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Abstract 
 

In this paper we present a methodology for improving the 
reliability of observers in magnitude estimation tasks by using 
the computer to augment the cognitive components of the 
task.   
 

Psychophysical scaling is the study of how to accurately 
measure perception. More specifically, the goal is to find 
methodologies that allow people to accurately communicate 
the magnitudes of specific dimensions of conscious 
experience, such as brightness, loudness, temperature, and 
heaviness. Psychophysical scaling can also be used for 
measuring the magnitude of subjective experiences such as 
level of happiness (e.g., West & Ward, 1988). The goal of 
psychophysical scaling is to find the mathematical functions 
that map the magnitudes of external stimulus dimensions to 
the conscious perception of magnitude. This enterprise is 
extremely useful for both scientific and applied research.  

Numerous different scaling techniques exist. However, 
our focus is on magnitude estimation, which is one of the 
most commonly used psychophysical methods. Magnitude 
estimation (ME) was invented by Stevens (1956) and 
involves exposing subjects to a set of stimuli and asking 
them to match the magnitude of a particular dimension of 
each stimulus to the magnitude of a number. This is repeated 
for multiple trials to provide multiple responses for each 
stimulus value. To avoid the influence of outliers, the 
median or the geometric mean of the responses for each 
stimulus value is calculated. Numerous studies have shown 
that plotting these values against the stimulus values 
produces functions that are closely approximated by power 
functions. This is known as, the Power Law, or, Stevens’ 
Law.  

The form of the power law is, 
 

R=KSB, 
 

where R is the observer’s response, S is the stimulus 
magnitude, B is the exponent value, and K is a constant. 
Logging both sides of the equation produces, 

 
Log(R)=B⋅Log(S)+Log(K), 

 
which is a straight line with B estimated by the slope and K 
by the intercept. The exponent, B, can be interpreted as a 
metric for stimulus compression. This reflects the fact that 
people use a power function or something closely 

approximating a power function to compress stimuli, just as 
audio and video files can be compressed to save on 
bandwidth. In fact, audio and video compression go 
unnoticed to the extent that the compression function maps 
onto the human compression function for the same stimuli. 
Generally speaking, in ME the goal is to put as few 
restrictions on the observer’s choice of numbers as possible. 
Often free ME (e.g., see Zwislocki & Goodman, 1980) is 
used, in which observers are instructed to match the 
perceived magnitude of the stimulus to whatever number 
seems most natural. This is quite different from the common 
psychological practice of imposing scales on people. The 
reasons for this are both theoretical and practical. From a 
mathematical standpoint, if any two stimuli are set equal to 
any two responses then you have determined what the 
exponent value must be. Thus, if an observer uses the lowest 
value on a scale to match the lowest perceived magnitude 
and the highest value to match the highest perceived 
magnitude, the power function exponent has been fixed. To 
get around this one could assign a value to a middle value on 
the scale and not impose a top end or bottom end, but this 
has been shown to produce confusion and poor results 
(Stevens, 1975). However, the fact that peoples’ 
backgrounds cause them to use different ranges of numbers 
in their responses is not a problem as these differences are 
captured by the K constant (since response range is usually 
not of interest, K values are usually not reported).  

ME can be considered a special case of cross modal 
matching (CMM). In cross modal matching, the observer 
adjusts the magnitude of one stimulus dimension to match 
the magnitude of another stimulus dimension (e.g., adjusting 
the brightness of a light to match the loudness of a tone). 
Like ME, CMM results also produce power functions. 
Furthermore, ME and CMM results are consistent in that 
they can be used to predict each other (e.g., the ME 
exponents for brightness and loudness can be used to predict 
the exponent relating brightness and loudness in a CMM 
experiment). Also, both the power functions and the specific 
exponent values found through ME are consistent with ratio 
scaling experiments, in which magnitude scales are derived 
by asking observers to set or report ratios between stimuli. 
These approaches to scaling are known as direct scaling 
techniques (Stevens, 1971). 

