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Abstract

In this paper we present a methodology for improving the
reliability of observers in magnitude estimation tasks by using
the computer to augment the cognitive components of the
task.

Psychophysical scaling is the study of how to accurately
measure perception. More specifically, the goal is to find
methodologies that allow people to accurately communicate
the magnitudes of specific dimensions of conscious
experience, such as brightness, loudness, temperature, and
heaviness. Psychophysical scaling can also be used for
measuring the magnitude of subjective experiences such as
level of happiness (e.g., West & Ward, 1988). The goal of
psychophysical scaling is to find the mathematical functions
that map the magnitudes of external stimulus dimensions to
the conscious perception of magnitude. This enterprise is
extremely useful for both scientific and applied research.

Numerous different scaling techniques exist. However,
our focus is on magnitude estimation, which is one of the
most commonly used psychophysical methods. Magnitude
estimation (ME) was invented by Stevens (1956) and
involves exposing subjects to a set of stimuli and asking
them to match the magnitude of a particular dimension of
each stimulus to the magnitude of a number. This is repeated
for multiple trials to provide multiple responses for each
stimulus value. To avoid the influence of outliers, the
median or the geometric mean of the responses for each
stimulus value is calculated. Numerous studies have shown
that plotting these values against the stimulus values
produces functions that are closely approximated by power
functions. This is known as, the Power Law, or, Stevens’
Law.

The form of the power law is,

R=KS"?,

where R is the observer’s response, S is the stimulus
magnitude, B is the exponent value, and K is a constant.
Logging both sides of the equation produces,

Log(R)=B-Log(S)+Log(K),

which is a straight line with B estimated by the slope and K
by the intercept. The exponent, B, can be interpreted as a
metric for stimulus compression. This reflects the fact that
people use a power function or something closely

approximating a power function to compress stimuli, just as
audio and video files can be compressed to save on
bandwidth. In fact, audio and video compression go
unnoticed to the extent that the compression function maps
onto the human compression function for the same stimuli.
Generally speaking, in ME the goal is to put as few
restrictions on the observer’s choice of numbers as possible.
Often free ME (e.g., see Zwislocki & Goodman, 1980) is
used, in which observers are instructed to match the
perceived magnitude of the stimulus to whatever number
seems most natural. This is quite different from the common
psychological practice of imposing scales on people. The
reasons for this are both theoretical and practical. From a
mathematical standpoint, if any two stimuli are set equal to
any two responses then you have determined what the
exponent value must be. Thus, if an observer uses the lowest
value on a scale to match the lowest perceived magnitude
and the highest value to match the highest perceived
magnitude, the power function exponent has been fixed. To
get around this one could assign a value to a middle value on
the scale and not impose a top end or bottom end, but this
has been shown to produce confusion and poor results
(Stevens, 1975). However, the fact that peoples’
backgrounds cause them to use different ranges of numbers
in their responses is not a problem as these differences are
captured by the K constant (since response range is usually
not of interest, K values are usually not reported).

ME can be considered a special case of cross modal
matching (CMM). In cross modal matching, the observer
adjusts the magnitude of one stimulus dimension to match
the magnitude of another stimulus dimension (e.g., adjusting
the brightness of a light to match the loudness of a tone).
Like ME, CMM results also produce power functions.
Furthermore, ME and CMM results are consistent in that
they can be used to predict each other (e.g., the ME
exponents for brightness and loudness can be used to predict
the exponent relating brightness and loudness in a CMM
experiment). Also, both the power functions and the specific
exponent values found through ME are consistent with ratio
scaling experiments, in which magnitude scales are derived
by asking observers to set or report ratios between stimuli.
These approaches to scaling are known as direct scaling
techniques (Stevens, 1971).

