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Abstract

Plausibility has been implicated as playing a critical role in
many cognitive phenomena from comprehension to problem
solving. Yet, plausibility is wusually treated as an
operationalised variable (i.e., a plausibility rating) rather than
being explained or studied in itself. This paper reports on a
new model of plausibility that is aimed at modeling several
direct studies of plausibility. This model, the Plausibility
Analysis Model (PAM), used distributional knowledge about
word co-occurrence (word-coherence) and commonsense
knowledge of conceptual structure and relatedness (concept-
coherence) to determine the degree of plausibility of some
target description. A detailed simulation of several plausibility
findings is reported, which shows a close correspondence
between the model and human judgments.

Introduction

Plausibility is an ineluctable phenomenon of everyday life,
whether it is used to assess the quality of a movie plot or to
consider a child’s excuse for a broken dish. It is perhaps
this very ubiquity that has led to it being ignored in
cognitive science. Typically, in the psychological literature,
plausibility is merely operationalised (as ratings on a scale),
rather than explained. This literature has shown plausibility
to play a vital role in diverse phenomena; such as discourse
comprehension (Speer & Clifton, 1998), conceptual
combination (Costello & Keane, 2000), reasoning (Collins
& Michalski, 1989; Smith, Shafir, & Osherson, 1993) and
arithmetic problem solving (Lemaire & Fayol, 1995). In
this way, the empirical literature leaves us with a sense that
plausibility is important but without a good indication of
what it is. Theoretically, the literature really only contains
broad, statements suggesting that “something is plausible if
it is conceptually supported by prior knowledge” (Collins &
Michalski, 1989; Johnson-Laird, 1983). In short, plausibility
is in need of a thorough computational and empirical
treatment.

Recently, several proposals have emerged that might well
provide a computational basis for plausibility. Costello &
Keane (2000) have modeled plausibility in conceptual
combination, illustrating what "conceptually supported by
prior knowledge" might mean. Lapata, McDonald & Keller
(1999) have suggested that plausibility might be modeled by
the surface, distributional properties of words themselves,
though some argue that this view overlooks conceptual
structure (Zwaan, Magliano & Graesser, 1995; French &
Labiouse, 2002). Finally, Halpern (2001) has a well-
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specified model of uncertainty assessment which he terms
plausibility, but this work is not intended to be a cognitive
model of human plausibility judgements.

These varied approaches provide pieces of the plausibility
puzzle, informing our own cognitive model of plausibility
(see also Connell and Keane, 2002, 2003a, 2003b). We
argue that human plausibility is based upon both concept-
coherence (i.e., the conceptual relatedness of the described
situation) and word-coherence (i.e., the distributional
information of the words used). In this paper, we review the
evidence for this theory and describe its computational
implementation the Plausibility Analysis Model (PAM).

Plausibility and Concept-Coherence

Notwithstanding the lack of specificity in definitions of
plausibility, there is a shared view running through the
literature that plausibility has something to do with the
coherence of concepts as established by prior knowledge.
For example, if we were asked to assess the plausibility of
the scenario --The bottle fell off the shelf and smashed -- we
might make the bridging inferences that the bottle falling
caused it to smash on the floor. We may then judge this
situation to be quite plausible because our prior experience
suggests that fragile things often break when they fall on
hard surfaces. In short, the smashing scenario has good
concept-coherence. In contrast, if we were asked to judge
the plausibility of the scenario --The bottle fell off the shelf
and melted-- we may judge it to be less plausible because
there is little in our prior experience to suggest that fragile
things melt when they fall onto a surface. In short, the
melting scenario lacks concept-coherence. Intuitively, these
examples suggest that the way the concepts cohere in a
scenario contributes to its perceived plausibility.

