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Abstract 

We report 4 studies which show that there are systematic 
quantitative patterns in the way we reason with 
uncertainty during causal and counterfactual inference.  
Two specific type of uncertainty ñ uncertainty about 
facts and about causal relations ñ are explored, and used 
to model peopleís causal inferences (Studies 1-3).  We 
then consider the relationship between causal and 
counterfactual reasoning, and propose that counterfactual 
inference can be regarded as a form of causal inference 
in which factual uncertainty is eradicated.  On this basis 
we present evidence that there are also systematic 
quantitative patterns underlying counterfactual, as well 
as causal, inference (Study 4).  We conclude by 
considering the consequences of these results for future 
research into causal inference. 

Introduction 
The ability to make causal inferences is of central 
importance to cognitive agents wishing to control or 
predict events in the world.  However, many of our 
beliefs are held with less than perfect certainty.  Given 
this, it is natural to enquire about the way in which 
uncertainty affects the process of reasoning about the 
world.  In this paper we examine the way in which two 
types of uncertainty ñ uncertainty about facts and 
uncertainty about causal relations ñ are assimilated 
during the process of causal and counterfactual 
inference.  Studies 1-3 reveal that there are systematic 
quantitative patterns in our treatment of uncertainty in 
causal inference, suggesting that our understanding of 
causality is not inherently deterministic as has recently 
been proposed (Goldvarg & Johnson-Laird, 2001).  We 
then consider the relationship between causal and 
counterfactual inference, and show that modified forms 
of the models which can be used to predict causal 
inference can be used to predict counterfactual 
inference (Study 4), a result consistent with theories 
which treat counterfactuals as supervenient on causal 
knowledge (Pearl, 2000; Yarlett & Ramscar, in press; 
Jackson, 1977).  We conclude by considering the 
consequences of these results for future research into 
causal and counterfactual inference. 

Causal Inference and Uncertainty 
We make a causal inference when we acquire some new 
evidence about a cause, and on this basis update our 
beliefs about effects related to that cause.  For example, 
imagine you meet Tom at a party.  During your brief 
conversation, he says and does certain things that make 
you think he is an Army Officer, although youíre not 
completely certain about this.  As a result of this 
suspicion you might now think it more likely that Tom 
is able to fire a pistol and abseil, compared to when you 
first met him.  Your beliefs about Tom have changed as 
a result of causal inference. 

When it comes to making causal inferences, two 
types of uncertainty are especially important: factual 
uncertainty and causal uncertainty.  Factual uncertainty 
arises simply because our experience of the world is in 
many cases insufficient to allow us to be completely 
certain about our beliefs.  For example, Tomís 
extensive knowledge of firearms and military strategy, 
as displayed in your conversation, might make you 
suspect that he is in the Army.  But you are nevertheless 
aware that you could be wrong about this.  Therefore 
there is some factual uncertainty in your belief that Tom 
is in the Army. 

The second type of uncertainty relevant to making 
inferences about the world is causal uncertainty.  This 
arises because although there are systematic regularities 
in the world, these rarely obtain without exception.  For 
example, we all agree that clouds cause rain, even 
though rain does not invariably fall when it is cloudy; 
and we would probably also concur that smoking 
causes cancer, although we know that not all smokers 
contract cancer.  Causal uncertainty, then, arises 
because of our awareness that although events of type A 
may tend to produce events of type B, it is not the case 
that As are always or invariably followed by Bs. 

Although it seems intuitively plausible that both 
factual and causal uncertainty should play a role in 
determining our causal inferences, to our knowledge 
very little empirical work has explored this issue.  Some 
previous work has found an effect of factual uncertainty 
in both deductive (Stevenson & Over, 1995; Byrne, 
1989) and causal (Cummins et al., 1991) settings, but 



none of these studies examined the systematic effects of 
factual uncertainty from a quantitative perspective.  
And although it seems reasonable to assume that causal 
uncertainty plays a role in causal inference and 
reasoning ñ and indeed, many recently proposed 
theories (e.g., Cheng, 1997; Pearl, 2000) and models 
(Rehder, 1999; Yarlett & Ramscar, in press) concerned 
with causal reasoning successfully make this 
assumption ñ it is by no means uncontentious.  
Goldvarg & Johnson-Laird (2001) have recently argued 
that the meaning of causal statements is inherently 
deterministic, and more generally, theories of reasoning 
which invoke mental models do not easily permit the 
accommodation of less than certain inferences (but see 
Johnson-Laird, 1994, and Stevenson & Over, 1995).  
The present series of studies therefore set out to 
investigate whether factual and causal uncertainty play 
a role in the process of causal inference and, if so, 
whether they do so in a systematic fashion. 