Problems

ME forms the foundation for a potentially accurate and
consistent way of measuring perceived magnitude. However,



ME, as well as the other methods with which it is consistent,
have been found to be limited in terms of accuracy.
Although a considerable amount of evidence indicates that
subjects do obey the power law (see Stevens, 1975; and
Bolanowski & Gescheider, 1985 for reviews), the specific
exponent values that Stevens found could not be reliably
replicated with the level of accuracy one would expect for
measuring sensory processes in normal, healthy individuals.
Exponent values vary considerably across individuals in the
same experiment (e.g., Algom & Marks, 1984; Luce & Mo,
1965; Marks & J. C. Stevens, 1965; Rule & Markley, 1971;
Wanschura & Dawson, 1974; Logue, 1976) and can also
vary across time within individuals (Logue, 1976; Marks,
1991; Teghtsoonian & Teghtsoonian, 1983). Stevens also
found strong individual differences, which he attributed to
various response biases. Stevens’ solution was to treat
response bias as a random factor and to average across
individuals to get the true exponent value (Stevens, 1971).
However, Marks (1974) reviewed the literature and found
that in addition to individual differences, the average value
of the exponent varies significantly across ME experiments
done in different labs. These results suggest that the
distribution of individual response biases differs from lab to
lab, indicating that they cannot be treated as random.
Indeed, it is well known that some labs get systematically
higher or lower exponent values than others, suggesting that
response bias can be influenced by minor procedural
differences.

In addition to limitations on accuracy, ME results are not
consistent with partition scaling (also called interval scaling)
results for prothetic continua, although they are consistent
for metathetic continua (according to Stevens, metathetic
continua are more qualitative in nature, e.g., pitch or hue;
while prothetic continua are more quantitative in nature,
e.g., loudness or brightness; see Stevens, 1971 for a more
detailed discussion). Partition scaling includes a variety of
techniques that require observers to partition the stimulus
continuum. Category scaling (e.g., 1 to 5 scales; 1 to 7
scales; scales partitioned by word labels such as good, bad,
very bad) is a form of partition scaling, and is by far the
most commonly used scaling technique. The problem is that
partitioning techniques tend to produce power functions with
lower exponents than direct scaling techniques (Stevens,
1971). Stevens’ argument for accepting the results of direct
scaling techniques rather than partition scaling techniques
was that partition scaling is less direct because it requires the
extra step of partitioning the stimulus range, and that the
discrepancy can be attributed to biases introduced by the
partitioning task (see Stevens, 1971). However, like direct
scaling, partition scaling also produces excessive variability
(Marks, 1974).

Because of these problems, psychophysical scaling still
has issues concerning reliability and validity. In terms of the
power law, the validity problem can be stated as the problem
of which, if any, method will produce the “true” exponent.
The reliability problem is that we do not have a
methodology that we can use to make reliable statements
about individual differences or inter-lab differences in
exponent values. In our opinion, the reliability problem
needs to be solved before tackling the validity problem. Our

work attempts to address this. The reliability problem can be
broken down into a theoretical and a practical problem. The
theoretical problem is that if bias differs from individual to
individual and within individuals across time, we cannot get
reliable measurements without being able to somehow
predict or control the bias. The practical problem is that
even if we solve the theoretical problem, to be useful we
need a system that does not require huge numbers of
responses from individuals who have limited amounts of
time and limited attention spans. We have focused our
efforts on the reliability issue and attempted to solve both of
these problems by cognitively augmenting our human
observers through the use of computerized support.

Bias
The process of magnitude matching can be represented in
the following way (Marks, 1991),

M(S) =R

where S is the stimulus magnitude, R is the response
magnitude, and M is the function relating them. The M
function can then be decomposed into an initial,
perceptually based function, P, that is the same (or highly
similar) across healthy, normal individuals; followed by a
function, C, representing cognitively imposed constraints
that account for the excessive variability:

M(S) = C(P(S))

Since most psychophysicists study perception, the
emphasis has been on getting rid of C so as to reveal P.
Considerable effort has been expended in this enterprise.
Approaches taken include trying to identify the sources of C
to avoid or control for them (see Poulton, 1989 for a
review); trying to minimize C by encouraging observers to
respond naturally, without thinking about it too much (e.g.,
Stevens, 1975; Zwislocki & Goodman, 1980); trying to
measure C and then partial it out (e.g., Berglund, 1991);
trying to stabilize C across scaling tasks to get rid of intra-
observer variability (e.g., J. C. Stevens & Marks, 1980); and
avoiding C by developing methods that allow the scale to be
derived from judgments of “greater than” or “less than” for
paired stimuli sets (e.g., Schneider, 1980, 1988). However,
success in these endeavors has been limited and a consensus
as to the best method is lacking.

