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Abstract

We report 4 studies which show that there are systematic
quantitative patterns in the way we reason with
uncertainty during causal and counterfactual inference.
Two specific type of uncertainty — uncertainty about
facts and about causal relations — are explored, and used
to model people’s causal inferences (Studies 1-3). We
then consider the relationship between causal and
counterfactual reasoning, and propose that counterfactual
inference can be regarded as a form of causal inference
in which factual uncertainty is eradicated. On this basis
we present evidence that there are also systematic
quantitative patterns underlying counterfactual, as well
as causal, inference (Study 4). We conclude by
considering the consequences of these results for future
research into causal inference.

Introduction

The ability to make causal inferences is of central
importance to cognitive agents wishing to control or
predict events in the world. However, many of our
beliefs are held with less than perfect certainty. Given
this, it is natural to enquire about the way in which
uncertainty affects the process of reasoning about the
world. In this paper we examine the way in which two
types of uncertainty — uncertainty about facts and
uncertainty about causal relations — are assimilated
during the process of causal and counterfactual
inference. Studies 1-3 reveal that there are systematic
quantitative patterns in our treatment of uncertainty in
causal inference, suggesting that our understanding of
causality is not inherently deterministic as has recently
been proposed (Goldvarg & Johnson-Laird, 2001). We
then consider the relationship between causal and
counterfactual inference, and show that modified forms
of the models which can be used to predict causal
inference can be used to predict counterfactual
inference (Study 4), a result consistent with theories
which treat counterfactuals as supervenient on causal
knowledge (Pearl, 2000; Yarlett & Ramscar, in press;
Jackson, 1977). We conclude by considering the
consequences of these results for future research into
causal and counterfactual inference.

Causal Inference and Uncertainty

We make a causal inference when we acquire some new
evidence about a cause, and on this basis update our
beliefs about effects related to that cause. For example,
imagine you meet Tom at a party. During your brief
conversation, he says and does certain things that make
you think he is an Army Officer, although you’re not
completely certain about this. As a result of this
suspicion you might now think it more likely that Tom
is able to fire a pistol and abseil, compared to when you
first met him. Your beliefs about Tom have changed as
a result of causal inference.

When it comes to making causal inferences, two
types of uncertainty are especially important: factual
uncertainty and causal uncertainty. Factual uncertainty
arises simply because our experience of the world is in
many cases insufficient to allow us to be completely
certain about our beliefs. For example, Tom’s
extensive knowledge of firearms and military strategy,
as displayed in your conversation, might make you
suspect that he is in the Army. But you are nevertheless
aware that you could be wrong about this. Therefore
there is some factual uncertainty in your belief that Tom
is in the Army.

The second type of uncertainty relevant to making
inferences about the world is causal uncertainty. This
arises because although there are systematic regularities
in the world, these rarely obtain without exception. For
example, we all agree that clouds cause rain, even
though rain does not invariably fall when it is cloudy;
and we would probably also concur that smoking
causes cancer, although we know that not all smokers
contract cancer.  Causal uncertainty, then, arises
because of our awareness that although events of type A
may tend to produce events of type B, it is not the case
that As are always or invariably followed by Bs.

Although it seems intuitively plausible that both
factual and causal uncertainty should play a role in
determining our causal inferences, to our knowledge
very little empirical work has explored this issue. Some
previous work has found an effect of factual uncertainty
in both deductive (Stevenson & Over, 1995; Byrne,
1989) and causal (Cummins et al., 1991) settings, but



none of these studies examined the systematic effects of
factual uncertainty from a quantitative perspective.
And although it seems reasonable to assume that causal
uncertainty plays a role in causal inference and
reasoning — and indeed, many recently proposed
theories (e.g., Cheng, 1997; Pearl, 2000) and models
(Rehder, 1999; Yarlett & Ramscar, in press) concerned
with causal reasoning successfully make this
assumption — it is by no means uncontentious.
Goldvarg & Johnson-Laird (2001) have recently argued
that the meaning of causal statements is inherently
deterministic, and more generally, theories of reasoning
which invoke mental models do not easily permit the
accommodation of less than certain inferences (but see
Johnson-Laird, 1994, and Stevenson & Over, 1995).
The present series of studies therefore set out to
investigate whether factual and causal uncertainty play
a role in the process of causal inference and, if so,
whether they do so in a systematic fashion.