Study 1 
Study 1 was designed in order to get ratings about the 
causal uncertainty attaching to a specific set of cause-
effect pairs, in order to explore the structure of the 
information with which people relate causes and 
effects, and also to investigate the information that 
might be used in causal inference.  People were asked 
to rate the causal uncertainty attaching to a range of 
cause-effect pairs on a range of scales which measured: 
(i) how strongly the cause causes the effect; (ii) how 
strongly the effect depends on the cause; (iii) the 
conditional probability of the effect given the presence 
of the cause; and (iv) the conditional probability of the 
effect given the absence of the cause.  In addition to the 
ratings collected, the following ratings were derived 
from the conditional probability ratings: 
 

∆P Contingency = P(e|c) ñ P(e|~c) 
 

Power PC = 
c)|~P(e - 1

 c)|~P(e - c)|P(e  

 
These quantities have variously been proposed as 
measures of the strength of a cause (e.g. Cheng & 
Novick, 1992; Cheng, 1997). 
 
Materials and Design.  The materials used described 
10 different cause-effect pairs.  They were selected in 
order to cover a wide variety of domains, and included 
the following pairs: smoking and cancer; cars and 
pollution; stress and insomnia; sunbathing and 
suntanning; weight-training and muscle-growth; 
cholesterol and heart attacks. 

Subjects were asked directly about the strength of 
relation that they thought held between the pairs in 
question.  For example, for the smoking-cancer pair, the 

following questions were used: (i) ìHow strongly do 
you think smoking causes cancer?î; (ii) ìHow strongly 
do you think whether someone gets cancer depends on 
whether they smoke?î; (iii) ìHow likely do you think 
someone would be to get cancer given that they 
smoke?î; and (iv) ìHow likely do you think someone 
would be to get cancer given that they do not smoke?î  
All ratings were collected on a 0-100 scale.  For the 
causal ratings the scale was anchored by ëdoes not 
cause at allí and ëalways causesí; for the dependency 
ratings ëdoes not depend at allí and ëperfectly dependsí; 
and for the subjective probability ratings ëcompletely 
unlikelyí and ëcompletely certainí. 

Three groups were asked to rate the causal, 
dependency, and conditional probability ratings.  A 
within-subjects design was not used because of 
concerns that this would artificially homogenise what 
might in reality be different ratings (e.g. being asked to 
rate causal, dependency and conditional probability 
ratings consecutively might encourage subjects to 
simply return similar ratings on all scales). 

Participants.  49 students from the University of 
Edinburgh participated voluntarily. 

Results.  A factor analysis (principal-components 
analysis with rotated axes) was conducted on the ratings 
in order to examine their structure.  Only the first two 
rotated factors had eigenvalues greater than 1, and these 
together accounted for 95.16% of the variance in the 
data.  The factor loadings are shown in Table 1. 

Discussion 
The two factors extracted in the factor analysis 
successfully explained a large proportion of the 
variance in the causal uncertainty ratings collected in 
Study 1.  Moreover, the extracted factors are readily 
interpretable because the causal ratings load very highly 
on the first factor (0.969) and negligibly on the second 
factor (-0.042), while the P(e|~c) ratings load very 
highly on the second factor (0.982) and negligibly on 
the first factor (-0.106).  Study 1 therefore suggests that 
two factors are especially important in accounting for 
our representation of causal uncertainty: the causal 
strength with which a cause produces its effect (ëCausal 
Powerí), and the base rate of the effect in the absence of 
the cause (ëBaserateí).  This suggests that models of 

 Factor 1 
(Causal Power) 

Factor 2 
(Baserate) 

Causal  0.969 -0.042 
P(e|c)  0.927 -0.326 
Power PC  0.873 -0.481 
Dependency  0.699 -0.600 
∆P  0.664 -0.738 
P(e|~c) -0.106  0.982 

 
Table 1: Factor loadings from Study 1. 



causal inference should incorporate these two 
parameters.  This proposal was investigated in Study 2. 