Problems 
ME forms the foundation for a potentially accurate and 
consistent way of measuring perceived magnitude. However, 



  

ME, as well as the other methods with which it is consistent, 
have been found to be limited in terms of accuracy. 
Although a considerable amount of evidence indicates that 
subjects do obey the power law (see Stevens, 1975; and 
Bolanowski & Gescheider, 1985 for reviews), the specific 
exponent values that Stevens found could not be reliably 
replicated with the level of accuracy one would expect for 
measuring sensory processes in normal, healthy individuals. 
Exponent values vary considerably across individuals in the 
same experiment (e.g., Algom & Marks, 1984; Luce & Mo, 
1965; Marks & J. C. Stevens, 1965; Rule & Markley, 1971; 
Wanschura & Dawson, 1974; Logue, 1976) and can also 
vary across time within individuals (Logue, 1976; Marks, 
1991; Teghtsoonian & Teghtsoonian, 1983). Stevens also 
found strong individual differences, which he attributed to 
various response biases. Stevens’ solution was to treat 
response bias as a random factor and to average across 
individuals to get the true exponent value (Stevens, 1971). 
However, Marks (1974) reviewed the literature and found 
that in addition to individual differences, the average value 
of the exponent varies significantly across ME experiments 
done in different labs. These results suggest that the 
distribution of individual response biases differs from lab to 
lab, indicating that they cannot be treated as random. 
Indeed, it is well known that some labs get systematically 
higher or lower exponent values than others, suggesting that 
response bias can be influenced by minor procedural 
differences. 

In addition to limitations on accuracy, ME results are not 
consistent with partition scaling (also called interval scaling) 
results for prothetic continua, although they are consistent 
for metathetic continua (according to Stevens, metathetic 
continua are more qualitative in nature, e.g., pitch or hue; 
while prothetic continua are more quantitative in nature, 
e.g., loudness or brightness; see Stevens, 1971 for a more 
detailed discussion). Partition scaling includes a variety of 
techniques that require observers to partition the stimulus 
continuum. Category scaling (e.g., 1 to 5 scales; 1 to 7 
scales; scales partitioned by word labels such as good, bad, 
very bad) is a form of partition scaling, and is by far the 
most commonly used scaling technique. The problem is that 
partitioning techniques tend to produce power functions with 
lower exponents than direct scaling techniques (Stevens, 
1971). Stevens’ argument for accepting the results of direct 
scaling techniques rather than partition scaling techniques 
was that partition scaling is less direct because it requires the 
extra step of partitioning the stimulus range, and that the 
discrepancy can be attributed to biases introduced by the 
partitioning task (see Stevens, 1971). However, like direct 
scaling, partition scaling also produces excessive variability 
(Marks, 1974). 

Because of these problems, psychophysical scaling still 
has issues concerning reliability and validity. In terms of the 
power law, the validity problem can be stated as the problem 
of which, if any, method will produce the “true” exponent. 
The reliability problem is that we do not have a 
methodology that we can use to make reliable statements 
about individual differences or inter-lab differences in 
exponent values. In our opinion, the reliability problem 
needs to be solved before tackling the validity problem. Our 

work attempts to address this. The reliability problem can be 
broken down into a theoretical and a practical problem. The 
theoretical problem is that if bias differs from individual to 
individual and within individuals across time, we cannot get 
reliable measurements without being able to somehow 
predict or control the bias. The practical problem is that 
even if we solve the theoretical problem, to be useful we 
need a system that does not require huge numbers of 
responses from individuals who have limited amounts of 
time and limited attention spans. We have focused our 
efforts on the reliability issue and attempted to solve both of 
these problems by cognitively augmenting our human 
observers through the use of computerized support.  

Bias 
The process of magnitude matching can be represented in 
the following way (Marks, 1991),  

 
M(S) = R 

 
where S is the stimulus magnitude, R is the response 
magnitude, and M is the function relating them. The M 
function can then be decomposed into an initial, 
perceptually based function, P, that is the same (or highly 
similar) across healthy, normal individuals; followed by a 
function, C, representing cognitively imposed constraints 
that account for the excessive variability:  

 
M(S) = C(P(S)) 

 
Since most psychophysicists study perception, the 

emphasis has been on getting rid of C so as to reveal P. 
Considerable effort has been expended in this enterprise. 
Approaches taken include trying to identify the sources of C 
to avoid or control for them (see Poulton, 1989 for a 
review); trying to minimize C by encouraging observers to 
respond naturally, without thinking about it too much (e.g., 
Stevens, 1975; Zwislocki & Goodman, 1980); trying to 
measure C and then partial it out (e.g., Berglund, 1991); 
trying to stabilize C across scaling tasks to get rid of intra-
observer variability (e.g., J. C. Stevens & Marks, 1980); and 
avoiding C by developing methods that allow the scale to be 
derived from judgments of “greater than” or “less than” for 
paired stimuli sets (e.g., Schneider, 1980, 1988). However, 
success in these endeavors has been limited and a consensus 
as to the best method is lacking.  