Study 1

Study 1 was designed in order to get ratings about the
causal uncertainty attaching to a specific set of cause-
effect pairs, in order to explore the structure of the
information with which people relate causes and
effects, and also to investigate the information that
might be used in causal inference. People were asked
to rate the causal uncertainty attaching to a range of
cause-effect pairs on a range of scales which measured:
(i) how strongly the cause causes the effect; (ii) how
strongly the effect depends on the cause; (iii) the
conditional probability of the effect given the presence
of the cause; and (iv) the conditional probability of the
effect given the absence of the cause. In addition to the
ratings collected, the following ratings were derived
from the conditional probability ratings:

AP Contingency = P(e|c) — P(e|~c)

P(e|c)-P(e|~c)
1-P(e|~c¢)

Power PC =

These quantities have variously been proposed as
measures of the strength of a cause (e.g. Cheng &
Novick, 1992; Cheng, 1997).

Materials and Design. The materials used described
10 different cause-effect pairs. They were selected in
order to cover a wide variety of domains, and included
the following pairs: smoking and cancer; cars and
pollution; stress and insomnia; sunbathing and
suntanning;  weight-training and  muscle-growth;
cholesterol and heart attacks.

Subjects were asked directly about the strength of
relation that they thought held between the pairs in
question. For example, for the smoking-cancer pair, the

Factor 1 Factor 2
(Causal Power) (Baserate)
Causal 0.969 -0.042
P(elc) 0.927 -0.326
Power PC 0.873 -0.481
Dependency 0.699 -0.600
AP 0.664 -0.738
P(e|~c) -0.106 0.982

Table 1: Factor loadings from Study 1.

following questions were used: (i) “How strongly do
you think smoking causes cancer?”; (ii) “How strongly
do you think whether someone gets cancer depends on
whether they smoke?”; (iii) “How likely do you think
someone would be to get cancer given that they
smoke?”’; and (iv) “How likely do you think someone
would be to get cancer given that they do not smoke?”
All ratings were collected on a 0-100 scale. For the
causal ratings the scale was anchored by ‘does not
cause at all’ and ‘always causes’; for the dependency
ratings ‘does not depend at all’ and ‘perfectly depends’;
and for the subjective probability ratings ‘completely
unlikely’ and ‘completely certain’.

Three groups were asked to rate the causal,
dependency, and conditional probability ratings. A
within-subjects design was not used because of
concerns that this would artificially homogenise what
might in reality be different ratings (e.g. being asked to
rate causal, dependency and conditional probability
ratings consecutively might encourage subjects to
simply return similar ratings on all scales).

Participants. 49 students from the University of
Edinburgh participated voluntarily.

Results. A factor analysis (principal-components
analysis with rotated axes) was conducted on the ratings
in order to examine their structure. Only the first two
rotated factors had eigenvalues greater than 1, and these
together accounted for 95.16% of the variance in the
data. The factor loadings are shown in Table 1.

Discussion

The two factors extracted in the factor analysis
successfully explained a large proportion of the
variance in the causal uncertainty ratings collected in
Study 1. Moreover, the extracted factors are readily
interpretable because the causal ratings load very highly
on the first factor (0.969) and negligibly on the second
factor (-0.042), while the P(e|~c) ratings load very
highly on the second factor (0.982) and negligibly on
the first factor (-0.106). Study 1 therefore suggests that
two factors are especially important in accounting for
our representation of causal uncertainty: the causal
strength with which a cause produces its effect (‘Causal
Power’), and the base rate of the effect in the absence of
the cause (‘Baserate’). This suggests that models of



Model Definition

Probabilistic P(elc)P(c) + P(e|~c)P(~c)

Linear P(e|~c) + causes(c,e)P(c)

Noisy-OR 1 —[1 —P(e|~c)][1 — causes(c,e)P(c)]
Causal causes(c,e)P(c)

Dependency depends(e,c)P(c)

Table 2: The models of causal inference.

causal inference should incorporate these two
parameters. This proposal was investigated in Study 2.

