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Abstract

Marcus (2001) argues that only those connectionist
models that incorporate (classical) rules can
account for the phenomenon of transfer of learning
in infants. Seidenberg and Elman (1999) have tried
to counter to Marcus by means of a simple
recurrent network (SRN) trained on a
categorization task. In this paper we show how a
prediction-SRN, trained on a simple but structured
pre-training set, can preserve its computational
equivalency with respect to classical counterparts
while eschewing the need to posit rule-governed
underlying mechanisms; a criticism that has been

raised against Seidenberg and  Elman’s
categorization-based reply.

Introduction
Marcus (2001) distinguishes two separate
ontologies in the  connectionist realm:

implementational connectionism and eliminative
connectionism. The former accounts for cognitive
phenomena by positing sets of explicit rules that
serve the purpose of symbolic manipulation. The
latter, in terms of computational abilities which
are the result of an associative memory. Marcus
argues that the connectionist models which
preserve their computational equivalency with
respect to classical ones are those that implement
classical rules.

Transfer of learning in infants

Marcus (2001) assesses the relationship between
connectionist theory and rule-governed behaviour
by challenging the connectionist to account for
data collected in a number of experiments with
infants. In one well-known experiment, Marcus et
al. (1999) habituated 7-month-old infants to
strings of artificial syllables that belonged to an
ABA or an ABB abstract grammar—e.g., “le di
le” or “wi je je”. As Marcus et al. report, infants
listen longer to novel sequences that do not
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conform to the pattern they’ve been exposed to
during habituation (e.g., “ba po po” for infants
habituated to ABA sequences, and “ba po ba” for
those habituated on ABB ones). The data has been
interpreted as showing that infants exploit (rule-
governed) abstract knowledge in order to induce
the implicit grammar common to different
sequences of syllables: “infants extract abstract-
like rules that represent relationships between
placeholders (variables) such as ‘the first item X
is the same as the third item Y’ or more generally
that ‘item I is the same as item J’.” (Marcus et al.,
1999).

Seidenberg and Elman’s simulation

Seidenberg and Elman (1999a) tried to account for
Marcus et al.’s data in purely statistical terms,
while avoiding implementing a classical
architecture in doing so. Their strategy was
twofold: They first pre-trained an SRN (Elman,
1990; fig. 1) on a categorization task. The network
had to output 1 or 0, depending on whether the
syllable being fed at a given point was a token of
the same type as the syllable fed at the previous
time step. Once the weights were frozen, they
encoded information about the same/different
relationship that holds for a large set of syllables
that infants surely have already encountered prior
to the experiment. The pre-trained SRN can then
exploit that knowledge in a subsequent
habituation phase where it is exposed to strings of
syllables similar to those infants had become
familiar with in Marcus et al.’s experiment. The
network’s task in this second phase is to
categorize strings of syllables in the ABA or ABB
grammatical subsets by outputting a 0 or a 1,
respectively.'

' No training took place after presentation of the first
two syllables during habituation, nor on the pre-training
output unit (see Seidenberg and Elman, 1999a, for the
details).
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Figure 1: Seidenberg and Elman’s SRN (output
units for pre-training, and habituation and testing,
are different.

The network was then tested on the same ABA
and ABB strings that infants had been tested on in
the Marcus et al. experiment. Seidenberg and
Elman’s results show that the network can
generalize the knowledge acquired in the
habituation phase to novel stimuli—although see
Vilcu & Hadley (2001) for a skeptical appraisal of
their data. According to Seidenberg and Elman,
this supports the view that the infants’ behaviour
can be accounted for without the positing of an
abstract grammar that is somehow being tacitly
followed.