Our approach to dealing with C was quite different. As
cognitive scientists, we viewed the variability of C as the
inevitable consequence of the sort of problem presented to
the observers, i.e., create and maintain a consistent mapping
from P to R. The problem of creating a mapping may or may
not be difficult but it is definitely open ended, with very few
constraints on the solution. Also, the problem of maintaining
the mapping once it has been created could tax the limits of
working memory. In fact, Petrov and Anderson (2000) and
Petrov (2001) were able to model a number of different bias
effects associated with various factors using the ACT-R
(Anderson & Lebiere, 1988) architecture to model the
memory processes involved. Based on this view, our
approach has been to attempt to eliminate these effects by



providing computerized
maintaining the scale.

support for establishing and

Constrained Scaling

Constrained scaling is a form of magnitude estimation (i.e.,
observers report numbers to match stimulus values). The
goal of constrained scaling is to calibrate observers to the
same C function before scaling the stimulus dimension of
interest, similar to the way that physical measuring
instruments are calibrated before use (Ward, 1991).
Constrained scaling (West, Ward, & Khosla, 2000) is based
on four claims about C: (1) that C is cognitively penetrable,
(2) that C is heavily influenced by ad hoc decisions made
early in the scaling process, (3) that the C process makes
heavy demands on working memory which leads to
instability across the task, and (4) that C is independent of
the perceptual modality being judged (i.e., if the perceptual
modality is changed it does not directly cause a change in C,
although an interruption in the process could disrupt and
indirectly alter C). Provided these assumptions are true, it
should be possible to train observers to use a predetermined
C function, and to support the maintenance of it in memory
by refreshing it through a computerized feedback system.

Constrained scaling involves two phases, a learning phase
and a test phase. In the learning phase, feedback is used to
train observers to respond to a standardized set of stimulus
magnitudes according to a predetermined response scale.
This is done across several trials by presenting learning set
stimuli and having the observer rate the perceived
magnitude by entering an R value. On the interface we have
been using this can be done by entering a value in a text box
or by using a specially designed scroll bar that allows the
observer to move the slider by units of 10, 1, 0.1, and 0.01.
The scroll bar runs from 0 to 100 (although the observers
are instructed that they may enter R values above 100). After
this the observer clicks a button marked, “OK,” and their R
value is replaced with the correct R value. The point of this
is to build C functions that are the same across observers
and to give them the practice they need to become familiar
with it. Provided that P is highly similar across observers,
training the observers so that they all correspond to the same
function relating S and R, implies they have the same C
function, although it is possible that the details of how they
cognitively implement and maintain the C function may
differ.

The choice of the scale to be learned should be based on
learnability and the mathematical desirability of the scale.
Similar to West et al (2000), we used a power function with
an exponent similar to what would be found using ME (i.e.,
we accept, to some extent, Stevens’ argument that free ME
produces scales that people find more natural to use) and K
was set so that the scale range was approximately from 1 to
100 (as we believe this is a range that people are familiar
with).

Research has shown that, with feedback on each trial,
people can learn these scales quite accurately (King &
Lockhead, 1983; Koh & Meyer, 1991; Koh, 1993; West &
Ward, (1994); Marks, Galanter, & Baird, 1995). However,
we have found that once the feedback is taken away, people
start to drift off of the learned scale. Therefore, during the

test phase the learned scale is presented on every second
trial followed by feedback, so that the form of the scale is
constantly refreshed in memory. On the alternate trials, test
stimuli, different from the learned stimuli, are presented
without feedback. The observers are instructed to use the
learned scale to respond to the test stimuli as well as the
learned stimuli. They are also told that the response range of
the test stimuli may be greater or less than the response
range of the test stimuli.