Study 2

Study 2 examined the degree to which causal inference
can be modelled using information about factual and
causal uncertainty. The ratings from Study 1 were used
in order to provide information about the degree of
causal uncertainty attaching to the 10 causal pairs,
while new data was acquired concerning their factual
uncertainty. Short scenarios centring around each of
the 10 causal pairs were designed, in which it was
deliberately made unclear whether the cause was
present or absent. These were used to induce factual
uncertainty in participants in the study. For example,
the scenario for the smoking-cancer causal pair ran as
follows:

“Imagine you’re introduced to Bill, a friend of a friend,
one day. You ask Bill for a lighter but he doesn’t carry
one. However, it does look a little as though he might
have tobacco stains under his nails.”

After reading each description, participants were
requested to rate their factual uncertainty, on a 0-100
scale, by being asked how likely they thought it was
that the cause was present given what they had read
(i.e., in this case how likely they thought it was that Bill
was a smoker). They were then asked to make a causal
inference by judging, given their confidence that Bill
may or may not be a smoker, how likely they thought
he would be to contract cancer at some point in his life.
The information collected about factual and causal
uncertainty was then used to parameterise various
models of causal inference, in order to see if the
inferences participants made could be predicted.

Models of Causal Inference

The models of causal inference investigated are listed in
Table 2. The probabilistic model defines the normative
method of inferring the probability of an effect given
information about a related cause. The linear model, in
contrast, states that one’s belief in an effect is the
combination of a base rate of belief — the belief that the
effect is present in the absence of the cause — plus the
extra support that the cause provides for belief in the

effect, which is defined as the product of one’s belief
that the cause is present and the degree to which the
cause and effect are causally related. The noisy-OR
model (Pearl, 1988) treats causes as mechanisms that
operate independently and additively to produce a
common effect. The probability of an effect in this
framework is thus given as the probability that not all
the causes fail to generate the effect.’ Finally, the
causal model predicts that people’s belief in the cause is
a product of the degree to which the cause and effect
are causally related, and the degree to which the cause
is believed to be present. And the dependency model is
similar to the causal model, except that it measures
causal uncertainty using dependency, instead of causal
strength, ratings.

Materials and Design. The cause-effect pairs and
connection ratings from Study 1 were used. In addition,
scenarios for each causal pair were designed in order to
embed the causal relation in a specific context, and
deliberately induce factual uncertainty as to whether the
cause in question was present or not.

A within-subjects design was deliberately
eschewed in Study 2 because of concerns that it could
artificially bring people’s causal inferences in line with
the predictions of the probabilistic model. Many people
are familiar with basic probability theory, and our
concern was that being asked to rate the conditional
probability of the effect given the cause before making
their causal inference (as a within-subjects design
would have required), could force people to reason
about the effect arithmetically, in opposition to their
natural style of reasoning. Accordingly, a between-
subjects design was adopted, in which the causal
uncertainty ratings used were those collected in Study
1, while the factual uncertainty ratings and the causal
inferences themselves, were collected in the present
study.

Participants. Participants were 21 students at the
University of Edinburgh.  All participants were
volunteers, and no reward was offered for participation.