Connell and Keane (2002, 2003a) have provided
empirical support for this intuition in studies of people's
plausibility judgements of scenarios with differential
concept coherence (i.e., scenarios that invite different
bridging inferences). Many studies have shown that people
simultaneously and  independently —monitor  causal
and temporal continuity when reading, making
bridging inferences when necessary, to build up a coherent
model of a described scenario (Zwaan et al.,, 1995).
Connell and Keane found that causal inferences (causal
pairs, like the smashing scenario) were judged more
plausible than those that failed to invite obvious
causal inferences (unrelated pairs, like the melting
scenario), when other factors are being held
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constantlz.I Furthermore, causal pairs were also found to be
more plausible than sentence pairs that invited simple
attributal inferences, which in turn were judged to be more
plausible than inferences of temporal succession (see
Table 1). In addition to inference type affecting how people
rate the plausibility of situations, Connell and Keane
(2003b) have also shown that inference type affects the time
needed to make a plausibility judgement. People took
significantly longer to make a binary (yes/no) decision of
plausibility for causal sentence pairs than attributal sentence
pairs. These studies provide specific concrete evidence that
plausibility is influenced by the conceptual coherence of a
situation, as shaped by the type of inferences involved.

Table 1: Example of inference types with mean plausibility
scores for all materials in Experiment 1, Connell and Keane

(2003a)

Inference Sentence Pair Mean Score

Type

Causal The breeze hit the candle. 7.8
The candle flickered.

Attributal The breeze hit the candle. 55
The candle was pretty.

Temporal The breeze hit the candle. 4.2
The candle shone.

Unrelated The breeze hit the candle. 2.0

The candle drowned.
Note: All inference types were reliably different from one another.

Plausibility and Word-Coherence

Apart from the long-argued-for concept-coherence effect on
plausibility, more recently some have argued for a word-
coherence effect (Lapata et al., 2001). This view suggests
plausibility judgements are sensitive to the distributional
patterns of the specific words used to describe a situation.
In other words, the distinctive relationships between words,
as encoded in distributional knowledge, make certain

! Factors controlled were word frequency (using counts from the
British National Corpus), word-coherence (using scores from
Latent Semantic Analysis, discussed below), and word
appropriateness (of noun/verb and noun/adjective use).
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sentences appear more plausible by virtue of the particular
words used.

Distributional knowledge of a language can be gleaned
from statistical analyses of how each word is distributed in
relation to others in some corpora of texts. In these analyses,
a given word's relationship to every other word is
represented by a contextual distribution. The contextual
distribution of a word is formed by moving through the
corpus and counting the frequency with which it appears
with other words in its surrounding context. Thus, every
word may be summarised as a vector — or point in high-
dimensional space — showing the frequency with which is it
associated with other lexemes in the corpus. Similarly, a
sentence may be represented as single point in distributional
space by merging its word points; for example, the Latent
Semantic Analysis (LSA) model (Landauer & Dumais,
1997) uses the weighted sum of constituent word vectors to
denote tracts of text. In this way, two sentences containing
words that occur in similar linguistic contexts (i.e., that are
distributionally similar) will be positioned closer together in
this space than two sentences containing words that do not
share as much distributional information.

When a sentence is read, a neighbourhood of activation
spreads out around its point in distributional space. The
activated neighbourhood of a point is made up of words that
are distributionally similar, such as those that the sentence
in question may prime. If two sentences lie close to each
other in distributional space, their neighbourhoods will have
an overlap. For example, the sentence pairs:

0] The pack saw the fox. The hounds snarled.

(i) The pack saw the fox. The hounds growled.

have essentially the same meaning, but have different
distributional overlaps. The differences in the distributional
properties of snarled versus growled means that the
sentences of pair (i) are further apart and thus have a smaller
overlap of distributional information than the sentences of
pair (ii) (see Figure 1). However, the entire distributional
overlap does not contribute to the understanding of the
sentences; only some of the overlapping information is
relevant to the meaning of the sentence pair as a whole. For
example, the overlap of pair (ii) may contain words like
leaped, bounded, beast, chasing, howling, lair, etc., but
many of these words (like leaped, bounded, beast) do not
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Figure 2: The Plausibility Analysis Model

play key semantic roles in scenarios about hounds hunting
foxes. These words are irrelevant to the meaning of the
sentence pair and must be suppressed — i.e., the information
is superfluous to the task and so its activation must be
dampened (Gernsbacher & Faust, 1991; Gernsbacher &
Robertson, 1995). The words in the overlap (e.g., chasing,
howling, lair) that are relevant to the meaning of the
sentence pair will remain activated. In short, sentences with
a small distributional overlap generally have less
information to suppress than sentences with a large
distributional overlap. This means that pair (i) has greater
word-coherence than pair (ii) because it has a smaller
overlap, and less of the activated distributional information
has to be suppressed.

