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Abstract

In certain statistical learning problems, a pol-
icy of choosing simpler rules that account
fairly well for data is likely to have less error
on new cases than a policy of choosing com-
plex rules that have less error on the data.
The relevant kind of simplicity is not to be
measured in terms of the number of param-
eters needed to specify a given member of
a class of rules but might be measured in
terms of the VC dimension of such a class.
The rationale for using simplicity so mea-
sured can be extended to allow simplicity
to decide among empirically equivalent hy-
potheses. The extended rationale provides
reasons of simplicity to reject certain sorts of
philosophical skepticism.

Introduction

An inductive inference infers a conclusion in order
to account for data, where data plus background as-
sumptions do not guarantee the truth of the conclu-
sion. We are here concerned with the special case in
which the inductive conclusion is a generalization or
other sort of general hypothesis or rule that might
explain the data. We are not concerned with “trans-
ductive inference” directly to a classification of a new
example without finding a general rule (Vapnik, 2000,
p. 293).

It is characteristic of inductive generalizations
that, even when the data are consistent with each
other, competing generalizations or general hypothe-
ses or rules would account equally well for the data.
An adequate theory of inductive generalization must
specify a criterion for selecting preferred hypotheses
from among the competing possibilities. To specify
such a criterion is to address what Goodman (1965)
calls the new riddle of induction.

One form of the new riddle of induction is the
curve fitting problem: given a number of data-points
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for a function, what curve should be inferred? It is
sometimes suggested that one should infer the sim-
plest curve that fits the data, or, more precisely, that
inductive generalization must balance considerations
of data-coverage against considerations of simplicity.

If so, we need an account of the sort of simplicity
that plays or could legitimately play such a role in
inductive reasoning.

Simplicity

Distinguish two goals for an account of simplicity in
this sense. One is to account for the sorts of simplicity
people actually use in inductive generalization. An-
other is to say what sorts of simplicity it is reasonable
to appeal to in inductive generalization.

To use simplicity in this way in inductive reason-
ing is not to assume the world is simple. The issue
is comparative simplicity. Induction favors a simpler
hypothesis over a less simpler hypothesis that fits the
data equally well. Given enough data, that preference
can lead to the acceptance of very unsimple hypothe-
ses.

Various conceptions of the relevant sort of sim-
plicity have been proposed.

1. A simpler theory is a theory that minimizes en-
tities, or kinds of things, or unexplained events.

2. A simpler theory is a theory that is simpler
to state, with a relatively minimal description
length.

3. A simpler theory is a theory that is simpler or
easier to use for practical or theoretical pur-
poses.

4. A simpler theory is one that is chosen from a
class of hypotheses with relatively few parame-
ters.

5. A simpler theory is one that is chosen from
a class of hypotheses with a smaller VC-



dimension, where VC-dimension is a measure
of the “richness” of the class. (Roughly speak-
ing, the richer a given class of hypotheses is,
the harder it is for there to be data that is not
captured by one of the hypotheses in the class.
See, e.g., Hastie et al., 2001, pp. 210-13.)

Distinguish explicit and implicit appeals to sim-
plicity in science. Explicit appeals to simplicity are
often controversial (Sober, 1988, 1990), whereas im-
plicit reliance on simplicity is commonsensical. Given
as data that all jonars examined so far have been
green and the absence of any special considerations,
anyone would take seriously the hypothesis that all
jonars are green and no sane person would take se-
riously the hypothesis that all jonars are grue, that
is: either green if examined before noon tomorrow,
or blue if not so examined (Goodman, 1965).

Someone might explicitly argue for one rather
than another hypothesis on the grounds that the first
appeals to fewer entities or kinds of entity, or allows
for fewer unexplained events than the other. Such
explicit appeals to simplicity are used to distinguish
among hypotheses that are being taken seriously. Im-
plicit appeals to simplicity occur when hypotheses
that are simpler in certain respects are just not taken
seriously. We are here concerned with the latter sort
of relative simplicity, which distinguishes hypotheses
taken seriously from hypotheses not taken seriously.

Simplicity and the Matrix

Philosophers sometimes discuss whether you have any
reason to reject certain parasitic skeptical hypotheses,
for example, the hypothesis that you are a brain in a
vat programmed in such a way as to have the sorts of
experiences of someone in (what you take to be) the
ordinary world, an issue illustrated in the movie, The
Matriz (Wachowski and Wachowski, 1999). Do you
have any reason to think you are not in the Matrix?