Results. The performance of the models of causal
inference is shown in Figure 1. The probabilistic (r =
0.665, p < 0.05, one-tailed), linear (r = 0.621, p < 0.05,
one-tailed), and noisy-OR (r = 0.711, p < 0.05, one-
tailed) models were all significant predictors of
people’s causal inferences. The causal (r = 0.495, p >
0.05, one-tailed) and dependency (r = 0.268, p > 0.05,
one-tailed) models, however, failed to significantly
predict people’s inferences. A further analysis was also

! Interestingly, the linear and the Noisy-OR models of causal
inference find their counterparts in the AP and Power PC theories of
causal induction respectively (they can be derived as the maximum
likelihood estimates of causal strength parameters in causal graphs
appropriately parameterised; see Glymour, 1998; Tenenbaum &
Griffiths, 2000).
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Figure 1: Results of Study 2.

conducted on the linear and noisy-OR models, because
they could also be parameterised with conditional
probability instead of causal strength ratings. In both
cases, parameterising the models with the conditional
probability of the effect given the presence of the cause,
instead of the causal strength ratings, served to increase
their empirical performance (see Figure 2).

Discussion

The fact that the linear, noisy-OR and probabilistic
models were significantly correlated with the strength
of people’s causal inferences suggests that information
about factual and causal uncertainty plays an important
role in the inference process, and also that there seem to
be domain-general quantitative patterns in the way we
reason from cause to effect. However, the factual and
causal uncertainty ratings and inferences predicted in
Study 2 were between-subjects aggregates. It is
therefore possible that the success of the proposed
models is merely an artefact of the experimental design,
and that the models would prove unable to predict
causal inferences on a within-subjects basis. Study 3
investigated this issue, while also allowing us to
examine how much of the residual error in the causal
models could be attributed to idiosyncratic use of the
rating scales.”

Study 3

Study 3 used a within-subjects design in which people
estimated the factual and causal uncertainty attaching to
each of the 10 cause-effect pairs, and then made a
causal inference about the effect. Because the causal
and dependency models failed to significantly predict
people’s inferences they were dropped from

2 Because Study 2 had shown that the probabilistic model
predicted causal inference with some level of success in a context in
which patterns of causal inference consistent with the predictions of
the probabilistic model could not have been artificially induced, the
use of a within-subjects design was now appropriate.

Figure 2: Effect of changing parameterisation of
Linear and Noisy-OR models.

consideration. Instead we focused on the performance
of just the probabilistic, linear and noisy-OR models.

Materials and Design. The causal pairs and materials
as used in Studies 1 and 2 were again used in this study.
Each subject saw all 10 scenarios, in one of two
reverse-orderings. The linear and noisy-OR models
were parameterised using only conditional probability,
and not causal strength ratings, because of the better
performance of this form of the models in Study 2.

Participants.  Participants were 15 students
enrolled at the Division of Informatics, University of
Edinburgh. All participants were volunteers, and no
reward was offered for participation.

Results. The performance of the causal models is
shown in Figure 3. Both the linear (t =2.280, df = 14, p
=0.038, two-tailed) and the noisy-OR model (t =2.379,
df = 14, p = 0.032, two-tailed) performed significantly
better than the probabilistic model, although there was
no significant difference between the linear and noisy-
OR model (t = 1.302, df = 14, p = 0.214, two-tailed).
The degree of variance explained in the inference
process by just taking into account either the amount of
factual uncertainty, in the form of the p(c) ratings, or
the amount of causal uncertainty, in the form of the
p(e|c) ratings, is also shown in Figure 3 for comparison.
These two models performed significantly worse than
all the other models.

To confirm that both the factual and causal
uncertainty parameters added to the models’ predictive
validity the performance of the linear and noisy-OR
models was compared to modified versions of them in
which (i) factual uncertainty was ignored; and (ii)
causal uncertainty was ignored. The linear model
performed significantly better than its counterpart
which ignored factual uncertainty (t = 2.358, df = 14, p
= 0.017, one-tailed), and marginally better than its
counterpart which ignored causal uncertainty (t = 1.546,
df = 14, p = 0.072, one-tailed). The noisy-OR model
performed significantly better than both its modified
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Figure 3: Results from Study 3.

versions which ignored factual (t = 4.199, df = 14, p <
0.001, one-tailed) and causal (t = 2.049, df = 14, p =
0.030, one-tailed) uncertainty.