Connell and Keane (2003b) have shown that word-
coherence measured in this way, has an effect on
plausibility. They found that the greater the word-coherence
of sentence-pairs, the faster people are to read them and to
judge their plausibility. So, word-coherence has an effect on
plausibility, albeit weaker than that of concept-coherence.

Plausibility Analysis Model

Given this recent evidence, the challenge for a cognitive
model of plausibility is to capture the combined effects of
concept- and word-coherence. In the remainder of this
paper, we describe just such a model, the Plausibility
Analysis Model (PAM). PAM takes sentence inputs and
outputs a plausibility rating for the scenario described in the
sentences. PAM judges plausibility using a combination of
commonsense reasoning (for concept-coherence) and
distributional analysis (for word-coherence). At present,
PAM specifically deals with the sentences from Connell and
Keane's studies though it can easily be extended, with
further knowledge, to other inputs.

PAM has two phases, as shown in Figure 2. The
Comprehension phase models the word-coherence effect by
using distributional analysis, and the Assessment phase
models the concept-coherence effect by reasoning out a
scenario and rating its plausibility.
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Comprehension Phase

When a sentence is first read it is parsed and each word
helps to activate a certain neighbourhood of distributional
knowledge. This activated neighbourhood affects the ease
with which any following sentence is read. Connell and
Keane (2003b) have shown that even when word frequency
and appropriateness are controlled for, people are slower to
read and judge the plausibility of a sentence that has a large
distributional overlap with its predecessor than a sentence
that has little or no overlap. PAM models this effect by the
use of a model of linguistic distributional knowledge, 1 atent
Semantic Analysis (LSA: Landauer & Dumais, 1997)"
PAM uses LSA to calculate the 60 nearest neighbouring
words for each sentence in the pair¥ and counts the number
of common terms between the neighbourhoods (i.e., the
sentence overlap). This number represents the amount of
distributional information shared by the two sentences.
PAM then uses LSA to calculate the 50 nearest neighbours
of the sentence pair as a whole, and removes these terms
from the sentence overlap. What is left is the information
that must be suppressed, and is shown as the shaded area in
Figure 1. This suppressed information is used by PAM as a
downward-scaling variable in estimating the plausibility
rating. In general, the larger the distributional overlap of
two sentences, the greater the amount of suppressible
information and the lower the plausibility rating will be.
However, distributional information on its own does not
provide adequate knowledge to judge a sentence pair’s
plausibility. Regardless of their degree of distributional

2 |t is important to note here that we do not regard LSA as a model
of meaning (c.f. Glenberg & Robertson, 2000), but rather as a
model of a particular form of linguistic knowledge that reflects the
distributional relationships between words.

® The LSA analyses were done in the ‘General Reading up to 1°
Year College’ semantic space, with pseudodoc comparison at
maximum factors. In order to exclude misspellings and other very
low frequency words, and to maximize the sensitivity of PAM, any
words with a corpus frequency of less than 10 were excluded.



overlap, the sentences must be conceptually analyzed to
judge whether the events described are plausible or not.
This is the task of the Assessment phase.
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Figure 3: PAM’s formula for plausibility ratings

Assessment Phase

PAM analyses the sentence pair by breaking it down into
propositional form and checking if its selection restrictions
are confirmed by its knowledge-base. To start, the concept-
coherence of the first sentence in the pair is examined. For
example, the sentence [The pack saw the fox] is transformed
into propositional form as see (pack, fox) and the
selection restrictions for its arguments are checked. The first
argument requires that something be an animal in order to
see — a pack contains dogs, and dog is an animal, so that
requirement is met. The second argument requires that
something that must be a non-abstract entity in order to be
seen — a fox is an animal, and animals are non-abstract
entities, so that requirement is met. The way in which each
requirement is met is listed, and if all selection restrictions
are fulfilled PAM returns this list as a path of verification.

If a path is found, it means that the first sentence has been

conceptually verified, and so PAM can move onto

examining the second sentence.