This general approach was used in West et al (2000) and
the results were compared to other psychophysical methods.
In that study, the learned scale stimuli were 1000 Hz tones
between 32 dB and 99 dB, spaced at 1 dB intervals. The
learned scale responses were numbers from 1 to 100 related
to the stimulus magnitudes by a power function with an
exponent of 0.600 (taken from the International
Organization for Standardization, 1959). The test stimuli
were 65 Hz tones and light brightness. The results, a full
discussion of the psychophysical meaning of the results, and
a comparison to other methods is presented in West et al
(2000). Here we will just point out that constrained scaling
produced very low levels of inter-observer variability
compared to ME and CMM. Furthermore, the only method
that we could find that produced similar low levels of inter-
observer variability was conjoint measurement as applied to
combined pairs of tones (Schneider, 1988). However, this
methodology exploits the fact that, under the right
conditions, loudness is additive for two tone combinations,
which limits its application to auditory stimuli. It also
requires a large number of trials.

Scaling Video Frame Rates

The results from West et al (2000) clearly demonstrated that
training observers and using external means to constantly
refresh their memory produces highly reliable scaling
results. This indicates that arbitrary decisions about how to
structure a scale and insufficient resources for maintaining
the scale in memory are the primary source of inter-observer
variability in direct scaling. However, it was still unclear
how observers use the feedback to maintain a representation
of the scale. We speculated that observers memorized a
limited number of perceived magnitude/response pairs and
interpolate to get responses in-between (see Ward & West,
1988, for an example of people using this strategy in a
similar type of task). If this is the case then constrained
scaling should work if the observers are only supplied with
feedback on a limited number of S/R pairs instead of many
pairs covering the whole range (as in West et al 2000).

We applied this methodology in a study designed to look
at the effect of content type on the perception of frame rate
in video clips. Specifically, we were interested in whether or
not speed of movement in the clip alters the perception of
frame rate. To do this we began with a pilot study using
magnitude matching. Magnitude matching is a version of
ME in which two different stimuli are alternately presented
in the same scaling task (J. C. Stevens & Marks, 1980). In
this case we used a fast paced video clip and a slow paced
video clip. The results, averaged across observers, indicated
that the exponent for frame rate was approximately 0.90. No
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Figure 1. Psychophysical functions for four representative observers. The top row shows two observers who obeyed the
power law and the bottom row shows two observers who deviated from it

significant effects for content were found (Boring, West, &
Dillon, 2000).

For the constrained scaling experiment we used only five
stimulus levels for training (2, 3, 6, 10, and 15 frames per
second). Observers were taught, using feedback, to respond
to these frame rate levels according to a power function with
an exponent of 0.90. The observers were given 50 trials to
learn the scale and the stimuli were presented randomly. The
content of the video clip was moderate in speed (medium
speed hip hop dancing).

During the test phase, the observers were instructed that
the same hip-hop clips would be presented with feedback on
every second trial, and that on the alternative trials a
different video clip would be presented. The Observers were
told to respond to the other clip using the same scale they
learned for the hip-hop clip, but that the frame rate levels
would not necessarily be the same and that there would be
more than five versions of the new clip. This was actually
not true; the test stimuli were generated using the same
frame rate levels as the learning stimuli. However, the
observers did not know this as the stimuli were spaced less
than one JND (just noticeable difference) apart. We mislead

our observers so that they would be open to responding with
the whole range of responses. The observers all completed
two test phase sessions, one using a fast content clip
(children running) and one using a slow content clip (a clip
from the Fraser show of Fraser talking). The order of the
sessions was counterbalanced and another 50 trials of
training were presented in-between. All stimuli were
presented in random order.

