the argument is a function, then the
function is run (note that the function itself may
have arguments which follow the same adaptation
rules as transformation arguments). Else the ar-
guments are transferred literally.

Map the original objects to the new objects
in the target case. A transform-connection and
mapping are created between the target problem
s-image and the new s-image (not shown). Maps
are created between the corresponding objects. In
this example it would mean a map between ray!
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in the left bottom s-image and the four rays in
the second bottom s-image. This system does not
solve the mapping problem, but a mapping from
the correspondences of the first s-image enable the
mappings for the subsequent s-images to be auto-
matically generated.

7. Map the new objects of the target case

to the corresponding objects in the source
case. Here the rays of the second target s-image
are mapped to soldier paths in the second source
s-image. This step is necessary for the later it-
erations (i.e. going on to another transformation
and s-image). Otherwise the reasoner would have
no way of knowing on which parts of the target
s-image the later transformations would operate.

8. Check to see if goal conditions are satisfied.

If they are, exit, and the problem is solved. If not,
and there are further s-images in the source case,
set the current s-image equal to the next s-image
and go to step 1. If there are no further s-images,
then exit and fail. Goal conditions are represented
non-visually (Davies & Goel, 2001).

Galatea presently works on three problems: the
Duncker problem, a case study of scientific analogi-
cal reasoning by James Clerk Maxwell (Nersessian,
1984, Davies et al., 2003), and a cake/pizza problem
in which a single pizza must be distributed among
several people. We are currently extending the rep-
resentational capacity and inferential capability of
Galatea to cover a range of human subjects solv-
ing problems similar in complexity to the Duncker
problem.

Representation Issues in Galatea

The development of Galatea raised several represen-
tation issues including the modality of representa-
tion, the level of abstraction of the representation,
the level of aggregation of the representation, and
arguments to the visual transformations. Due to
limitations of space, in this paper, we will briefly
address only the first three issues.

Issue 1: Modality of Representation

We view knowledge of different kinds as lying on a
spectrum, at one end of which is raw sensory data
(e.g. visual knowledge such as pixels in a photo-
graph) and at the other extreme is highly interpreted
and abstracted knowledge (such as causal or tele-
ological knowledge). Visual knowledge higher up
in the spectrum may be represented using symbolic
structures. Galatea is a content-based theory of ana-
logical problem solving, and thus makes a commit-
ment about the modality of the representation. Some
earlier content-based theories of analogical reasoning
use causal and functional abstractions (e.g., Win-
ston, 1980 for a functional representational account
of the Duncker problem), while other content-based



theories (e.g. Evans, 1968) use visual abstractions.
The question for Galatea then is where on this spec-
trum should its representation fall?

Issue 2: Representation’s Level of
Abstraction

There are several aspects to this issue. One aspect
of this issue is whether to use symbolic, descrip-
tive representations or pictorial, depictive represen-
tations (Kosslyn, 1994). Another aspect of the ab-
straction issue pertains to the level of abstraction
in the symbolic representations. Marching armies
and rays of radiation have their differences and sim-
ilarities, and whether or not they can be used in
analogical reasoning depends on the reasoner having
representations of them at the same level of abstrac-
tion. Functionally, soldier-path is a different symbol
from ray, and but they can both be conceptualized as
destructive-forces (Holyoak & Thagard, 1989). Two
similar ideas represented at very different levels of
abstraction can lead to failures in retrieval, map-
ping, and transfer.

Issue 3: Representation’s Level of
Aggregation

Yet another aspect of the abstraction issue is the
level of aggregation at which things are represented.
Suppose the reasoner’s representation of the fortress
story involved twelve roads, but in contrast the rea-
soner imagines a patient as having four areas of the
body that rays might pass through. The different
numbers of roads and body areas in the two analogs
can cause problems with retrieval and mapping be-
cause there are some roads in the fortress story with
no unmapped body areas in the tumor problem. An
earlier version of Galatea (Davies & Goel, 2001) han-
dled this by transferring two transformations: de-
compose, which broke thick lines (representing the
army and ray) into four thinner lines (represent-
ing smaller armies and weaker rays), and move-to-
location, which moved each individual thinner line
to specific locations—a different road or area of the
body. The program was brittle because it required
there be the same number of roads as body areas.