Our approach to dealing with C was quite different. As 
cognitive scientists, we viewed the variability of C as the 
inevitable consequence of the sort of problem presented to 
the observers, i.e., create and maintain a consistent mapping 
from P to R. The problem of creating a mapping may or may 
not be difficult but it is definitely open ended, with very few 
constraints on the solution. Also, the problem of maintaining 
the mapping once it has been created could tax the limits of 
working memory. In fact, Petrov and Anderson (2000) and 
Petrov (2001) were able to model a number of different bias 
effects associated with various factors using the ACT-R 
(Anderson & Lebiere, 1988) architecture to model the 
memory processes involved. Based on this view, our 
approach has been to attempt to eliminate these effects by 



  

providing computerized support for establishing and 
maintaining the scale.   

Constrained Scaling 
Constrained scaling is a form of magnitude estimation (i.e., 
observers report numbers to match stimulus values). The 
goal of constrained scaling is to calibrate observers to the 
same C function before scaling the stimulus dimension of 
interest, similar to the way that physical measuring 
instruments are calibrated before use (Ward, 1991). 
Constrained scaling (West, Ward, & Khosla, 2000) is based 
on four claims about C: (1) that C is cognitively penetrable, 
(2) that C is heavily influenced by ad hoc decisions made 
early in the scaling process, (3) that the C process makes 
heavy demands on working memory which leads to 
instability across the task, and (4) that C is independent of 
the perceptual modality being judged (i.e., if the perceptual 
modality is changed it does not directly cause a change in C, 
although an interruption in the process could disrupt and 
indirectly alter C). Provided these assumptions are true, it 
should be possible to train observers to use a predetermined 
C function, and to support the maintenance of it in memory 
by refreshing it through a computerized feedback system. 

 Constrained scaling involves two phases, a learning phase 
and a test phase. In the learning phase, feedback is used to 
train observers to respond to a standardized set of stimulus 
magnitudes according to a predetermined response scale.  
This is done across several trials by presenting learning set 
stimuli and having the observer rate the perceived 
magnitude by entering an R value. On the interface we have 
been using this can be done by entering a value in a text box 
or by using a specially designed scroll bar that allows the 
observer to move the slider by units of 10, 1, 0.1, and 0.01. 
The scroll bar runs from 0 to 100 (although the observers 
are instructed that they may enter R values above 100). After 
this the observer clicks a button marked, “OK,” and their R 
value is replaced with the correct R value. The point of this 
is to build C functions that are the same across observers 
and to give them the practice they need to become familiar 
with it. Provided that P is highly similar across observers, 
training the observers so that they all correspond to the same 
function relating S and R, implies they have the same C 
function, although it is possible that the details of how they 
cognitively implement and maintain the C function may 
differ. 

The choice of the scale to be learned should be based on 
learnability and the mathematical desirability of the scale. 
Similar to West et al (2000), we used a power function with 
an exponent similar to what would be found using ME (i.e., 
we accept, to some extent, Stevens’ argument that free ME 
produces scales that people find more natural to use) and K 
was set so that the scale range was approximately from 1 to 
100 (as we believe this is a range that people are familiar 
with).  

Research  has shown that, with feedback on each trial, 
people can learn these scales quite accurately (King & 
Lockhead, 1983; Koh & Meyer, 1991; Koh, 1993; West & 
Ward, (1994); Marks, Galanter, & Baird, 1995). However, 
we have found that once the feedback is taken away, people 
start to drift off of the learned scale. Therefore, during the 

test phase the learned scale is presented on every second 
trial followed by feedback, so that the form of the scale is 
constantly refreshed in memory. On the alternate trials, test 
stimuli, different from the learned stimuli, are presented 
without feedback. The observers are instructed to use the 
learned scale to respond to the test stimuli as well as the 
learned stimuli. They are also told that the response range of 
the test stimuli may be greater or less than the response 
range of the test stimuli.  

