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Abstract
In theories of cognition that view the
mind as a system of interacting agents,
there must be mechanisms for aggregate
decision-making, such as voting. Here we
show that certain voting procedures
studied by socia scientists can beimple-
mented as recurrent neural networks. For
example, a standard "winner-take-all"
network can determine which of a
number of competing alternatives garners
aplurality of votes. Similarly, inthe
special case where voters share amodel
governing the different rankings of
aternatives, the Borda procedure can
easily be computed. In the face of voter
un-certainties, this Borda network returns
the maximum likelihood choice.

1.0 Introduction
Information aggregation in neural
networksisaform of collective decision-
making. The winner-take-all procedureis
probably the most favored method of
picking one of many choices among a
landscape of alternatives (Hopfield &
Tank, 1986; Maas,2000.) In the socia

sciences, thisis equivalent to choosing the

pluraity winner, which is but one of a
host of procedures that could be used to
choose winners from a set of alternatives.
More importantly, in the presence of
uncertainty about choices, the plurality
winner is not the maximum likelihood

choice (Young, 1995.) To obtain aglimpse
into some of the problems associated with

winner-take-all outcomes, consider the
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analogy where the input landscapeisa
population of voters. Let the number of
voters sharing the same opinions
correspond to the input weightsin a
neural network. Then the plurality winner
- that outcome shared by most of the
voters -- only needs to receive more votes
than any other alternative in the choice
set. Hence it is possible for the winner to
garner only avery small percentage of
the total votes cast. In this case,
uncertainty and errorsin opinions can
have a significant impact on outcomes,
such as when only afew “on-the-fence”
voters switch choices. We sketch two
other procedures that yield more reliable
and robust winners. These procedures
utilize information about relationships
among alternatives.

2.0 Plurality Voting

To provide background, the
winner-take-all procedureisrecast asa
simple voting machine. Let the number of
voters vi sharing the same preference for
awinner be inputsto the nodes in the
network. Then the outcome will be

pluraity winner = argMax(i) {vi} [1]

which can be found using arecurrent
network whose dynamics is described
elsawhere (Xie, Hahnloser & Seung,
2001 )

3.0 Borda Method
To improve the robustness of
outcomes, we now follow recommen-



dationsin Socia Decison-Making, and
relax the constraint that only first choices
will be considered in the voting process
(Runkel, 1956; Saari & Haunsberger,
1991, Saari, 1998 ) Specificaly, we
include second and third-rank opinions,
weighting these inversely to their rank
when thetally istaken (Borda, 1784.) To
further smplify the computation and
network design, we assume that the
aternative choices are related by a model
Mn that is held in common by al voters.
Thismodel relates the n alternatives under
consideration by their smilarity to one
another.

The shared model M n can be
represented either asagraph, or asa
matrix Mij. If Mn isrepresented asa
graph, the vertices would correspond to
the alternatives, and the edgesij join nodes
that share a common property. (See Fig. 1
for an example.) If ak isavoter’ sfirst
choice, then the second choices will be
those alternatives one edge-step from ak
in Mn. The result isthat the total of m
voters can now be divided into n different
types, identified by their first choice
selection.

If the shared model Mnis
represented as a matrix Mij, the entry “1”
indicates the presence of the edgeij, and 0
otherwise (Harary,1969). For the
graphical model of Fig 1, we would have:
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For smplicity, we assume that the edges of
Mn are undirected, meaning that if
aternative al issimilar to alternative a2,
then a2 isequally similar to al. However,
directed edges require only atrivial

voters respect Mn in their ranking of
choices, as we specify here, then the
effective role of Mn isto place conditional
priors on the choice domain. Each voter's
ranking of alternativesisnow not arbitrary,
but is also reflecting information about
choice relationships (Richards et a, 1998.)