Galatea’s Answers to the Issues

Galatea’s answers to these issues evolve from our
earlier work on analogical reasoning including the
KRITIK (Goel, 1991; Goel, et al., 1997), IDeAL
(Bhatta & Goel 1997a; Bhatta & Goel 1997b), and
ToRQUE (Griffith et al., 2000; Griffith et al., 1996)
systems. A central and persistent theme in our work
has been that an analogical reasoner uses represen-
tations that reduce the complexity of retrieval, map-
ping, transfer, evaluation and storage. The appro-
priate representations may either be programmed
into the reasoner (as in TORQUE) or dynamically
generated (as in IDeAL).
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Answer 1: Modality of Representation

Galatea uses visual abstractions to represent
analogs. Thus, Galatea reasons about visual ab-
stractions such as lines and arrows, and not armies
and rays of radiation with all the semantic mean-
ings typically associated with them. There are psy-
chological and historically documented reasons to
think visual representations are important for prob-
lem solving (e.g. Casakin & Goldschmidt, 1999;
Nersessian, 1984; Pedone et al., 2001). We posit
that visual abstractions provide a level of abstrac-
tion at which two otherwise dissimilar domains may
be more alike (Davies et al., in press 2003). Galatea
finds the ray and soldier-path similar not because
they are both, for example, destructive forces, but
because they are both arrows.

Answer 2: Representation’s Level of
Abstraction

Galatea’s symbolic, descriptive representations pro-
vide the standard benefits of directness, ordering,
structure and composition.

Further Galatea’s design opts for higher-level vi-
sual abstractions when possible. It could have, for
example, used a complex hypothetical shape, say s1,
to accurately describe the shape of a fortress, and a
different different shape, say s14, to accurately rep-
resent the shape of a tumor. In that case, the tu-
mor query might retrieve only other similar-looking
tumors, ignoring even different-looking tumors, let
alone fortresses. That is, a more detailed and more
accurate visual representation would make analogi-
cal remindings, mappings and transfer harder. Thus,
the current version of Galatea uses a higher-level
representation for the tumor and the fortress. In
a future version of Galatea, we plan to represent
objects, such as fortresses and tumors, at multiple
levels of abstractions and link the abstractions levels
through shape hierarchies.

Answer 3: Representation’s Level of
Aggregation

Recall that in Duncker problem, after the decompose
transformation generates a number of smaller armies
(represented in Covlan as thinner lines), they must
be dispersed to the various roads, in various loca-
tions in the image. As mentioned above, in a previ-
ous version of Galatea each army line was moved-to-
location individually to each road line. This solution
was brittle because the number of roads the armies
moved to needed to match exactly the number of
body areas the weaker rays moved to in the target.

To overcome this limitation, the current version
of Galatea uses the notion of sets to group armies,
roads, rays, and body parts into their own different
sets. The system now can adapt the solution during
transfer to accommodate differing numbers of any
of these elements. Rather than using the move-to-



location transformation on each army, Galatea ap-
plies a new transformation move-to-set to the set of
armies. The argument to this function is the set of
roads. The move-to-set function takes one set and
distributes its elements around the locations of an-
other set. This robustness allows the transfer to oc-
cur even if the numbers of armies, rays, roads, and
body parts are all different.

Discussion

Some theories of analogical reasoning are feature-
based while others are relation-based. For example,
in some (but not all) theories of case-based reason-
ing, remindings are based on the features in the de-
scription of the target problem and adaptation too
is limited to tweaking the features of the retrieved
source case. In contrast, in relation-based theories
of analogical reasoning, such as SME (Falkenhainer
et al., 1990) and LISA (Gick & Holyoak, 1996), the
focus and emphasis is on transfer of complex rela-
tions from the source to the target. Galatea too
focuses and emphasizes the transfer of complex re-
lations. In particular, it addresses the problem of
transferring problem-solving procedures which con-
tain an ordered series of operations.