This general approach was used in West et al (2000) and 
the results were compared to other psychophysical methods. 
In that study, the learned scale stimuli were 1000 Hz tones 
between 32 dB and 99 dB, spaced at 1 dB intervals. The 
learned scale responses were numbers from 1 to 100 related 
to the stimulus magnitudes by a power function with an 
exponent of 0.600 (taken from the International 
Organization for Standardization, 1959). The test stimuli 
were 65 Hz tones and light brightness. The results, a full 
discussion of the psychophysical meaning of the results, and 
a comparison to other methods is presented in West et al 
(2000). Here we will just point out that constrained scaling 
produced very low levels of inter-observer variability 
compared to ME and CMM. Furthermore, the only method 
that we could find that produced similar low levels of inter-
observer variability was conjoint measurement as applied to 
combined pairs of tones (Schneider, 1988). However, this 
methodology exploits the fact that, under the right 
conditions, loudness is additive for two tone combinations, 
which limits its application to auditory stimuli. It also 
requires a large number of trials.  

Scaling Video Frame Rates 
The results from West et al (2000) clearly demonstrated that 
training observers and using external means to constantly 
refresh their memory produces highly reliable scaling 
results. This indicates that arbitrary decisions about how to 
structure a scale and insufficient resources for maintaining 
the scale in memory are the primary source of inter-observer 
variability in direct scaling. However, it was still unclear 
how observers use the feedback to maintain a representation 
of the scale. We speculated that observers memorized a 
limited number of perceived magnitude/response pairs and 
interpolate to get responses in-between (see Ward & West, 
1988, for an example of people using this strategy in a 
similar type of task). If this is the case then constrained 
scaling should work if the observers are only supplied with 
feedback on a limited number of S/R pairs instead of many 
pairs covering the whole range (as in West et al 2000).  

We applied this methodology in a study designed to look 
at the effect of content type on the perception of frame rate 
in video clips. Specifically, we were interested in whether or 
not speed of movement in the clip alters the perception of 
frame rate. To do this we began with a pilot study using 
magnitude matching. Magnitude matching is a version of 
ME in which two different stimuli are alternately presented 
in the same scaling task (J. C. Stevens & Marks, 1980). In 
this case we used a fast paced video clip and a slow paced 
video clip. The results, averaged across observers, indicated 
that the exponent for frame rate was approximately 0.90. No 



  

 

Figure 1. Psychophysical functions for four representative observers. The top row shows two observers who obeyed the 
power law and the bottom row shows two observers who deviated from it 

 
significant effects for content were found (Boring, West, & 
Dillon, 2000).  

For the constrained scaling experiment we used only five 
stimulus levels for training (2, 3, 6, 10, and 15 frames per 
second). Observers were taught, using feedback, to respond 
to these frame rate levels according to a power function with 
an exponent of 0.90. The observers were given 50 trials to 
learn the scale and the stimuli were presented randomly. The 
content of the video clip was moderate in speed (medium 
speed hip hop dancing).  

During the test phase, the observers were instructed that 
the same hip-hop clips would be presented with feedback on 
every second trial, and that on the alternative trials a 
different video clip would be presented. The Observers were 
told to respond to the other clip using the same scale they 
learned for the hip-hop clip, but that the frame rate levels 
would not necessarily be the same and that there would be 
more than five versions of the new clip. This was actually 
not true; the test stimuli were generated using the same 
frame rate levels as the learning stimuli. However, the 
observers did not know this as the stimuli were spaced less 
than one JND (just noticeable difference) apart. We mislead 

our observers so that they would be open to responding with 
the whole range of responses. The observers all completed 
two test phase sessions, one using a fast content clip 
(children running) and one using a slow content clip (a clip 
from the Fraser show of Fraser talking). The order of the 
sessions was counterbalanced and another 50 trials of 
training were presented in-between.  All stimuli were 
presented in random order. 