The philosophical brain-in-a-vat hypothesis, BIV,
is parasitic on your ordinary hypothesis OH because
BIV says that your experience has been and will be
what would be expected if OH were true. So, in or-
der to use BIV to predict or explain experience, you
are first to figure out what OH predicts or explains
and use that explanation enclosed in a wrapper: it’s
as if OH, OH predicts or explains E, so that’s why
E. So, there is a sense in which BIV is less simple
than OH.

Does the relative simplicity of OH as compared
with BIV make OH more reasonable to accept than
BIV? The answer depends on what reasons there ever
are, if any, to accept simpler rather than more com-

40

plex hypotheses. We here sketch a well-known result
in Statistical Learning Theory. In certain cases, a
policy of hypothesis selection that favors simpler hy-
potheses over less simple hypotheses reduces predic-
tive error in new cases.

Although that result seems to apply only to uses
of simplicity to distinguish hypotheses that make dif-
ferent predictions about new cases, we will suggest
that it may also be applicable to distinguishing em-
pirically equivalent hypotheses like OH and BIV.

Policies

Reichenbach (1938, 1949, 1956) suggests that the
problem of justifying induction is the problem of jus-
tifying certain inductive policies. There is no way
to prove that the conclusion of a particular induc-
tive inference must be true or even probable. That
is what distinguishes induction from deduction. But
it is possible to prove important results about induc-
tive policies. Reichenbach’s particular approach leads
to “formal learning theory” concerned with “learning
in the limit” (Putnam, 1963; Solomonoff, 1964; Gold,
1967; Blum and Blum, 1975; Jain et al., 1999; Kelley,
1996; Kulkarni and Tse, 1994; Kulkarni and Zeitouni,
1991, 1995; Schulte, 2002).

More statistical approaches to pattern recognition
and statistical learning are also concerned with prov-
ing results about policies (Vapnik, 2000; Hastie, et
al., 2001).

Simplicity and Data

A good inductive reasoner does not always just accept
the simplest rule that fits the data perfectly, because
the situation may be ineliminably stochastic and in
any event the data will be noisy because of measure-
ment errors, etc.

For example, consider a classification problem in
which we must choose a decision rule from a certain
class of rules, a rule that will divide new items into
two groups, yes and no, based on their observed fea-
tures, where we assume there is an unknown prob-
ability distribution determining what items we see,
what features they have, and whether they are yes
examples or no examples. We have some data with
correct classifications (training data).

The best decision rule will be the one with the
lowest expected error (assuming that errors of one
sort—false positives—are no worse than others of the
other sort—false negatives.) We want to find a rule
whose expected error rate is as close as possible to
the best decision rule.



In this context, it is important to avoid “overfit-
ting” the data. Given a choice between a more com-
plex rule that perfectly fits the data and a simpler rule
that gives a good approximation, the simpler rule is
likely to have less error with new cases. (Forster and
Sober, 1994, forthcoming.)

Of course, data cannot be ignored. The point is
that good inductive practice balances simplicity of
rule against error in the data.

Ordering Issues

How are rules to be ordered in terms of simplicity?
Distinguish two sorts of simplicity ordering. Rules
can be well-ordered, for example, by length of formu-
lation (with rules of the same length ordered alpha-
betically). Or rules can be placed in classes which are
well-ordered, e.g. in terms of the number of param-
eters needed to pick out a particular member from
a given class or in terms of the VC-dimension of the
class (a measure of the richness of the class of rules
in terms of ability to find a rule that fits the data).

The second approach, in which classes of rules are
well-ordered can allow for nondenumerably many hy-
potheses. For example all linear hypotheses of the
form f(z) = ax + b can be included in one of the
classes, allowing the parameters a and b to range
over all real numbers. And, even if only denumerably
many hypotheses are considered, such as those that
can be expressed in some favored notation, those hy-
potheses need not themselves be well-ordered. If the
infinitely many linear hypotheses are ordered before
the infinitely many quadratic hypotheses, the order-
ing is not a well-ordering.