The sentence [The hounds growled] is the second
sentence of the pair. Again, PAM breaks it down into
propositional form as growl (hounds) and searches for
different ways to verify its selection restrictions, noting the
path taken each time. For example, growl (hounds)
may be verified via several different paths, such as the
hounds growling because hounds are generally aggressive,
or because they are predators who have just encountered
their prey (the fox of the first sentence), or because they are
fighting amongst themselves, etc. It is likely that there are
many paths in the knowledge base that could be followed in
order to verify this sentence, and PAM will note them all.
The final part of the Assessment phase involves using this
set of paths to calculate a plausibility rating. To do this,
PAM uses three different variables taken from the set of
paths (the exact formula used can be seen in Figure 3):

1. Total Number of Paths P (the number of different ways
the sentence can be verified in the knowledge base)

2. Mean Path Length L (the average count of how many
different requirements must be met per path)

3. Proportion of “Hypothetical” Paths H (proportion of all
paths that can only be followed by meeting a
requirement for something that is not explicitly
mentioned — e.g. [The bottle fell off the shelf. The bottle
melted.] is considered a plausible path if we allow that
the bottle may have fallen into a hypothetical furnace)

The rating returned is between 0 (not plausible) and 10

(completely plausible), and is calculated according to the
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Figure 4: Graph of PAM’s plausibility rating function

asymptotic function of Figure 3. In short, a high number of
paths (P) means higher plausibility, because there are more
possible ways that the sentence can be verified. A high
mean path length (L) means lower plausibility, because
elaborate requirements must be met to verify the sentence.
Finally, a high proportion of hypothetical paths (H) means
lower plausibility, because it is assuming the existence of
entities that may not be there.

Figure 4 shows the boundaries of plausibility score that
PAM generates for an increasing number of paths. The
dotted line represents the inner (lower) score boundary,
which is the worst-case situation where the mean path
length approaches infinity and every path is hypothetical.
The solid line represents the outer (upper) score boundary,
where the mean path length is one and no path is
hypothetical. For example, a set of four (non-hypothetical)
paths with a mean length of three will have a rating of 7.2
out of 10, while a set of three paths (again with a mean
length of three) will have a rating of 6.6 out of 10. If one of
those three paths were a hypothetical path, then the score
would drop to 6.3 out of 10.

When the path rating has been calculated, PAM then
applies the scaling variable supplied by distributional
knowledge in the Comprehension phase to represent the
carry-over effect that the effort of suppression has on
plausibility ratings. The scaling is of a lesser magnitude
than that of the other variables in the model, but will still
have a perceptible effect. In this way, PAM models the
small difference in plausibility ratings found between
versions of sentence pairs that vary in their distributional
overlap but are conceptually identical.

Model Evaluation

PAM'’s performance in plausibility ratings was compared to
human data. Using the sentence pair materials from Connell
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Figure 5: PAM’s output against human plausibility ratings

and Keane (2003a), the simulation produced plausibility
ratings that were then compared to the human judgments.
The test items used were a different subset of Connell and
Keane’s materials than those used as PAM’s training items.

It is important to note here that although the simulations
were performed with materials from Connell and Keane’s
papers, PAM was designed to be generalisable to any other
input simply by extending the commonsense knowledge
base. We will address this issue further in the general
discussion. Additionally, PAM’s knowledge base was built
in a “blind” fashion. That is, the knowledge was simply
represented in local definitions of requirements, without
checking possible path lengths that might emerge or without
modifying the knowledge base to fit the data.

Simulation

Materials Connell and Keane’s (2003a) materials were
from two experiments, from which 60 sentence pairs were
drawn as test items for the simulation. Of these, there were
a number of different variants of each sentence pair. For
example, some sentence pairs had variants manipulating
concept-coherence (e.g., causal inference [The bottle fell off
the shelf. The bottle smashed.] versus unrelated inference
[The bottle fell off the shelf. The bottle melted.]) while
others  manipulated  word-coherence  (e.g., large
distributional overlap [The pack saw the fox. The hounds
growled.] versus small distributional overlap [The pack saw
the fox. The hounds snarled.]).

Procedure The procedures in the two psychological
experiments were slightly different. The first experiment,
which manipulated just concept-coherence, presented each
sentence pair on its own page in a booklet. Participants were
then asked to judge the plausibility of the sentence pair and
rate it on a 10-point scale (where 0 was implausible and 10
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was very plausible).  The second experiment, that
manipulated both concept- and word-coherence, presented
two sentence pairs per page in the booklet, where one pair
was the variant with the large distributional overlap and the
other pair was the variant with the small distributional
overlap. Again, participants were asked to judge the
plausibility of both sentence pairs and rate them on two
separate 10-point scales. For the purposes of this simulation,
the mean plausibility rating of each sentence pair was used.
The procedure for PAM was to enter each natural language
sentence pair and note the output from the Assessment
phase, which took the form of a rating of plausibility (0-10).

