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Abstract 

Marcus (2001) argues that only those connectionist 
models that incorporate (classical) rules can 
account for the phenomenon of transfer of learning 
in infants. Seidenberg and Elman (1999) have tried 
to counter to Marcus by means of a simple 
recurrent network (SRN) trained on a 
categorization task. In this paper we show how a 
prediction-SRN, trained on a simple but structured 
pre-training set, can preserve its computational 
equivalency with respect to classical counterparts 
while eschewing the need to posit rule-governed 
underlying mechanisms; a criticism that has been 
raised against Seidenberg and Elman’s 
categorization-based reply.  

Introduction  
Marcus (2001) distinguishes two separate 
ontologies in the connectionist realm: 
implementational connectionism and eliminative 
connectionism. The former accounts for cognitive 
phenomena by positing sets of explicit rules that 
serve the purpose of symbolic manipulation. The 
latter, in terms of computational abilities which 
are the result of an associative memory. Marcus 
argues that the connectionist models which 
preserve their computational equivalency with 
respect to classical ones are those that implement 
classical rules.  

Transfer of learning in infants 
Marcus (2001) assesses the relationship between 
connectionist theory and rule-governed behaviour 
by challenging the connectionist to account for 
data collected in a number of experiments with 
infants. In one well-known experiment, Marcus et 
al. (1999) habituated 7-month-old infants to 
strings of artificial syllables that belonged to an 
ABA or an ABB abstract grammare.g., “le di 
le” or “wi je je”. As Marcus et al. report, infants 
listen longer to novel sequences that do not 

conform to the pattern they’ve been exposed to 
during habituation (e.g., “ba po po” for infants 
habituated to ABA sequences, and “ba po ba” for 
those habituated on ABB ones). The data has been 
interpreted as showing that infants exploit (rule-
governed) abstract knowledge in order to induce 
the implicit grammar common to different 
sequences of syllables: “infants extract abstract-
like rules that represent relationships between 
placeholders (variables) such as ‘the first item X 
is the same as the third item Y’ or more generally 
that ‘item I is the same as item J’.” (Marcus et al., 
1999). 

Seidenberg and Elman’s simulation 
Seidenberg and Elman (1999a) tried to account for 
Marcus et al.’s data in purely statistical terms, 
while avoiding implementing a classical 
architecture in doing so. Their strategy was 
twofold: They first pre-trained an SRN (Elman, 
1990; fig. 1) on a categorization task. The network 
had to output 1 or 0, depending on whether the 
syllable being fed at a given point was a token of 
the same type as the syllable fed at the previous 
time step. Once the weights were frozen, they 
encoded information about the same/different 
relationship that holds for a large set of syllables 
that infants surely have already encountered prior 
to the experiment. The pre-trained SRN can then 
exploit that knowledge in a subsequent 
habituation phase where it is exposed to strings of 
syllables similar to those infants had become 
familiar with in Marcus et al.’s experiment. The 
network’s task in this second phase is to 
categorize strings of syllables in the ABA or ABB 
grammatical subsets by outputting a 0 or a 1, 
respectively.1 

                                                           
1 No training took place after presentation of the first 
two syllables during habituation, nor on the pre-training 
output unit (see Seidenberg and Elman, 1999a, for the 
details). 
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Figure 1: Seidenberg and Elman’s SRN (output 
units for pre-training, and habituation and testing, 

are different. 
 

The network was then tested on the same ABA 
and ABB strings that infants had been tested on in 
the Marcus et al. experiment. Seidenberg and 
Elman’s results show that the network can 
generalize the knowledge acquired in the 
habituation phase to novel stimulialthough see 
Vilcu & Hadley (2001) for a skeptical appraisal of 
their data. According to Seidenberg and Elman, 
this supports the view that the infants’ behaviour 
can be accounted for without the positing of an 
abstract grammar that is somehow being tacitly 
followed.  

Marcus, however, is not moved by Seidenberg 
and Elman’s simulation. Although their model 
neither implements a classical architecture, nor 
makes use of symbolic structures directly, the 
external teaching signal that it requires to 
backpropagate error so as to adjust the weight 
matrix in the categorization task of the pre-
training phase implements a rule: “It incorporates 
a universally open-ended rule of the sort, for all 
syllables x, y, if x=y then output 1 else output 0.” 
(Marcus, 1999) 

Generalization in prediction-based 
SRNs 

It is not clear that Marcus’ comments are a real 
threat to connectionism (see Seidenberg and 
Elman, 1999b, for a rebuttal), but granting, for 
simplicity’s sake, Marcus’ charge of 
implementation, in what follows we report the 
results of a simulation that is empirically adequate 
in the face of the infants’ data and does not 
implement classicism.  