Some relation-based theories of analogical reason-
ing are structure-based while others are content-
based. SME, for example, provides an uniform
structure-based mechanism for analogical reason-
ing that is intended to work independent of any
specific content account. Content-based theories,
such as (Winston, 1980), ANALOGY (Evans, 1968),
and LetterSpirit (McGraw & Hofstadter, 1993), fo-
cus and emphasize the content of the representa-
tions, and the mechanisms of analogical reasoning
are content-dependent. Galatea too is a content-
based theory of analogical reasoning.

Among the content-based theories of analogical
reasoning, most accounts make use of causal and
functional knowledge, for example, (Winston, 1980)
and our own earlier work on KRITIK, IDeAL,
and ToRQUE. The IDeAL system, for example,
uses structure-behavior-function (SBF) models for
supporting analogical remindings, mappings and
transfer in the context of conceptual design. The
ToRQUE system uses SBF models for analogical re-
mindings, transfer and evaluation in the context of
scientific problem solving. In contrast, Galatea’s
mechanism is driven by a content account of visual
abstractions and aggregations.

Like Galatea, ANALOGY and LetterSpirit are
content-based theories of analogical transfer using
visual representations. ANALOGY is an early com-
puter program that performed visual analogies. It
solved multiple choice visual analogy problems of the
kind found on intelligence tests (e.g. A:B::C:?). It
does this by describing how to turn A into B, and
then testing into which choice might C turn into in
a similar manner. LetterSpirit takes a stylized seed
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letter as input and outputs an entire font that has
the same style. It does this by determining what
letter is presented, determining how the components
are drawn, and then drawing the same components
of other letters the same way. The analogies be-
tween letters are already in the system: the vertical
bar part of the letter d maps to the vertical bar in
the letter b, for example. A mapping is created for
the input character. For example, the seed letter
may be interpreted as an f with the cross-bar sup-
pressed. When the system makes a lower-case t, by
analogy, it suppresses the crossbar.

Neither ANALOGY nor LetterSpirit transfers
problem-solving procedures (ordered series of opera-
tions) as Galatea does. In contrast, one can see how
Galatea might be applied to, say, LetterSpirit’s do-
main: The stylistic guidelines in LetterSpirit, such
as “crossbar suppressed” are like the visual transfor-
mations in our theory: crossbar suppressed would
be a transformation of removing an element from a
knowledge state, where that state was a prototype
letter fand the element was the crossbar. This trans-
formation then could be applied to the other letters
one by one.

Other systems have approached different aspects
of the Duncker analogy. Diva, for example, (Croft
& Thagard, 2002) does analogical mapping, using
ACME as the infrastructure.

The visual primitives that describe a knowledge
state in Galatea are similar to that of GeoRep (Fer-
guson & Forbus, 2000). Galatea, however uses
them for a task quite different from that of Geo-
Rep: GeoRep extracts and abstracts visual relations
in line drawings; in contrast, Galatea transfers a
problem-solving procedure from a source case to a
target problem. To do so, in addition to the visual
primitives for describing a knowledge state, Galatea
uses primitive transformations that act on knowl-
edge states. Galatea’s notion of groups too is simi-
lar to that GeoRep. GeoRep dynamically generates
groupings for abstracting visual relations from line
drawings while Galatea uses groups to enable ana-
logical transfer.

Conclusion

Three core issues in content-based accounts of ana-
logical problem solving are the modality of repre-
sentation and the representation’s levels of abstrac-
tion and aggregation. Most content accounts of ana-
logical problem solving are at the level of causal
and functional knowledge, i.e., reminding, map-
ping, adaptation and transfer are based on causal
and functional abstractions. In contrast, Galatea’s
content account is at the level of visual abstrac-
tions. Galatea shows that, in some situations, visual
knowledge alone is sufficient for the transfer task.
Galatea represents visual abstractions symboli-
cally. The system’s design opts for higher-level vi-
sual abstractions whenever possible. In future ver-



sions of Galatea, we plan to multiple levels of visual
abstractions. The current version of Galatea uses
multiple levels of aggregation. In particular, it uses
the notion of sets and set membership to group vi-
sual primitives, which facilitates analogical transfer.
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