Study 2 
Study 2 examined the degree to which causal inference 
can be modelled using information about factual and 
causal uncertainty.  The ratings from Study 1 were used 
in order to provide information about the degree of 
causal uncertainty attaching to the 10 causal pairs, 
while new data was acquired concerning their factual 
uncertainty.  Short scenarios centring around each of 
the 10 causal pairs were designed, in which it was 
deliberately made unclear whether the cause was 
present or absent. These were used to induce factual 
uncertainty in participants in the study.  For example, 
the scenario for the smoking-cancer causal pair ran as 
follows: 

 
ìImagine youíre introduced to Bill, a friend of a friend, 
one day.  You ask Bill for a lighter but he doesnít carry 
one.  However, it does look a little as though he might 
have tobacco stains under his nails.î 

 
After reading each description, participants were 
requested to rate their factual uncertainty, on a 0-100 
scale, by being asked how likely they thought it was 
that the cause was present given what they had read 
(i.e., in this case how likely they thought it was that Bill 
was a smoker).  They were then asked to make a causal 
inference by judging, given their confidence that Bill 
may or may not be a smoker, how likely they thought 
he would be to contract cancer at some point in his life.  
The information collected about factual and causal 
uncertainty was then used to parameterise various 
models of causal inference, in order to see if the 
inferences participants made could be predicted. 

Models of Causal Inference 
The models of causal inference investigated are listed in 
Table 2.  The probabilistic model defines the normative 
method of inferring the probability of an effect given 
information about a related cause.  The linear model, in 
contrast, states that oneís belief in an effect is the 
combination of a base rate of belief ñ the belief that the 
effect is present in the absence of the cause ñ plus the 
extra support that the cause provides for belief in the 

effect, which is defined as the product of oneís belief 
that the cause is present and the degree to which the 
cause and effect are causally related.  The noisy-OR 
model (Pearl, 1988) treats causes as mechanisms that 
operate independently and additively to produce a 
common effect.  The probability of an effect in this 
framework is thus given as the probability that not all 
the causes fail to generate the effect.1  Finally, the 
causal model predicts that peopleís belief in the cause is 
a product of the degree to which the cause and effect 
are causally related, and the degree to which the cause 
is believed to be present.  And the dependency model is 
similar to the causal model, except that it measures 
causal uncertainty using dependency, instead of causal 
strength, ratings. 

 
Materials and Design.  The cause-effect pairs and 
connection ratings from Study 1 were used.  In addition, 
scenarios for each causal pair were designed in order to 
embed the causal relation in a specific context, and 
deliberately induce factual uncertainty as to whether the 
cause in question was present or not. 

A within-subjects design was deliberately 
eschewed in Study 2 because of concerns that it could 
artificially bring peopleís causal inferences in line with 
the predictions of the probabilistic model.  Many people 
are familiar with basic probability theory, and our 
concern was that being asked to rate the conditional 
probability of the effect given the cause before making 
their causal inference (as a within-subjects design 
would have required), could force people to reason 
about the effect arithmetically, in opposition to their 
natural style of reasoning.  Accordingly, a between-
subjects design was adopted, in which the causal 
uncertainty ratings used were those collected in Study 
1, while the factual uncertainty ratings and the causal 
inferences themselves, were collected in the present 
study. 

Participants.  Participants were 21 students at the 
University of Edinburgh.  All participants were 
volunteers, and no reward was offered for participation. 

Results.  The performance of the models of causal 
inference is shown in Figure 1.  The probabilistic (r = 
0.665, p < 0.05, one-tailed), linear (r = 0.621, p < 0.05, 
one-tailed), and noisy-OR (r = 0.711, p < 0.05, one-
tailed) models were all significant predictors of 
peopleís causal inferences.  The causal (r = 0.495, p > 
0.05, one-tailed) and dependency (r = 0.268, p > 0.05, 
one-tailed) models, however, failed to significantly 
predict peopleís inferences.  A further analysis was also 

                                                           
1 Interestingly, the linear and the Noisy-OR models of causal 
inference find their counterparts in the ∆P and Power PC theories of 
causal induction respectively (they can be derived as the maximum 
likelihood estimates of causal strength parameters in causal graphs 
appropriately parameterised; see Glymour, 1998; Tenenbaum & 
Griffiths, 2000). 

Model Definition 
  
Probabilistic P(e|c)P(c) + P(e|~c)P(~c) 
Linear P(e|~c) + causes(c,e)P(c) 
Noisy-OR 1 ñ [1 ñ P(e|~c)][1 ñ causes(c,e)P(c)] 
Causal causes(c,e)P(c) 
Dependency depends(e,c)P(c) 

 
Table 2: The models of causal inference. 