Stimuli 
Pretraining corpus 
Following Seidenberg and Elman (1999a), we 
simulated infants’ linguistic environment, prior to 
taking part in the experiment, by exposing a SRN 
to a pool of syllables (table 1). The corpus 
consisted of CV syllables formed by 
concatenating all possible combinations of 
consonants and vowels in the corpus (resulting in 
85 syllable types). CV syllables were encoded in a 
semi-localist way by concatenating consonants 
and vowels represented locally (table 3).2 
 

Table 1:  Stimuli (pre-training phase). 
va ve vi vo vu 
pa pe pi po  pu 
da de di do du 
ya ye yi yo yu 
ga ge gi go gu 
ka ke ki ko  ku 
ba be bi bo bu 
wa we wi wo wu 
ma me mi mo mu 
na ne ni no nu 
za ze zi zo zu 
sa se si so su 
fa fe fi fo fu 
la le li lo lu 
ra re ri ro ru 
ta te ti to tu 
ha he hi ho hu 

 
 

 
Table 2:  Habituation stimuli. 

le di di 
je le le 
li le le 
we le le 
wi di di 
je wi wi 
li we we 
we wi wi 
di ji ji 
je ji ji 
ji li li 
we ji ji 
de di di 
je de de 
li de de 
de we we 

                                                           
2 Network performance using a distributed version of 
Plunkett & Marchman (1993) phonetic coding didn’t 
yield significantly different outcomes.  

 2 

211



Habituation corpus 
The habituation corpus consisted of the same 12 
ABB or ABA strings of syllables used by Marcus 
et al. (table 2). The same semi-localist input 
encoding was used as in the pre-training corpus. 
 

Table 3:  Habituation stimuli coding. 
de 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
yi  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
li  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
we  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
di  0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
ye  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 
le  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
wi  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
 

Network architecture 
Based on the architecture of Seidenberg and 
Elman’s model, we trained a SRN to test if it 
could generalize to novel strings of syllables in 
the line of Marcus et al.’s experiment. The 
network had 31 input and output (pre-training and 
habituation) units, and 41 units in both the hidden 
and context layers (figure 2). 
 

 
Figure 2: A SRN trained on a prediction task 

(output units for (i) pre-training, and (ii) 
habituation and testing, are in different banks). 

 

During pre-training, on the one hand, and 
during habituation and testing, on the other, 
different banks of output units were deployed. (No 
training took place on the habituation bank during 
pre-training or vice versa).  

Task 
Pre-training 
In the pre-training phase we fed the network with 
50,000 syllable tokens from the set of 85 syllable 
types. The task was to predict the next item in the 
sequence. There were no (complex) 
“grammatical” constraints such as those in 
Elman’s (1990) classical prediction task. To make 
the task learnable, we varied the amount of 
syllables that were duplicated. 5 corpora were 
created where syllable duplication ranged from 
0% to 100%. In this way, a network exposed to a 
0%-duplication corpus would hardly reduce its 
overall error since random dependencies in such a 
(noisy) data set would cancel each other out. At 
the other end of the spectrum, a network pre-
trained on a 100%-duplication corpus would 
decrease its prediction error significantly since it 
would learn that every syllable in the corpus is 
followed by an identical token. Intermediate 
corpora (25%, 50%, and 75% repetition) yielded 
error scores in between (figure 3). 
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Figure 3: Error scores in trained networks 
decreased as the structure in the pre-training set 

(percentage of duplication) increased. 
  
Habituation 
With the weights from the pre-training phase 
frozen, networks were trained on either the ABB 
or the ABA habituation corpus of table 2. Training 
was stopped at 4 different points in 
learningwhenever the sum of the root-mean-

 3 
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square error (sum_rms) for the habituation output 
bank of units fell below 1,2; 1,1; 1,0; and 0,9.3 
 
Generalization 
With the weights frozen from the habituation 
phase, we tested performance on novel data. To 
confirm the robustness of our results, we used an 
extended corpus of 1,000 syllables forming a 
sequence of ABB and ABA novel strings. The 
same syllables were used for both grammatical 
patterns.  