Results & Discussion PAM returned plausibility ratings
that were highly correlated with the human data from
Connell and Keane (2003a), R=0.788, p<0.0001, N=60. A
regression analysis confirmed that PAM’s output could be
used to predict human performance in plausibility ratings,
R’=0.621, p<0.0001. Figure 5 shows a scatterplot of the
relationship between model output and participant means.

PAM performed well for all four concept-coherence
variants (causal, attributal, temporal and unrelated). Table 2
shows the means per inference type for Connell and Keane’s
data against PAM’s,

We also altered PAM’s output to disregard the effect of
word-coherence in the Assessment phase, and compared this
to the human data. While we still found a significant
correlation (R=0.779, p<0.0001), it was less than that found
earlier and a regression analysis showed that PAM’s
performance had worsened by 1.4% without the word-
coherence effect, R>=0.607, p<0.0001. This confirms that
word-coherence does indeed have a pertinent effect on
PAM’s plausibility ratings.

Table 2: Mean Plausibility ratings per inference type from
PAM and Experiment 1, Connell and Keane (2003a)

Inference Type Human Rating PAM Rating
Causal 7.8 7.9
Attributal 55 5.7
Temporal 4.2 5.0
Unrelated 2.0 0.9

General Discussion

There are a number of novel achievements reported in this
paper. The Plausibility Analysis Model (PAM) is the first
computational model that specifically and accurately
addresses human plausibility judgements. It does this by
using a number of innovative techniques to capture the
complex influences that empirical work has shown to bear
upon plausibility, namely the use of both commonsense
knowledge and distributional knowledge.

PAM uses a commonsense knowledge base to assess
concept-coherence. This assessment is based upon an
analysis of the requirements that must be met for a
proposition to be true. Many of these requirements are based
upon what is intuitively regarded as common sense. For



example, for an entity X to melt, one of the requirements is
that X is currently solid. For X to be solid, there is a further
requirement that X is non-abstract, and so on. In general,
this precludes the use of figurative language in the sentence
pairs that PAM takes as input, but it would be possible to
build up such a requirements set for future versions.

In addition to concept-coherence, PAM also assesses
word-coherence by using linguistic  distributional
knowledge. It does this through the use of Latent Semantic
Analysis (LSA). However, rather than the conventional use
of LSA scores that represent the distance between points in
a high-dimensional space (c.f. Kintsch, 2001; Landauer &
Dumais, 1997), we have taken the alternative approach of
neighbourhood activation. By treating words and sentences
as activating only a certain area of distributional knowledge,
we believe our implementation of a high-dimensional
distributional space to have greater cognitive plausibility.

There is an interaction between commonsense knowledge
and distributional knowledge as shown in the empirical
work of Connell and Keane (2002; 2003a; 2003b). For a
considered plausibility rating, PAM models the interaction
as sequential: the conceptual soundness of the situation is
fully explored and afterwards a lingering effect of
distributional knowledge is applied. While the simulations
were run with all available human data, it is our intention to
use PAM to create more sentence pairs and examine how its
output predicts additional human plausibility ratings. It is
also our intention to extend PAM to deal with other
discourse inputs, which will require only that the
commonsense knowledge base be extended accordingly.
The distributional ~ knowledge accessed in the
Comprehension phase need not be altered, as LSA already
deals with the full English language.

PAM is the computational implementation of the
plausibility theory put forward by Connell and Keane
(2003a; 2003b), and as such is the first model specifically of
human plausibility judgements. Although still in
development, the simulations reported here demonstrate the
importance and accuracy of PAM’s modeling techniques.
When people judge the plausibility of a scenario, they are
influenced both by the concept-coherence of the situation in
hand and by the word-coherence of the description they
have read or listened to. Any future models of human
plausibility judgements must therefore take account of both
these factors, and implement conceptual and distributional
knowledge, and the interactions between them.
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