Discussion

The results of Study 3 show that quantitative models —
particularly the linear and noisy-OR model — can
successfully predict people’s causal inferences with
some degree of success. Moreover, the results of Study
3 also show that removing information about either
factual or causal uncertainty from these models
significantly decreases their performance, thus showing
that these factors do seem to play an important role in
causal inference.

Causes and Counterfactuals

The studies reported so far examined the role of
uncertainty in causal reasoning. However, there is an
intimate connection between causal and counterfactual
reasoning (c.f. Lewis, 1973b; Jackson, 1977; Pearl,
2000; Yarlett & Ramscar, 2001). In the light of this it
is interesting to examine whether the findings
concerning causality in Studies 1-3 can also be applied
to counterfactual reasoning.

The proposal we examined is that, at least in the
present context, counterfactual reasoning can be treated
as a form of causal reasoning in which residual factual
uncertainty is  eliminated (for treatments of
counterfactual reasoning in more complex systems see
Yarlett & Ramscar, in press, and Pearl, 2000). For
example, imagine that you are fairly sure that Bill is not
a smoker, but that I ask you how likely you think he
would be to contract cancer if (counterfactually) he
were a smoker. Even though there may be some factual
uncertainty in your belief that Bill is not actually a
smoker, there should be no factual uncertainty attaching
to the counterfactual scenario because the
counterfactual asks you to assume, unequivocally, that
he is a smoker. Study 4 investigated this proposal.

Figure 4: Results from Study 4.

Study 4

Study 4 investigated whether quantitative patterns could
be found underlying counterfactual, as well as causal,
inference. The scenarios used in Studies 2 and 3 were
altered so that instead of engendering uncertainty they
were perfectly unambiguous that the cause in question
was absent. Then, instead of being asked to make a
straightforward causal inference, subjects were asked to
consider how strongly they would believe in the effect
if the cause were present.

Materials and Design. The materials used were
adapted forms of the scenarios used in Studies 2-3.
Here is the smoking scenario, with the added
information shown in italics:

“Imagine you’re introduced to Bill, a friend of a friend,
one day. You ask Bill for a lighter but he doesn’t carry
one. However, it does look a little as though he might
have tobacco stains under his nails. 7t later turns out that
Bill is not a smoker; in fact he’s never even smoked a
cigarette in his life.”

Subjects were then asked to rate “But if Bill were a
smoker, how likely do you think he would be to get
cancer at some point in his life?”. Data was collected
using a between-subjects design, as used in Study 2.

Participants. Participants were 23 students at the
University of Edinburgh.

Results. The results of Study 4 are shown in
Figure 4. The causal model (r = 0.699, df = 8, p < 0.05,
one-tailed), linear model parameterised with causal
strength ratings (r = 0.667, df = 8, p < 0.05, one-tailed),
and noisy-OR model parameterised with either
conditional probabilities (r = 0.589, df = 8§, p < 0.05,
one-tailed) or causal strengths (r = 0.571, df = §, p <
0.05, one-tailed), significantly predicted people’s
counterfactual inferences.




Discussion

The results of this study show that modified forms of
the models used to predict causal inferences can also be
employed in the prediction of counterfactual inferences,
and also that counterfactual inference can be profitably
regarded as a special case of causal inference in which
factual uncertainty has been eradicated. This result is
both consistent with theories which hold that
counterfactuals supervene on causal relations (e.g.,
Jackson, 1977; Pearl, 2000; Yarlett & Ramscar, in
press), and at tension with theories that treat
counterfactual judgements as propositions assigned
binary truth-values (e.g., Byrne, 1997; Byrne & Tasso,
1999; Lewis, 1973). However, given the success of
multiple models at capturing the quantitative patterns in
counterfactual inference exhibited in Study 4, clearly
further work is required to tease the models apart, and
determine whether patterns in both causal and
counterfactual inference can be successfully captured
by the same models.