20 tests were done for the 20 different weight 
matrices obtained by habituating the SRN on the 
0,9 to 1,2 sum_rms measure stops for all pre-
training corpora (0% to 100% duplication). For 
each trial in the generalization corpus, the 
prediction error was recorded for next item 
presented after the presentation of the first two 
syllables. Differences in prediction error between 
ABA’s and ABB’s third syllable were computed. 
The prediction is that networks habituated to ABB 
patterns will have an advantage when predicting 
ABB patterns over when predicting ABA patterns, 
but networks habituated to ABA patterns will 
show an advantage predicting ABA patterns over 
ABB patterns.  

Figure 4: difference between congruent vs. 
incongruent patterns during generalization after 

habituation. 

Results 
To see the role pre-training played in the overall 
task, we ran 10 networks in each of five Pre-
training conditions: no pre-training, pre-training 

with no duplication (0%), 25% of syllables 
dupplicated, 50%, 75% and 100%. Half of these 
networks were trained on ABB patterns during the 
habituation phase and the other half were trained 
on ABA patterns during the habituation phase. 
Figure 4 shows the relative facilitation for 
predicting congruent over incongruent patterns. 
To calculate this, we used the average of the 
incongruent minus the congruent sum_rms for 
networks pre-trained on 0% to 100%-duplication 
corpora, and networks that were not pre-trained 
previously. 

                                                           
3 The simulations were run with PDP++ (O’Reilly, 
Dawson, and McClelland), and trained with a learning 
rate of 0,05 during pre-training, and of 0,01 during 
habituation. Although calculating error measures of 
probability-based predictions against likelihood vectors 
would have been more informative, for current purposes 
(i.e., assessment of the role of pre-trainingsee 
discussion, below) sum_rms values suffice. 

If the networks have abstracted the general 
patterns of the grammars present during 
habituation, the difference of error in incongruent 
minus congruent patterns should be positive. 
Additionally, if the kind of pre-training we are 
using is in fact necessary for modeling this 
phenomenon, we expect to see an advantage of 
congruent patterns in networks trained with some 
repetition, but not in those trained without 
repetition or those with no pre-training. 

These data were submitted to a 6(Pre-training) x 
2(Habituation) ANOVA. The results show a 
significant main effect of Pre-training (p<.01). 
The congruency effect is bigger for networks that 
have more duplication in their pre-training. Post-
hoc tests revealed no difference between networks 
that received no pre-training and networks that 
were pre-trained in an unstructured corpus that 
had no consistent (p=.28). There was also a 
significant main effect of Habituation (p<.01). 
Post-hoc analysis revealed that the congruency 
effect was bigger for networks habituated to ABB 
patterns than for networks habituated to ABA 
patterns (p<.01). 
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ce The analysis also revealed a significant 
interaction between Habituation and Pre-training 
(p<.01) – the effect of pre-training was greater for 
networks habituated to ABB patterns than for 
networks habituated for ABA patterns.  

Discussion 
The results of our simulations show that simple 
SRN networks, when trained on a simple but 
structured corpus, will generalize the abstract 
patterns embodied in their training set and gain an 
advantage in processing subsequent patterns of the 
same type. That is, like the infants in Marcus et 
al’s study, the networks that were pre-trained in a 
corpus in which some syllables were consistently 
duplicated, learned to distinguish ABB patterns 
from ABA patterns after a brief period of training 
akin to infant’s habituation. 

There is crucial difference between Seidenberg 
and Elman’s model and ours. Their network was 
trained both in the pre-training and the habituation 
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phases on a categorization task. Although, that is 
perfectly legitimate, there is a striking difference 
between the habituation phase in their simulation 
and the way infants were familiarized with their 
linguistic environment in the Marcus et al.’s 
original experiment. Whereas infants were 
exposed to strings of syllables that belonged to a 
single grammar (e.g., “le di di” and “wi je 
je”ABB), Seidenberg and Elman’s network was 
habituated to two sets of strings that conformed to 
two different grammars (e.g., “le di 
di”ABB“wi je wi”ABA). The task then 
consisted in the correct categorization of 
exemplars into the ABB and ABA categories. Our 
network, on the contrary, is trained in both phases 
(pre-training and habituation) on a prediction task. 
Importantly, the model, like the infants of the 
Marcus et al. experiment, is exclusively exposed 
to positive examples of ABB strings of syllables 
(i.e., all generated by a single grammar).  