Using simplicity of representation as a measure
of simplicity is affected by what system of represen-
tation is chosen. Any particular hypothesis can of
course be given an arbitrarily simple representation.
Goodman (1965) observes that we might define the
predicate grue that applies to something x at a given
time ¢ if and only if, either x is examined for color
prior to noon tomorrow and is green at t, or x is
not examined for color prior to noon tomorrow and
is blue at ¢t. This allows the bizarre hypothesis men-
tioned earlier to be represented as “All jonars are
grue,” which is as simple as “All jonars are green.”
Indeed, any rule can be represented with a single sym-
bol.

Remember, however, that the issue has to with
inductive policies. A policy that measures the sim-
plicity of a rule by the length of its representation,
must put restrictions on how rules are to be repre-
sented. Otherwise, all rules would count as equally
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simple and simplicity, so interpreted, could not be
used to distinguish among rules.

Trigonometric Hypotheses

It may seem we can simply fix the system of repre-
sentation ahead of time. But not for all time! Math-
ematics and science regular introduce new concepts
that allow simple statements of what we come to con-
sider simple rules. A rule that appealed to trigono-
metric concepts would require an infinite representa-
tion in a system that allowed only polynomial repre-
sentations of functions. We need to allow the relevant
system of representation to be able to include useful
new notions, such as trigonometric notions (Harman,
1999).

Allowing trigonometric functions creates a prob-
lem for the idea that we should order classes rules in
terms of the number of parameters needed to specify
a particular member of the class. Consider the class
of curves of the form, asin(bz) + ¢. Three parame-
ters are enough to specify a particular function from
this class. But, however many data points there are,
it will almost always be possible to find some sine
curve of this form that goes through every one of the
points. The problem is that the sine curve can have a
very high frequency. But in general it is not rational
always to prefer a sine function from that class over a
polynomial in a class of functions requiring four pa-
rameters to be specified.(The difficulty here is that
the class of sine curves has infinite VC-dimension.)

These issues are discussed in Statistical Learning
Theory, which examines the likely predictive success
of procedures for choosing rules of classification, given
relatively minimal assumptions. There are many use-
ful results. (Vapnik, 2000; Hastie, et al., 2001).

Empirically Equivalent Rules

Suppose two hypotheses, H and D, are empirically
equivalent. For example, where H is some highly re-
garded scientific hypothesis, let D be the correspond-
ing demonic hypothesis that a powerful god-like de-
mon has arranged that the data you get will be ex-
actly as expected if H were true. Could simplicity
as analyzed in Statistical Learning Theory provide a
reason to accept H rather than D?

One might suppose that the answer is “no”, be-
cause the kinds of analyses provided by Statistical
Learning Theory concern how to minimize predictive
error and these hypotheses make exactly the same
predictions. Indeed, if we identify the hypotheses
with their predictions, they are the same hypothesis.

3



But it isn’t obvious that hypotheses that make
the same predictions should be identified. The way
a hypothesis is represented suggest what class of hy-
potheses it belongs to for purposes of assessing sim-
plicity. Different representations suggest different
classes. Even mathematically equivalent hypotheses
might be treated differently within Statistical Learn-
ing Theory. The class of linear hypotheses, f(z) =
ax+0b, is simpler than the class of quadratic hypothe-
ses, f(x) = ax®+bx+c, on various measures—number
of parameters, VC-dimension, etc. If the first param-
eter of a quadratic hypothesis is 0, the hypothesis
is mathematically equivalent to a linear hypothesis.
But its linear representation belongs to a simpler class
than the quadratic representation. So for purposes
of choice of rule, there is reason to count the linear
representation as simpler than the quadratic repre-
sentation.

Similarly, although H and D yield the same pre-
dictions, they are not contained in the same hypoth-
esis classes. H falls into a class of hypotheses with a
better simplicity ranking than D, perhaps because
the class containing H has a lower VC-dimension
than the class containing D. The relevant class con-
taining D might contain any hypothesis of the form,
“The data will be exactly as expected as if ¢ were
true,” where ¢ rangers over all possible scientific hy-
pothesis. Since ¢ has infinite VC-dimension, so does
this class containing D. From this perspective, there
is reason to prefer H over D even though they are
empirically equivalent.

So, we may have reason to think that we are not
just living in the Matrix!
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