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Abstract

Rumelhart & Zipser's (1986) competitive learning
algorithm is an account of unsupervised learning and, as
such, might be considered a potential model of free
classification behavior in humans. However, selective
learning effects (e.g. Dickinson, Shanks & Evenden,
1984) suggest that human learning, at least under
conditions of feedback, may be better characterized by
an error-correcting system. An experiment is reported
that provides preliminary evidence for the existence of a
selective learning effect in free classification.
Simulations indicate that Rumelhart & Zipser's algorithm
does not provide an adequate account of the behavior
observed, whilst an error-correcting variant of
competitive learning does.

Introduction
Free classification, or free sorting as it is also called, is
a procedure in which human participants are presented
with a set of stimuli and are asked to group them in any
way that seems sensible or reasonable to them (e.g.
Bersted, Brown & Evans, 1969; Regehr & Brooks,
1995; Wills & McLaren, 1998). It may be contrasted
with the more standard experimental task of category
learning via trial-specific feedback that has been the
dominant mode of enquiry into humans' categorization
abilities for the last fifty years (e.g. Bruner, Goodnow
& Austin, 1956; Medin & Schaffer, 1978; Wills,
Reimers, Stewart, Suret & McLaren, 2000).

The study of categorization under conditions where
each decision receives immediate feedback from a
totally reliable source has allowed psychologists great
control over the structure of the categories participants
acquire.  As a methodology, it has been successful in
broadening our understanding of the category learning
process. However, the level of feedback available in
such tasks seems higher than that available in many
real-world situations, begging the question of whether
what we have learned about the categorization process
will generalize to situations where the feedback is
absent or scarce.

An interesting parallel may be drawn with the sort of
connectionist systems that have been proposed for
learning in the presence or absence of feedback. For

example, Rumelhart & Zipser's (1986) competitive
learning model is an unsupervised system. It extracts
statistical regularities in the input to form categorical
representations, and does so in the absence of feedback.
In contrast, McClelland & Rumelhart's (1985) model  is
a supervised system. It can be taught multiple
categories (cat vs. dog vs. bagel in their example) but
learns to categorize because each stimulus is
accompanied by an externally-provided category label.

One of the differences between these two models is
the nature of the weight-update algorithms they employ.
McClelland & Rumelhart (1985) employ an error-
correcting algorithm, where the size of the weight
change is proportional to the mismatch between an
external teaching signal and internal inputs. In other
words, learning only occurs when the system fails to
fully predict the teaching signal. Specifically,
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where ∆wij is the change in the strength of the
connection from unit j to unit i, ei is the external
teaching signal to unit i, aj is the activity of unit j, and ii
is the total internal input to unit i, this being calculated
as
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In contrast, Rumelhart & Zipser's algorithm does not
employ error-correction in this sense. Rumelhart &
Zipser use the internal input to determine which unit is
the "winner" and then change weights to the winning
unit by an amount proportional to the difference
between the current weight of that connection and an
asymptote1. Specifically, the change in weight from unit
j to the winning unit is

                                                          
1 Rumelhart & Zipser (1986) also discuss a variant where
connections to the losing unit are also changed via Equation 3,
but with a much lower learning rate. The current article
concentrates on the "winner-only" version, although the
conclusions drawn are valid for both variants.
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where n is the number of active input units, and the
winning unit is the one with the highest internal input. It
is assumed in the current paper that active input units
have an activity of 1 and inactive input units have an
activity of zero.

Error-correction is assumed by some investigators to
be a fundamental aspect of human learning in the
presence of feedback, as evidenced by the phenomenon
of selective learning (see below). If human learning in a
free classification task fails to show evidence of
selective learning, concerns would arise as to the
generality of an empirical research program heavily
based on learning with feedback. On the other hand, if
selective learning is found to occur in free
classification, the sort of unsupervised system proposed
by Rumelhart & Zipser may not be an appropriate
model for free classification behavior.

Selective learning
Probably the best-known example of selective learning
is Kamin's (1969) "blocking" effect. Kamin's study
involved rats but, as will be discussed later, there is
now abundant evidence that corresponding effects can
also be found in human learning (with feedback).