The fundamental component of our simulation 
is the nature of the pre-training environment. The 
pre-training environment does not merely consist 
of a large set of syllables where the input signal is 
generated by the random concatenation of 
exemplars in the data set, but, crucially, some 
syllable tokens are normally encountered followed 
by other tokens that belong to the same 
representational type. So, for example, in a 
(reduced) ecological context, such as the one 
infants encounter in their first months of life, 
“ma” and “pa” are very frequently followed by 
another “ma” and “pa” exemplar, respectively, 
whereas some other syllables (e.g., “the”) may be 
followed by almost any syllable in the corpus. In 
these simulations we abstract this distinction to its 
two extremes and present the network during pre-
training with syllables that are either always 
duplicated or never duplicated. These first-order 
correlations in the environment amount to sub-
regularities that can be exploited by the network 
in a semi-deterministic prediction task.4 This is 
how a SRN can be pre-trained on a prediction 
task, bypassing some of the problems faced by 
Seidenberg and Elman’s categorization-based 
solution. 

So what do the networks learn from pre-training 
that helps them abstract the regularities in the 

habituation task? One possibility is that networks 
need to develop consistent and coherent 
representations for the syllables in the corpus (the 
words in Marcus’ habituation) in order to more 
effectively encode the patterns seen during the 
short habituation phase. This possibility is 
weakened, however, by the fact that networks pre-
trained in a corpus made out of syllables but 
containing no additional structure in terms of 
duplication, do not perform better than the 
networks that receive no pre-training at all. A 
second possibility is that during pre-training the 
networks learn to represent something general 
about duplication, in other words, sameness. This 
abstraction could be crucial in encoding the 
patterns during the habituation phase. This could 
explain the apparent advantage of networks in 
dealing with ABB patterns compared to ABA 
patterns – duplication is a part of ABB and could 
be used to encode it more efficiently. This 
advantage of ABB patterns, then, may disappear if 
the networks are trained on a corpus containing 
longer distance dependencies.  

                                                           
4 The assumption that syllables are not concatenated in 
a purely random fashion is empirically justified. Notice 
that infants start to babble at the age of 6-months. The 
linguistic stream they encounter as input is thus made 
up of the combination of their natural environment 
(with the existing first-order correlations among 
syllable sets) plus the babbling repetitions uttered by 
themselves.  

Interestingly, the networks predict differences 
between ABA and ABB patterns that may fall 
from the nature of short-term vs. long-term 
memory. Networks learn ABB patterns faster than 
ABA patterns and habituate faster to ABB than 
ABA patterns. We are currently working on an 
extended model that differentiates short-term 
(habituation) and long-term (pre-training) memory 
and concurrently testing these predictions in 7-
month-old infants. By combining these 
simulations with empirical testing of their 
predictions we hope to shed light on the 
mechanisms involved in this phenomenon. 

Conclusion  
The research reported here shows how Marcus’ 
challenge can be met while avoiding the positing 
of rule-fitting patterns of behavior (allegedly 
required to constrain novel data). In our view, 
Marcus correctly points out that “Seidenberg and 
Elman do not give an account of how the 
supervisor’s rule could itself be implemented in 
the neural substrate” (2001, p. 65). The teaching 
signal of a fully supervised categorization task is 
not ecologically grounded. In our self-supervised 
prediction task, that’s not an issue. Activation-
based signals in a prediction task are not to be 
interpreted in terms of rule-implementation. The 
teaching signal exploited is an activation state of 
experience. As McClelland emphasizes with 
regard to the ecological plausibility of this type of 
signals: “the brain is constantly generating 
expectations and the discrepancies between these 
expectations and subsequent outcomes can be 
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used for error-driven learning” (from O’Reilly and 
Munakata, 2000). The network encodes the 
existing statistical regularities with no need to 
process algebra-like information. Our working 
hypothesis is that infants make use of 
discrepancies based on expectations to make 
successful predictions. 

Marcus (2001) claimed that connectionist 
networks would lose their empirical adequacy 
unless they implemented a classical architecture. 
Marcus’ infant data is accounted for in statistical 
terms without the positing of devices that store 
particular values of variables to perform variable 
bindings, such as register sets, or other classical 
resources. The charge of implementation is 
therefore not applicable to our results, since the 
ecologically grounded prediction task of the 
networks does not incorporate universally open-
ended rules.  
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