Marcus, however, is not moved by Seidenberg
and Elman’s simulation. Although their model
neither implements a classical architecture, nor
makes use of symbolic structures directly, the
external teaching signal that it requires to
backpropagate error so as to adjust the weight
matrix in the categorization task of the pre-
training phase implements a rule: “It incorporates
a universally open-ended rule of the sort, for all
syllables x, y, if x=y then output 1 else output (.”
(Marcus, 1999)

Generalization in prediction-based
SRNs

It is not clear that Marcus’ comments are a real
threat to connectionism (see Seidenberg and
Elman, 1999b, for a rebuttal), but granting, for
simplicity’s  sake, = Marcus’ charge  of
implementation, in what follows we report the
results of a simulation that is empirically adequate
in the face of the infants’ data and does not
implement classicism.
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Stimuli

Pretraining corpus

Following Seidenberg and Elman (1999a), we
simulated infants’ linguistic environment, prior to
taking part in the experiment, by exposing a SRN
to a pool of syllables (table 1). The corpus
consisted of CV syllables formed by
concatenating all possible combinations of
consonants and vowels in the corpus (resulting in
85 syllable types). CV syllables were encoded in a
semi-localist way by concatenating consonants
and vowels represented locally (table 3).2

Table 1: Stimuli (pre-training phase).

va ve vi VO vu
pa pe pi po pu
da de di do du
ya ye yi yo yu
ga ge gi g0 gu
ka ke ki ko ku
ba be bi bo bu
wa we wi WO wu
ma me mi mo mu
na ne ni no nu
za ze Zi ZO0 zu
sa se si SO su
fa fe fi fo fu
la le i lo Iu
ra re ri 0 ru
ta te ti to tu
ha he hi ho hu

Table 2: Habituation stimuli.

le di di
je le le
li le le
we le le
wi di di
je wi wi
i we we
we wi wi
di ji ji
je ji ji
ji li li
we ji ji
de di di
je de de
li de de
de we we

% Network performance using a distributed version of
Plunkett & Marchman (1993) phonetic coding didn’t
yield significantly different outcomes.



Habituation corpus

The habituation corpus consisted of the same 12
ABB or ABA strings of syllables used by Marcus
et al. (table 2). The same semi-localist input
encoding was used as in the pre-training corpus.

Table 3: Habituation stimuli coding.

de 0010000000000000
000000000010000

yi 0000000000000000
010100000000000

li 0000000000000001

000100000000000

we 0000000000000010
000000000010000
di 0010000000000000
000100000000000
ye 0000000000000000
010000000010000
le 0000000000000001
000000000010000
wi 0000000000000010

000100000000000

Network architecture

Based on the architecture of Seidenberg and
Elman’s model, we trained a SRN to test if it
could generalize to novel strings of syllables in
the line of Marcus et al.’s experiment. The
network had 31 input and output (pre-training and
habituation) units, and 41 units in both the hidden
and context layers (figure 2).
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Figure 2: A SRN trained on a prediction task
(output units for (i) pre-training, and (ii)
habituation and testing, are in different banks).
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During pre-training, on the one hand, and
during habituation and testing, on the other,
different banks of output units were deployed. (No
training took place on the habituation bank during
pre-training or vice versa).

Task

Pre-training

In the pre-training phase we fed the network with
50,000 syllable tokens from the set of 85 syllable
types. The task was to predict the next item in the
sequence. There were no  (complex)
“grammatical” constraints such as those in
Elman’s (1990) classical prediction task. To make
the task learnable, we varied the amount of
syllables that were duplicated. 5 corpora were
created where syllable duplication ranged from
0% to 100%. In this way, a network exposed to a
0%-duplication corpus would hardly reduce its
overall error since random dependencies in such a
(noisy) data set would cancel each other out. At
the other end of the spectrum, a network pre-
trained on a 100%-duplication corpus would
decrease its prediction error significantly since it
would learn that every syllable in the corpus is
followed by an identical token. Intermediate
corpora (25%, 50%, and 75% repetition) yielded
error scores in between (figure 3).

m_rms error

pre-training su

0% 25% 50% 75%
% syllable repetition

100%

Figure 3: Error scores in trained networks
decreased as the structure in the pre-training set
(percentage of duplication) increased.

Habituation

With the weights from the pre-training phase
frozen, networks were trained on either the ABB
or the ABA habituation corpus of table 2. Training
was stopped at 4 different points in
learning—whenever the sum of the root-mean-



square error (sum_rms) for the habituation output
bank of units fell below 1,2; 1,1; 1,0; and 0,9

Generalization

With the weights frozen from the habituation
phase, we tested performance on novel data. To
confirm the robustness of our results, we used an
extended corpus of 1,000 syllables forming a
sequence of ABB and ABA novel strings. The
same syllables were used for both grammatical
patterns.