Results 
As in West et al (2000), we found that constrained scaling 
did not produce outliers, so we used mean response values 
for scaling the responses instead of medians. From a visual 
inspection of the graphed functions from the test phase trials 
it was clear that four observers produced functions with 
relatively large nonlinear trends (see Figure 1). This is 
actually not uncommon in ME (Luce, & Mo, 1965). The 
normal procedure would be to throw them out or to average 
across them, along with the functions of the other observers. 
However, since we are interested in individual differences, 
we note that these four were less able than the other 
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observers to exploit the external scaling aids offered by 
constrained scaling. This indicates that individual 
differences in strategy, cognitive ability, and/or effort still 
play a role. Since these deviations were not unusually large 
by ME standards we analyzed the data both with them in and 
with them out. The remaining six observers produced 
functions that could reasonably be treated as linear (see 
Figure 1). 

West et al reviewed 14 studies that provided individual 
observer results for ME and CMM, and calculated the 
standard deviation divided by the mean for the individual 
exponent values from each study. As a basis for comparison 
we took these values and calculated the mean, which was 
0.333, the standard deviation, which was 0.080, and the 0.05 
confidence interval, which was plus or minus 0.042. Even 
with the four linearly deviant observers included, the mean 
of the individual exponent values divided by the standard 
deviation was 0.190 for the Fraser clip and 0.150 for the 
children running clip, significantly lower than what would 
be expected with ME or CMM. Without the four deviants 
included, the mean divided by the standard deviation was 
0.076 for the Fraser clip and 0.047 for the children running 
clip. These values were similar to the mean divided by 
standard deviation values found by West et al (2000) using 
constrained scaling (these values were 0.045, 0.066, and 
0.152).  

Also, because of the low variability we were able to detect 
a small but significant difference in exponent values both 
with (P < 0.01) and without (P = 0.01) the four linearly 
deviant observers, indicating that the exponent values for the 
slower video were higher than the exponent values for the 
faster video. This finding illustrates the advantage of having 
more precise ways of measuring perceived magnitudes 
(note, since the purpose of this paper is to examine the 
cognitive aspects of scaling, we will not discuss why this 
difference might exist). 

Discussion 
These findings replicate the West et al (2000) finding that 
augmenting the cognitive abilities of the observer can 
significantly reduce inter-observer variability and, more 
generally, supports the four theoretical assumptions behind 
constrained scaling (see above). The results also support the 
hypothesis that people can maintain scales in memory by 
memorizing a limited number of S/R pairs. By providing 
support to remember five S/R pairs we significantly reduced 
inter-observer variability to a level comparable to that found 
in West et al (2000), who provided feedback for a large 
number of responses. Other strategies may also be possible 
but, at the very least, this result shows that providing support 
for remembering a small number of S/R pairs can provide a 
significant advantage.  

In terms of strategy, examining the actual responses that 
the observers made revealed that they took a category 
scaling approach. Two observers used the five R values they 
had learned almost exclusively. The other observers added 
only a few new R values and some stopped using one or two 
of the learned R values. The new R values also tended to be 
used as categories, that is, they were used repeatedly. This 
was quite different from the West et al (2000) observers who 

responded with a wide range of R values. From this it would 
appear that observers prefer to continue using a response 
strategy that resembles the one they were trained on. This 
may be due to observers inferring that the number of test 
stimuli will be similar to the number of learning stimuli, or it 
may be that teaching them to respond in a particular way 
creates cognitive structures that are not amenable for doing 
the task in other ways. 

The fact that observers were able to respond accurately 
using a category scaling strategy, on a scale that was 
determined using ME, suggests that training and providing 
feedback to observers eliminates the factors that cause 
category scaling to produce different results from ME.  This 
result is quite promising as it suggests that providing 
external support for the scaling process can wipe out 
methodologically induced biases. 

Conclusions 
These results provide compelling evidence that cognitively 
augmenting observers can substantially increase the 
reliability of psychophysical scaling, which is particularly 
important for measuring and studying individual differences 
and small group differences (as in this study). We also 
believe that this approach will eventually provide a means 
for assessing the validity of the scales as well. This is based 
the assumption that the further a learned scale is from the 
natural scale, the more cognitive resources will be required 
to maintain the mapping (C) from P to R (for some evidence 
of this see Marks, Galanter, & Baird, 1995; West et al, 
2000).  To improve further we need to better understand the 
strategies available to observers, and how to more 
effectively intervene to support the scaling process. 
Eventually, we hope that this approach will lead to 
psychophysical measurement techniques that have the same 
unambiguous status as physical measuring techniques. 
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