Kamin taught hungry rats that pressing a lever would
result in food. Following this, pressing the same lever
whilst a noise was present resulted in a mild electric
shock. Unsurprisingly, rats learned to not press the
lever whilst the noise was present.

Next, the auditory tone was accompanied by a light
and pressing the lever whilst this tone-light compound
was present also resulted in mild shock. The rats
learned not to press the lever whilst the tone-light
compound was present.

Group Stage One Stage Two Test
Expt. N→Shock LN→Shock L
Ctrl. LN→Shock L

Figure 1: Kamin's (1969) blocking experiment. "N" is
an auditory stimulus and "L" is a visual stimulus.

In the test phase, just the light was presented, and the
rats' behavior observed. The rats in the experimental
condition pressed the lever quite a lot, whilst control
rats (which had participated in stage two but not stage
one) pressed the lever very little indeed. The design of
this experiment is summarized in Figure 1.

The rats in the experimental group appear not to have
learned the relationship between light and shock even
though the control rats, which received an equal amount

of training with the light-noise compound, have learned
the relationship. Why might this be?

A number of animal learning theorists (e.g.
Mackintosh, 1975; Pearce & Hall, 1980; Rescorla &
Wagner, 1972) have essentially argued that it happens
because learning is driven by surprise. For the rats in
the experimental group, the shock is not a particularly
surprising event because it is predicted by the noise.
The rats therefore don't bother to learn about the light in
stage two. Similar effects have been demonstrated with
undergraduates using computer-based tasks, including
simple computer games (e.g. Dickinson, Shanks &
Evenden, 1984), stock market simulations (e.g.
Chapman & Robbins, 1990) and simulated medical
diagnosis tasks (e.g. Gluck & Bower, 1988).

As Rescorla and Wagner (1972) noted, the notion of
surprise-driven learning is well-captured by an error-
correcting learning rule such as the one give in
Equations 1 and 2. In fact, the learning theory they
proposed is basically a variant of this learning rule.

An error-correcting system reproduces the blocking
effect in the following way. For simplicity, consider
that there are three units - the noise unit, the light unit
and the shock unit. The external input produced by the
presence of a stimulus is 1, and the external input
produced by its absence is zero.

Initially, shock is not expected, so the link between
noise and shock, and light and shock, are small. During
stage one of the experiment, the strength of the link
between noise and shock increases and eventually
reaches 1. In the second stage, noise, light and shock
are all present. However, the internal input to the shock
unit is already 1 because of the strength of the link
between the noise and the shock. Therefore, no weight
change can occur via Equation 1. The light does not
become associated with shock, even though it clearly
would in the control condition. Under the non-error-
correcting algorithm given in Equation 3, the
light→shock association would reach an equivalent
level in both conditions.

Experiment
It is reasonably clear from previous research that
humans and other animals engage in selective learning
under conditions of trial-specific, informative feedback.
Do humans also display selective learning in a task
without such feedback? The experiment reported in this
paper represents a first attempt to address this question.

In our experiment, participants had to make up their
own categories, although they were constrained by the
fact they were only allowed two groups. Previous
research demonstrates that category learning can
proceed successfully in the absence of feedback (e.g.
Homa & Cultice, 1984; Wills & McLaren, 1998).



Our participants received intermittent, non-trial-
specific, feedback about their overall level of
performance following every 24 stimuli, in order to
maintain motivation and encourage adoption of the
experimenter-defined categories. We believe that such a
procedure is still properly described as "free
classification" as no single response can be considered
correct or incorrect. Situations where all forms of
feedback are entirely absent are probably almost as rare
outside the laboratory as situations where feedback is
always immediate and trial-specific.

Abstract, novel stimuli were employed in this
experiment as we wished to study category learning
with adult participants - with such participants the
category learning process is probably complete or far-
advanced for most realistic stimuli.