20 tests were done for the 20 different weight
matrices obtained by habituating the SRN on the
0,9 to 1,2 sum_rms measure stops for all pre-
training corpora (0% to 100% duplication). For
each trial in the generalization corpus, the
prediction error was recorded for next item
presented after the presentation of the first two
syllables. Differences in prediction error between
ABA’s and ABB’s third syllable were computed.
The prediction is that networks habituated to ABB
patterns will have an advantage when predicting
ABB patterns over when predicting ABA patterns,
but networks habituated to ABA patterns will
show an advantage predicting ABA patterns over
ABB patterns.
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Figure 4: difference between congruent vs.
incongruent patterns during generalization after
habituation.

Results

To see the role pre-training played in the overall
task, we ran 10 networks in each of five Pre-
training conditions: no pre-training, pre-training

3 The simulations were run with PDP++ (O’Reilly,
Dawson, and McClelland), and trained with a learning
rate of 0,05 during pre-training, and of 0,01 during
habituation. Although calculating error measures of
probability-based predictions against likelihood vectors
would have been more informative, for current purposes
(i.e., assessment of the role of pre-training—see
discussion, below) sum_rms values suffice.
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with no duplication (0%), 25% of syllables
dupplicated, 50%, 75% and 100%. Half of these
networks were trained on ABB patterns during the
habituation phase and the other half were trained
on ABA patterns during the habituation phase.
Figure 4 shows the relative facilitation for
predicting congruent over incongruent patterns.
To calculate this, we used the average of the
incongruent minus the congruent sum_rms for
networks pre-trained on 0% to 100%-duplication
corpora, and networks that were not pre-trained
previously.

If the networks have abstracted the general
patterns of the grammars present during
habituation, the difference of error in incongruent
minus congruent patterns should be positive.
Additionally, if the kind of pre-training we are
using is in fact necessary for modeling this
phenomenon, we expect to see an advantage of
congruent patterns in networks trained with some
repetition, but not in those trained without
repetition or those with no pre-training.

These data were submitted to a 6(Pre-training) x
2(Habituation) ANOVA. The results show a
significant main effect of Pre-training (p<.0l).
The congruency effect is bigger for networks that
have more duplication in their pre-training. Post-
hoc tests revealed no difference between networks
that received no pre-training and networks that
were pre-trained in an unstructured corpus that
had no consistent (p=.28). There was also a
significant main effect of Habituation (p<.0l).
Post-hoc analysis revealed that the congruency
effect was bigger for networks habituated to ABB
patterns than for networks habituated to ABA
patterns (p<.01).

The analysis also revealed a significant
interaction between Habituation and Pre-training
(p<.01) — the effect of pre-training was greater for
networks habituated to ABB patterns than for
networks habituated for ABA patterns.

Discussion

The results of our simulations show that simple
SRN networks, when trained on a simple but
structured corpus, will generalize the abstract
patterns embodied in their training set and gain an
advantage in processing subsequent patterns of the
same type. That is, like the infants in Marcus et
al’s study, the networks that were pre-trained in a
corpus in which some syllables were consistently
duplicated, learned to distinguish ABB patterns
from ABA patterns after a brief period of training
akin to infant’s habituation.

There is crucial difference between Seidenberg
and Elman’s model and ours. Their network was
trained both in the pre-training and the habituation



phases on a categorization task. Although, that is
perfectly legitimate, there is a striking difference
between the habituation phase in their simulation
and the way infants were familiarized with their
linguistic environment in the Marcus et al.’s
original experiment. Whereas infants were
exposed to strings of syllables that belonged to a
single grammar (e.g., “le di di” and “wi je
je"—ABB), Seidenberg and Elman’s network was
habituated to two sets of strings that conformed to
two  different  grammars (e.g., “le di
di"—ABB—*wi je wi™—ABA). The task then
consisted in the correct categorization of
exemplars into the ABB and ABA categories. Our
network, on the contrary, is trained in both phases
(pre-training and habituation) on a prediction task.
Importantly, the model, like the infants of the
Marcus et al. experiment, is exclusively exposed
to positive examples of ABB strings of syllables
(i.e., all generated by a single grammar).