With M n expressed as the matrix
Mij we can include second choice opinions
in atally by defining a new voting weight
V*i as

Vi = {2vi + 2 Mijvj } [3]

where now first-choice preferences are
given twice the weight as second-ranked
choices, and third or higher ranked
options have zero weight. The outcomeis
then

winner_Borda = argMax(i) {v*i} [4]

The neural network required to execute
thistally isshownin Fig 1. Itisasmple
modification of the standard winner-take-
al network, with adoubling of the input
weights from each excitatory node to its
recurrent partner (double arrows), and
with single excitations to non-partner
nodes that are adjacent in the model Mn.
(The recurrent layer does not show all the
recurrent connections.) For the inputs vi
given in the model M n, the Borda winner
isnode 3. Note that the more common
winner-take-al plurality procedure would
pick node 1.

4.0 Robustness

Figure 2 shows the benefit of the
Borda procedure over classical winner-
take-al plurality methods, when some
information about alternativesin the
domain is known. The models M n used
were connected random graphs with edge
probability 1/2. (See Richards et al, 2002

modification to our scheme. Notethat if all for more details.) A set of weights on the
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nodes was chosen from a uniform
distribution. Winners were calculated using
both the Plurality and Borda procedures
for the same set of weights. Then each of
these weights were diddled by picking the
second weight from the interval 0.5t0 1.5
of thefirst. The graph shows the percent
of time the first and second winners were
the same vs the number of alternativesin
Mn. (There are over 100 trials per data
point.) For the Borda (B) procedure, even
for n = 48, the changes of weights (or
voting strengths) only affected 20% of the
outcomes, whereas for the maximum
weight, Plurality procedure (M), over 70%
of the outcomes differ. Not surprisingly,
the Borda and Plurality winners are
increasingly different as n increases, with
only 2% agreement for n=48 (solid
circles)

5.0 Other Voting Procedures

Our Borda Count used only first
and second choice preferencesin the tally,
with respective weightings of 2 and 1
times the voter type’'s own weight. Let
thisbias berecast asavector {1, 1/2,0},
where the O is the weight applied to all
preferences ranked after second choices.
Thenitisclear that the bias for the
Plurality method is{1,0,0}. Y et another
procedure would be to vote for the “top
two” choices, using the bias vector
{1,1,0}. More generaly, the Borda bias
vector canbeseenas{1, b, c} withO<b
<landc=0for our smplified
preference rankings. Hence the Top-Two
and Plurality procedures are extremes of a
generalized Borda count.

Another obvious manipulation isto
increase the depth of the preference
ranking, thereby incorporating more
information about the relationships among
aternatives. As mentioned, for the
standard Borda method, the elements of
the bias would then be integersinverse to
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the depth of the rankings. A still different
procedure that also incorporates more
infor-mation than the generalized Borda
method is to conduct a tournament, where
alternatives are compared pairwise. The
winner isthen that alternative that beats
all others. Note now there is no need to
decide valuesfor “b” in the Borda bias
vector. Thisisthe Condorcet Method
(Condorcet, 1785.)

Definition: let dij be the minimum number
of edge steps between verticesi and | in

M n, where each vertex corresponds to the
aternatives ai and g respectively.

Then a pairwise Condorcet score Sij
between dternatives ai and g is given by

[5]

with the sign positive for the alternative ai
or g closer to ak.
A Condorcet winner is then

Sij=S | vk sgn[ dik - dik]

winner_ Condorcet =
ForAlliz Sij > 0. [€]

Although a Condorcet winner isatrue
majority outcome, it comes at a
computational cost. For n aternatives, a

complete pair-wise comparison would require

(n|2)or O(nN"2) separate tallies. Hence a
neural network that calculates the Condorcet
winner is more complex than that for the
Borda winner. However, if the voting is
constrained by a shared model Mn, or its
equivalent Mij, Smulations using a Borda
bias vector of {1, 0.5, 0} show that about
90% of the time, the Borda and Condorcet
winners will agree if Mn resembles arandom

graph.



6.0 Discussion

Biological neural networks are not
arbitrary, and presumably the form of
their organization incorporates knowledge
about the domain of interest. When
information about the choice domainis
available and used, then significant
improvements in performance can be
achieved with networks that implement a
simple version of the Borda method. The
Borda network’ s resistance to pertur-
bation in the weights on inputsis
demonstrated here. Preliminary studies
show that a Borda network will also be
robust to small inconsistenciesin the
shared model Mn.
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Fig. 1: Borda count network for shared model M
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Fig. 2 Percent different Winners with mean weight variation of 50%