Stimulus presentation was brief and followed by a
mid-gray mask. The time available for a decision was
also very limited. Both of these procedures were
employed to encourage participants to rely on relatively
non-analytic, similarity-based categorization processes,
rather than analytic, rule-based processes.

The basic design of the experiment is shown in Figure
2. The letters A to J each represent sets of features
present in the stimuli shown to participants.

In the first phase of the experiment, participants were
presented with examples from two different categories.
Examples from category 1 were created from a base
pattern that contained feature sets G and H. Examples
from category 2 were created from a base pattern that
contained feature sets I and J. Note that the labels
"category 1" and "category 2" are essentially arbitrary
in a free classification task - they could be reversed
without changing anything in the design or execution of
the experiment.

As Figure 2 illustrates, once the participant had
mastered the GH vs. IJ categorization they were
transferred to a second categorization. Participants
proceeded through all five categorizations in this way,
at which point the experiment was over.

The datum of central importance in this design is the
category to which the first stimulus presented in phase
five is allocated. The first stimulus is chosen because
subsequent decisions in phase five may be
contaminated by learning on previous phase five trials.

Phase 1 2 3 4 5
Cat. 1 GH GE AB AE CE
Cat. 2 IJ IF CD CF AF

Figure 2: Design of the experiment. Letters represent
sets of features, hence category 2 in phase 3 contains

feature sets C and D.

The Rumelhart & Zipser system provides the null
hypothesis for this experiment because it predicts that

either key is equally likely to be used. It is perhaps not
immediately apparent why this should be. To elucidate,
one first needs to note that in each of the first four
phases, all features are equally predictive of category
membership. This means that, for a system such as
Rumelhart & Zipser, in each phase learning should end
with two features (A and E in phase four) being equally
associated to one category representation, and two
features (C and F in phase four) being equally
associated to the other category representation. Hence,
the first stimulus presented in phase five will activate
both category representations equally and so the choice
of which category to place it into must be arbitrary.
This conclusion is confirmed by simulation in a later
section.

Why might one expect anything other than a null
result with this design? One possible reason would be if
people exhibited selective learning in free classification.
Note that, across phases 1 to 4,  E and F only occur in
situations where the information they provide is
partially redundant. In phase 2 the stimuli can be
categorized on the basis of whether they contain G or I
features, a categorization already learned in phase one.
In phase four, the stimuli can be categorized on the
basis of whether they contain A or C features, a
categorization already learned in phase three. Hence,
through analogy to selective learning effects in tasks
with feedback, one might consider that E and F develop
little control over responding.

Method
Due to space limitations, we are unable to report the
pilot studies performed. Reports may be found in
McCooe(2000) and Zwickel (2001).

Participants and apparatus
Sixteen first-year Psychology students from the
University of Exeter participated to fulfil a course
requirement. Participants were tested in groups in a
quiet computer room. Stimulus presentation was on 17"
color monitors connected to Tiny Pentium III PCs
running the DMDX software package (Forster &
Forster, 2000, version 2). Responses were collected via
the left and right CTRL keys on standard PC keyboards.
Participants sat approximately 50cm from the screen.

Stimuli
Each stimulus was made up of 12 small pictures
(hereafter "elements") taken from a set of 72 that have
been used in a number of previous experiments (see
Jones, Wills & McLaren, 1998 for the full set). For any
given stimulus, the 12 elements were randomly
arranged in a square of 3 rows with 4 icons in each row,
and were surrounded by a gray rectangle outline 5.5cm
in height and 4cm in width. Figure 3 shows an example



stimulus. Throughout all five phases, no stimulus
contained more than one copy of any given element.

Figure 3: An example stimulus

Each of the letters A to J in Figure 2 represent a set of
six elements. The assignment of elements to letters was
randomly determined for each of 8 pairs of participants,
with the remaining 12 elements (72 elements - 10 letter
sets x 6 elements per set) being used for practice trials.