The fundamental component of our simulation
is the nature of the pre-training environment. The
pre-training environment does not merely consist
of a large set of syllables where the input signal is
generated by the random concatenation of
exemplars in the data set, but, crucially, some
syllable tokens are normally encountered followed
by other tokens that belong to the same
representational type. So, for example, in a
(reduced) ecological context, such as the one
infants encounter in their first months of life,
“ma” and “pa” are very frequently followed by
another “ma” and “pa” exemplar, respectively,
whereas some other syllables (e.g., “the”) may be
followed by almost any syllable in the corpus. In
these simulations we abstract this distinction to its
two extremes and present the network during pre-
training with syllables that are either always
duplicated or never duplicated. These first-order
correlations in the environment amount to sub-
regularities that can be exploited by the network
in a semi-deterministic prediction task.* This is
how a SRN can be pre-trained on a prediction
task, bypassing some of the problems faced by
Seidenberg and Elman’s categorization-based
solution.

So what do the networks learn from pre-training
that helps them abstract the regularities in the

* The assumption that syllables are not concatenated in
a purely random fashion is empirically justified. Notice
that infants start to babble at the age of 6-months. The
linguistic stream they encounter as input is thus made
up of the combination of their natural environment
(with the existing first-order correlations among
syllable sets) plus the babbling repetitions uttered by
themselves.
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habituation task? One possibility is that networks
need to develop consistent and coherent
representations for the syllables in the corpus (the
words in Marcus’ habituation) in order to more
effectively encode the patterns seen during the
short habituation phase. This possibility is
weakened, however, by the fact that networks pre-
trained in a corpus made out of syllables but
containing no additional structure in terms of
duplication, do not perform better than the
networks that receive no pre-training at all. A
second possibility is that during pre-training the
networks learn to represent something general
about duplication, in other words, sameness. This
abstraction could be crucial in encoding the
patterns during the habituation phase. This could
explain the apparent advantage of networks in
dealing with ABB patterns compared to ABA
patterns — duplication is a part of ABB and could
be used to encode it more efficiently. This
advantage of ABB patterns, then, may disappear if
the networks are trained on a corpus containing
longer distance dependencies.

Interestingly, the networks predict differences
between ABA and ABB patterns that may fall
from the nature of short-term vs. long-term
memory. Networks learn ABB patterns faster than
ABA patterns and habituate faster to ABB than
ABA patterns. We are currently working on an
extended model that differentiates short-term
(habituation) and long-term (pre-training) memory
and concurrently testing these predictions in 7-
month-old infants. By combining these
simulations with empirical testing of their
predictions we hope to shed light on the
mechanisms involved in this phenomenon.

Conclusion

The research reported here shows how Marcus’
challenge can be met while avoiding the positing
of rule-fitting patterns of behavior (allegedly
required to constrain novel data). In our view,
Marcus correctly points out that “Seidenberg and
Elman do not give an account of how the
supervisor’s rule could itself be implemented in
the neural substrate” (2001, p. 65). The teaching
signal of a fully supervised categorization task is
not ecologically grounded. In our self-supervised
prediction task, that’s not an issue. Activation-
based signals in a prediction task are not to be
interpreted in terms of rule-implementation. The
teaching signal exploited is an activation state of
experience. As McClelland emphasizes with
regard to the ecological plausibility of this type of
signals: “the brain is constantly generating
expectations and the discrepancies between these
expectations and subsequent outcomes can be



used for error-driven learning” (from O’Reilly and
Munakata, 2000). The network encodes the
existing statistical regularities with no need to
process algebra-like information. Our working
hypothesis is that infants make use of
discrepancies based on expectations to make
successful predictions.

Marcus (2001) claimed that connectionist
networks would lose their empirical adequacy
unless they implemented a classical architecture.
Marcus’ infant data is accounted for in statistical
terms— without the positing of devices that store
particular values of variables to perform variable
bindings, such as register sets, or other classical
resources. The charge of implementation is
therefore not applicable to our results, since the
ecologically grounded prediction task of the
networks does not incorporate universally open-
ended rules.
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