Figure 1: Results of Study 2.

conducted on the linear and noisy-OR models, because 
they could also be parameterised with conditional 
probability instead of causal strength ratings.  In both 
cases, parameterising the models with the conditional 
probability of the effect given the presence of the cause, 
instead of the causal strength ratings, served to increase 
their empirical performance (see Figure 2). 

Discussion 
The fact that the linear, noisy-OR and probabilistic 
models were significantly correlated with the strength 
of peopleís causal inferences suggests that information 
about factual and causal uncertainty plays an important 
role in the inference process, and also that there seem to 
be domain-general quantitative patterns in the way we 
reason from cause to effect.  However, the factual and 
causal uncertainty ratings and inferences predicted in 
Study 2 were between-subjects aggregates.  It is 
therefore possible that the success of the proposed 
models is merely an artefact of the experimental design, 
and that the models would prove unable to predict 
causal inferences on a within-subjects basis.  Study 3 
investigated this issue, while also allowing us to 
examine how much of the residual error in the causal 
models could be attributed to idiosyncratic use of the 
rating scales.2 

Study 3 
Study 3 used a within-subjects design in which people 
estimated the factual and causal uncertainty attaching to 
each of the 10 cause-effect pairs, and then made a 
causal inference about the effect.  Because the causal 
and dependency models failed to significantly predict 
peopleís inferences they were dropped from 

                                                           
2 Because Study 2 had shown that the probabilistic model 

predicted causal inference with some level of success in a context in 
which patterns of causal inference consistent with the predictions of 
the probabilistic model could not have been artificially induced, the 
use of a within-subjects design was now appropriate. 

consideration.  Instead we focused on the performance 
of just the probabilistic, linear and noisy-OR models. 

 
Materials and Design.  The causal pairs and materials 
as used in Studies 1 and 2 were again used in this study.  
Each subject saw all 10 scenarios, in one of two 
reverse-orderings.  The linear and noisy-OR models 
were parameterised using only conditional probability, 
and not causal strength ratings, because of the better 
performance of this form of the models in Study 2. 

Participants.  Participants were 15 students 
enrolled at the Division of Informatics, University of 
Edinburgh.  All participants were volunteers, and no 
reward was offered for participation. 

Results.  The performance of the causal models is 
shown in Figure 3.  Both the linear (t = 2.280, df = 14, p 
= 0.038, two-tailed) and the noisy-OR model (t = 2.379, 
df = 14, p = 0.032, two-tailed) performed significantly 
better than the probabilistic model, although there was 
no significant difference between the linear and noisy-
OR model (t = 1.302, df = 14, p = 0.214, two-tailed).  
The degree of variance explained in the inference 
process by just taking into account either the amount of 
factual uncertainty, in the form of the p(c) ratings, or 
the amount of causal uncertainty, in the form of the 
p(e|c) ratings, is also shown in Figure 3 for comparison.  
These two models performed significantly worse than 
all the other models. 

To confirm that both the factual and causal 
uncertainty parameters added to the modelsí predictive 
validity the performance of the linear and noisy-OR 
models was compared to modified versions of them in 
which (i) factual uncertainty was ignored; and (ii) 
causal uncertainty was ignored.  The linear model 
performed significantly better than its counterpart 
which ignored factual uncertainty (t = 2.358, df = 14, p 
= 0.017, one-tailed), and marginally better than its 
counterpart which ignored causal uncertainty (t = 1.546, 
df = 14, p = 0.072, one-tailed).  The noisy-OR model 
performed significantly better than both its modified 
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versions which ignored factual (t = 4.199, df = 14, p < 
0.001, one-tailed) and causal (t = 2.049, df = 14, p = 
0.030, one-tailed) uncertainty. 

Discussion 
The results of Study 3 show that quantitative models ñ 
particularly the linear and noisy-OR model ñ can 
successfully predict peopleís causal inferences with 
some degree of success.  Moreover, the results of Study 
3 also show that removing information about either 
factual or causal uncertainty from these models 
significantly decreases their performance, thus showing 
that these factors do seem to play an important role in 
causal inference. 

Causes and Counterfactuals 
The studies reported so far examined the role of 
uncertainty in causal reasoning.  However, there is an 
intimate connection between causal and counterfactual 
reasoning (c.f. Lewis, 1973b; Jackson, 1977; Pearl, 
2000; Yarlett & Ramscar, 2001).  In the light of this it 
is interesting to examine whether the findings 
concerning causality in Studies 1-3 can also be applied 
to counterfactual reasoning. 