In order to control for possible effects of differential
salience of the elements, one participant in each pair
received the stimuli described in Figure 2 whilst the
other received a design where E was transposed with A,
and F was transposed with C. Hence, the putatively
redundant elements were E and F for one member of
the participant pair, whilst they were A and C for the
other member. This means that any preference revealed
in phase five cannot be due to A and C elements being
more salient overall than E and F elements. To aid
clarity, all participant data is reported as if E and F were
the putatively redundant elements.

The stimuli actually presented to participants were
generated by random distortion of the base patterns
described in Figure 2. Each element in a base pattern
was given a 10% chance of being replaced by a
randomly selected element from the other base pattern
(no element occurred more than once in any given
stimulus).

An example may be helpful. To create an AF stimulus
in phase five, the six A elements and the six F elements
were randomly arranged in the four-by-three grid of the
stimulus. Each element was then given a 10% chance of
being replaced by a randomly selected element from set
C or E. This method of stimulus construction produces
training examples which are composed predominately
of elements characteristic of a particular category but
which also exhibit considerable variability.

Procedure
The five phases described in Figure 2 were preceded by
some general written instructions and a brief practice
phase to familiarize participants with the procedure.
The experiment then proceeded in blocks of 24 trials.

On each trial, a stimulus was presented for 800ms and
followed by a mid-gray mask that was presented for
1200ms. If a response was not detected within 2000ms
of stimulus onset, the trial terminated with the message
"You responded too slowly, please speed up!" and the
participant was moved on to the next trial.

Each block comprised the sequential presentation of
24 stimuli, 12 from each of the two categories. At the
end of each block a short message appeared stating the
percentage of correct responses made by the participant
in that block, and that they needed to score more than
80% to proceed to the next part of the experiment.

Clearly, percent correct has a slightly different
interpretation in a free classification task to a task with
trial-specific feedback as the relationship between
categories 1 and 2 and the two response keys is
arbitrary.  Hence, percent correct was computed under
the assumption that category 1 would receive a
particular response, and the resulting number was
subtracted from 100 if it was less than 50.

When a participant's score exceeded 80% they were
moved on to the next phase of the experiment, after
having been presented with the message "You did very
well! You are now entering the next phase". If
participants completed 10 blocks without ever reaching
the 80% criterion they were moved on to the next phase
with the message "You are entering the next phase as
you have been in the last block of this phase".

Results
Consider Figure 2 again. The central null hypothesis we
are attempting to reject is that, in the first trial of phase
five, a participant will be no more likely to categorize
AF using the response typically made to AE in phase
four than the response typically made to CF in phase
four. Similarly, they will be no more likely to
categorize CE using their typical AE response than their
typical CF response.

Of the 16 participants tested, 12 used the same
response key for CE that they had typically used for CF
(or the AE response key for an AF stimulus). Three
participants showed the opposite response, using the CF
key for an AF stimulus or the AE key for a CE
stimulus. The remaining participant could not be
described as having a preference for any in key in
response to AE or CF as they scored exactly 50%
across phase four. Treating this participant in the
manner that makes it hardest to reject the null
hypothesis, we can state that at least 12 participants
emitted the CF→CE (or AE→AF) response, whilst no
more than 4 participants emitted the opposite response.
Given the null hypothesis would predict 8 responses of
each type, the probability of the null hypothesis being
correct is smaller than 0.05, χ2(1) = 4.0. The effect is
also significant with an exact binomial test.

Participants completed a mean of 5.88 blocks in phase
one, 4.13 blocks in phase two, 6.12 blocks in phase
three, 5.75 blocks in phase four, and 5.56 blocks in
phase five.  The number of participants failing to
achieve more than 80% correct in the five phases were
6, 3, 7, 7 and 7 respectively.



Discussion
The results of the current experiment appear to be
problematic for those that would attempt to explain free
classification behavior in terms of the competitive
learning algorithm of Rumelhart & Zipser (1986). The
model predicts no preference for which of the two
categories developed in phase four are used to
categorize the first stimulus in phase five, yet a clear
preference was observed. The direction of the
preference is that predicted if one assumes the presence
of selective learning in free classification

One possible defense of the Rumelhart & Zipser
algorithm is that its predictions were derived for a
situation where learning in each phase is essentially
complete before the next phase begins. Given the
relatively high numbers of participants failing to reach
criterion, it might reasonably be argued that asymptotic
predictions are not appropriate. Does this make a
difference? This is one of the questions addressed in the
following section.