General Discussion

The 4 studies reported here suggest that both factual
and causal uncertainty play an important role in
determining causal and counterfactual inference, and
furthermore that counterfactual inference can profitably
be regarded as a form of causal inference in which
factual uncertainty is eradicated. = However, one
potential cause for concern is the often considerable
amount of variance left unexplained by the sort of
quantitative models described in this paper. Clearly
more work needs to be done before the role of such
models in describing causal and counterfactual
inference is fully understood. In particular, in future
work we intend to examine whether alternative ways of
measuring causal and factual uncertainty can increase
the explanatory power of the quantitative models, and
also whether additional factors can be imported into the
models to improve their empirical fit (e.g. how many
alternative or preventative causes exist for a specific
cause effect pair being reasoned about; see Cummins et
al., 1991).

Acknowledgements

The authors would like to thank attendees of the
workshop on Causal Learning and Inference in
Humans and Machines at NIPS*2001.

References

Byrne R.M.J. (1989). Suppressing Valid Inferences
with Conditionals, Cognition, 31, 61-83.

Byrmme R.M.J (1997). Cognitive Processes in
Counterfactual Thinking About What Might Have
Been, Psychology of Learning and Motivation, 37,
105-154.

Byrme R.M.J. and Tasso A. (1999). Deductive
Reasoning with Factual, Possible, and Counterfactual
Conditionals, Memory & Cognition, 27(4), 726-740.

Cheng P.W. (1997). From Covariation to Causation: A
Causal Power Theory, Psychological Review, 104(2),
367-405.

Cheng P.W. and Novick L.R. (1992). Covariation in
Natural Induction, Psychological Review, 99(2), 365-
382.

Cummins D.D., Lubart T., Alksnis O. and Rist R.
(1991). Conditional Reasoning and Causation,
Memory & Cognition, 19(3), 274-282.

Glymour C. (1998). Learning Causes: Psychological
Explanations of Causal Explanation, Minds and
Machines, 8, 39-60.

Goldvarg E., and Johnson-Laird P.N. (2001). Naive
Causality: A Mental Model Theory of Causal
Meaning and Reasoning, Cognitive Science, 25, 565-
610.

Hadjichristidis C., Stevenson R.J., Over D.E., Sloman
S.A., Evans J.St.B.T., Feeney A. (2001). On the
Evaluation of If p then g Conditionals, Proceedings
of the Twenty-third Annual Conference of the
Cognitive Science Society (pp. 381-386). Lawrence
Erlbaum Associates, Hillsdale, New Jersey.

Jackson F. (1977). A Causal Theory of Counterfactuals,
Australasian Journal of Philosophy, 55, 3-21.

Johnson-Laird P.N. (1994). Mental Models and
Probabilistic Thinking, Cognition, 50, 189-209.

Lewis D.K. (1973a). Counterfactuals, Blackwell,
Oxford, UK.

Lewis D.K. (1973b). Causation, Journal of Philosophy,
70, 556-567.

Rehder B. (1999). A Causal Model Theory of
Categorization, Proceedings of the 21st Annual
Conference of the Cognitive Science Society (pp. 595-
600). Lawrence Erlbaum Associates, Hillsdale, New
Jersey.

Pearl J. (1988). Probabilistic Inference for Intelligent
Systems, Morgan Kaufmann, San Mateo, California.
Pearl J. (2000). Causality: Models, Reasoning, and
Inference, Cambridge University Press, Cambridge,

UK.

Stevenson R.J. and Over D.E. (1995). Deduction from
Uncertain Premises, The Quarterly Journal of
Experimental Psychology, 48A(3), 613-643.

Tenenbaum J.B. and Griffiths T.L. (2000). Structure
Learning in Human Causal Induction, Advances in
Neural Information Processing Systems, 13, MIT
Press, Cambridge, Massachusetts.

Yarlett D.G. and Ramscar M.J.A. (in press). A
Quantitative Model of Counterfactual Reasoning,
Advances in Neural Information Processing Systems,
14, MIT Press, Cambridge, Massachusetts.