Results

As in West et al (2000), we found that constrained scaling
did not produce outliers, so we used mean response values
for scaling the responses instead of medians. From a visual
inspection of the graphed functions from the test phase trials
it was clear that four observers produced functions with
relatively large nonlinear trends (see Figure 1). This is
actually not uncommon in ME (Luce, & Mo, 1965). The
normal procedure would be to throw them out or to average
across them, along with the functions of the other observers.
However, since we are interested in individual differences,
we note that these four were less able than the other



observers to exploit the external scaling aids offered by
constrained scaling. This indicates that individual
differences in strategy, cognitive ability, and/or effort still
play a role. Since these deviations were not unusually large
by ME standards we analyzed the data both with them in and
with them out. The remaining six observers produced
functions that could reasonably be treated as linear (see
Figure 1).

West et al reviewed 14 studies that provided individual
observer results for ME and CMM, and calculated the
standard deviation divided by the mean for the individual
exponent values from each study. As a basis for comparison
we took these values and calculated the mean, which was
0.333, the standard deviation, which was 0.080, and the 0.05
confidence interval, which was plus or minus 0.042. Even
with the four linearly deviant observers included, the mean
of the individual exponent values divided by the standard
deviation was 0.190 for the Fraser clip and 0.150 for the
children running clip, significantly lower than what would
be expected with ME or CMM. Without the four deviants
included, the mean divided by the standard deviation was
0.076 for the Fraser clip and 0.047 for the children running
clip. These values were similar to the mean divided by
standard deviation values found by West et al (2000) using
constrained scaling (these values were 0.045, 0.066, and
0.152).

Also, because of the low variability we were able to detect
a small but significant difference in exponent values both
with (P < 0.01) and without (P = 0.01) the four linearly
deviant observers, indicating that the exponent values for the
slower video were higher than the exponent values for the
faster video. This finding illustrates the advantage of having
more precise ways of measuring perceived magnitudes
(note, since the purpose of this paper is to examine the
cognitive aspects of scaling, we will not discuss why this
difference might exist).

Discussion

These findings replicate the West et al (2000) finding that
augmenting the cognitive abilities of the observer can
significantly reduce inter-observer variability and, more
generally, supports the four theoretical assumptions behind
constrained scaling (see above). The results also support the
hypothesis that people can maintain scales in memory by
memorizing a limited number of S/R pairs. By providing
support to remember five S/R pairs we significantly reduced
inter-observer variability to a level comparable to that found
in West et al (2000), who provided feedback for a large
number of responses. Other strategies may also be possible
but, at the very least, this result shows that providing support
for remembering a small number of S/R pairs can provide a
significant advantage.

In terms of strategy, examining the actual responses that
the observers made revealed that they took a category
scaling approach. Two observers used the five R values they
had learned almost exclusively. The other observers added
only a few new R values and some stopped using one or two
of the learned R values. The new R values also tended to be
used as categories, that is, they were used repeatedly. This
was quite different from the West et al (2000) observers who

responded with a wide range of R values. From this it would
appear that observers prefer to continue using a response
strategy that resembles the one they were trained on. This
may be due to observers inferring that the number of test
stimuli will be similar to the number of learning stimuli, or it
may be that teaching them to respond in a particular way
creates cognitive structures that are not amenable for doing
the task in other ways.

The fact that observers were able to respond accurately
using a category scaling strategy, on a scale that was
determined using ME, suggests that training and providing
feedback to observers eliminates the factors that cause
category scaling to produce different results from ME. This
result is quite promising as it suggests that providing
external support for the scaling process can wipe out
methodologically induced biases.

Conclusions

These results provide compelling evidence that cognitively
augmenting observers can substantially increase the
reliability of psychophysical scaling, which is particularly
important for measuring and studying individual differences
and small group differences (as in this study). We also
believe that this approach will eventually provide a means
for assessing the validity of the scales as well. This is based
the assumption that the further a learned scale is from the
natural scale, the more cognitive resources will be required
to maintain the mapping (C) from P to R (for some evidence
of this see Marks, Galanter, & Baird, 1995; West et al,
2000). To improve further we need to better understand the
strategies available to observers, and how to more
effectively intervene to support the scaling process.
Eventually, we hope that this approach will lead to
psychophysical measurement techniques that have the same
unambiguous status as physical measuring techniques.
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