The proposal we examined is that, at least in the 
present context, counterfactual reasoning can be treated 
as a form of causal reasoning in which residual factual 
uncertainty is eliminated (for treatments of 
counterfactual reasoning in more complex systems see 
Yarlett & Ramscar, in press, and Pearl, 2000).  For 
example, imagine that you are fairly sure that Bill is not 
a smoker, but that I ask you how likely you think he 
would be to contract cancer if (counterfactually) he 
were a smoker.  Even though there may be some factual 
uncertainty in your belief that Bill is not actually a 
smoker, there should be no factual uncertainty attaching 
to the counterfactual scenario because the 
counterfactual asks you to assume, unequivocally, that 
he is a smoker.  Study 4 investigated this proposal. 

Study 4 
Study 4 investigated whether quantitative patterns could 
be found underlying counterfactual, as well as causal, 
inference.  The scenarios used in Studies 2 and 3 were 
altered so that instead of engendering uncertainty they 
were perfectly unambiguous that the cause in question 
was absent.  Then, instead of being asked to make a 
straightforward causal inference, subjects were asked to 
consider how strongly they would believe in the effect 
if the cause were present. 

 
Materials and Design.  The materials used were 
adapted forms of the scenarios used in Studies 2-3.  
Here is the smoking scenario, with the added 
information shown in italics: 

 
ìImagine youíre introduced to Bill, a friend of a friend, 
one day.  You ask Bill for a lighter but he doesnít carry 
one.  However, it does look a little as though he might 
have tobacco stains under his nails.  It later turns out that 
Bill is not a smoker; in fact heís never even smoked a 
cigarette in his life.î 

 
Subjects were then asked to rate ìBut if Bill were a 
smoker, how likely do you think he would be to get 
cancer at some point in his life?î.  Data was collected 
using a between-subjects design, as used in Study 2. 

Participants.  Participants were 23 students at the 
University of Edinburgh. 

Results.  The results of Study 4 are shown in 
Figure 4.  The causal model (r = 0.699, df = 8, p < 0.05, 
one-tailed), linear model parameterised with causal 
strength ratings (r = 0.667, df = 8, p < 0.05, one-tailed), 
and noisy-OR model parameterised with either 
conditional probabilities (r = 0.589, df = 8, p < 0.05, 
one-tailed) or causal strengths (r = 0.571, df = 8, p < 
0.05, one-tailed), significantly predicted peopleís 
counterfactual inferences. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Probabilistic Linear Noisy-OR P(c) P(e|c)

Figure 3: Results from Study 3.
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Discussion 
The results of this study show that modified forms of 
the models used to predict causal inferences can also be 
employed in the prediction of counterfactual inferences, 
and also that counterfactual inference can be profitably 
regarded as a special case of causal inference in which 
factual uncertainty has been eradicated.  This result is 
both consistent with theories which hold that 
counterfactuals supervene on causal relations (e.g., 
Jackson, 1977; Pearl, 2000; Yarlett & Ramscar, in 
press), and at tension with theories that treat 
counterfactual judgements as propositions assigned 
binary truth-values (e.g., Byrne, 1997; Byrne & Tasso, 
1999; Lewis, 1973).  However, given the success of 
multiple models at capturing the quantitative patterns in 
counterfactual inference exhibited in Study 4, clearly 
further work is required to tease the models apart, and 
determine whether patterns in both causal and 
counterfactual inference can be successfully captured 
by the same models. 

General Discussion 
The 4 studies reported here suggest that both factual 
and causal uncertainty play an important role in 
determining causal and counterfactual inference, and 
furthermore that counterfactual inference can profitably 
be regarded as a form of causal inference in which 
factual uncertainty is eradicated.  However, one 
potential cause for concern is the often considerable 
amount of variance left unexplained by the sort of 
quantitative models described in this paper.  Clearly 
more work needs to be done before the role of such 
models in describing causal and counterfactual 
inference is fully understood.  In particular, in future 
work we intend to examine whether alternative ways of 
measuring causal and factual uncertainty can increase 
the explanatory power of the quantitative models, and 
also whether additional factors can be imported into the 
models to improve their empirical fit (e.g. how many 
alternative or preventative causes exist for a specific 
cause effect pair being reasoned about; see Cummins et 
al., 1991). 
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