Modeling
We employed simulation techniques to more
thoroughly investigate whether Rumelhart & Zipser's
(1986) competitive learning algorithm could accurately
reproduce the categorization preference observed in our
experiment. To this end we set up a network with 72
input units (one for each element) and 2 output units
(one for each category). Each input unit had a forward
connection to each output unit, and the connection
weights were initialized to small, random values.

One network simulation was performed for each
participant in the experiment, with weights being
initialized for each participant. The nature of the stimuli
presented to a simulated participant, and the order in
which they were presented, were determined by the
specific stimuli presented to a corresponding human
participant. After the presentation of each stimulus, the
winning category node was determined in the same
manner as Rumelhart & Zipser (1986). In other words,
it was determined by calculating the total internal input
to each unit, and selecting the unit with the larger total.
The weights from each of the input units to the winning
category unit were then updated in accordance with
Equation 3. The weights of the losing unit remained
unchanged.

The value of η (the learning rate) employed by
Rumelhart & Zipser was 0.05. At this value, no
preference in the categorization response to the first
stimulus in phase five was found. Six simulated
participants made CF→CE or AF→AE responses
whilst six made the opposite response. The nature of the
response made by four simulated participants could not
be determined because in phase four they employed
both category nodes equally for both stimulus types.

Hence, unlike the human participants, the networks did
not display a categorization preference in phase five.

The Rumelhart & Zipser (1986) algorithm was
applied to our data with a wide range of learning rates
(0.001 to 0.009 in steps of 0.001, 0.01 to 0.09 in steps
of 0.01, and 0.1 to 0.9 in steps of 0.1). In no case did
the algorithm display a categorization preference in
phase 5.

An error-correcting competitive algorithm
We also attempted to simulate our result using an
algorithm that combined the error-correcting principle
of Equations 1 and 2 with the basic properties of the
competitive learning algorithm of Equation 3. On any
trial, the winning unit was determined in the same
manner as the Rumelhart & Zipser model. The weight-
update algorithm employed on each connection from an
input unit j to the winning unit was
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for connections from active input units and

( )
m
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for connections from inactive input units. In these
equations, η is the learning rate, i is the total internal
input to the winning unit, n is the number of active
input units and m is the number of inactive input units.
The weights from input units to the losing unit are not
changed. This chimera of an algorithm is not equivalent
in behavior to either of its components but does
preserve some of the properties of each.

Removing the weight update algorithm of Equation 3
from our previous simulation, and replacing it with the
algorithm described in Equations 4 and 5, we find a
dramatic change in behavior. Now, at a learning rate of
0.05, all 16 simulated participants make CF→CE or
AF→AE responses. In other words, the simulation now
reproduces the behavior observed in our human
participants, although the overall level of learning is
slightly higher in our simulation. A reliable preference
is found for a wide range of learning rates - from 0.01
to about 0.4.

Conclusion
The experiment reported in this paper provides
preliminary evidence that the ubiquity of selective
learning effects in tasks with immediate, trial-specific
feedback extends to some categorization tasks where
feedback is scarce and not trial-specific. To the extent
this phenomenon is found to be general to free



classification tasks, it casts some doubt on the adequacy
of certain types of competitive learning algorithms as
accounts of free classification behavior. In particular, an
algorithm suggested by Rumelhart & Zipser (1986) was
found to have difficulty in reproducing the results
found. We suggest that a competitive algorithm which
includes some aspect of error-correction may be a more
appropriate account. One simple algorithm of this type
was described, tested, and found to be able to reproduce
our results.

The two main avenues of future research suggested by
the results and simulations in this paper are a)
investigation of the generality of selective learning
effects in free classification, b) consideration of
whether other unsupervised systems (e.g. Adaptive
Resonance Theory, Grossberg, 1976) are capable of
accounting for the results so far found.
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