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Abstract

Fourteen statistics novices were asked to solve three statistics
word problems under standard (SGS) or reduced (RGS) goal
specificity. Later, they were asked to solve both structurally
identical and structurally different transfer problems, and their
structural knowledge of the domain was assessed. Results
indicate that participants in the RGS condition performed
better on the structurally different transfer problems and had
acquired structural knowledge more similar to that of a
domain expert. These results extend previous work in
showing that the schematic knowledge acquired under
reduced goal specificity training is more general than
previously realized. The goal specificity effect is discussed in
terms of the attentional focus required to solve RGS and SGS
problems.

Introduction

Most theorists agree that schemas form the basis for
problem solving expertise. Schemas are typically described
as knowledge structures that represent generalized concepts,
and are comprised of facts and procedures as well as the
interrelationships among those facts and procedures. With
respect to problem solving, it is generally accepted that
schemas allow: (1) problems to be classified according to
the general principles required for their solution (Chi,
Feltovich, & Glaser, 1981), (2) solution planning (Priest, &
Lindsay, 1992), and (3) use of forward-chained solutions
(Koedinger, & Anderson, 1990), all of which are hallmarks
of expertise. Thus, an important issue for cognitive
scientists and educators alike is to understand how schemas
are learned.

Cognitive Load Theory (CLT) has been advanced to
describe the relationship between problem solving and
learning (Sweller, & Levine, 1982; Sweller, 1988). CLT
posits that acquisition of schematic knowledge during
problem solving is not automatic; rather, it requires a certain
amount of cognitive resources. Therefore, if a problem
solving task or strategy demands a great deal of cognitive
resources then learning will be impaired relative to a task or
strategy that carries a low cognitive load.

CLT has been used to explain the finding that reducing
the specificity of goals enhances problem solving
performance, otherwise know as the goal specificity effect.
The goal specificity effect has been shown in maze learning
(Sweller, & Levine, 1982), kinematics (Sweller, Mawer, &
Ward, 1983), geometry (Ayres, 1993; Sweller, Mawer, &

Ward, 1983), trigonometry (Owen, & Sweller, 1985;
Sweller, 1988), and several more complex, dynamic tasks
(Miller, Lehman, & Koedinger, 1999; Vollmeyer, Burns, &
Holyoak, 1996).  According to CLT, problems with
standard goal specificity (SGS), in which problem solvers
are given values for several variables and asked to solve for
the value of a specific unknown variable, encourages use of
a means-ends strategy. Under a means-ends strategy,
problem solvers' attention is focused on reducing the
difference between the current problem state and the goal.
Moves are guided by the goal state, which requires solvers
to keep in memory the goal, any subgoals, and the current
problem state. Because this task is cognitively demanding,
it detracts from the learning of relations that are relevant for
schema acquisition. = Reduced goal specificity (RGS)
problems, in which problem solvers are asked to solve for
the value of as many unknown variables as possible rather
than the value of a specific unknown variable, eliminate the
possibility of a means-ends strategy. Instead, they require a
forward-working strategy where moves are generated solely
by the current problem state. Because this strategy is less
cognitively demanding (see Sweller, 1988), resources are
available for learning the relations relevant to schema
acquisition, namely, relations between the appropriate
operators and problem states.

According to CLT, training with RGS problems is more
likely to lead to schema acquisition than training with SGS
problems, where schemas are defined as knowledge of
problem states and their associated operators. However, this
definition of a schema is limited in that it is only applicable
to problems with similar structure as those encountered
during training (i.e., problems that share, at least some of,
the same problem states as the training problems). We will
call this the limited schema view. Actually, it is difficult to
distinguish this view from one that simply postulates the
storage of exemplar solutions. If one remembers previous
problem solutions, they then have knowledge of problem
states and their associated moves/operators...the same
information contained in limited schemas. Under this
exemplar view, the goal specificity effect can be explained
by the notion that RGS solutions are easier to remember
than SGS solutions (since they require less cognitive load to
perform, more resources are available to store them), and
they are forward-working. A third alternative is that
schemas are acquired under RGS training and that they are



more general than previously believed. We will refer to this
possibility as the general schema view.

Most of the previous studies investigating the goal
specificity effect cannot distinguish among these views,
because they have predominantly looked at transfer
performance on problems that were structural identical to
training problems. For example, Sweller, et al. (1983)
showed that novices who practiced with RGS kinematics
and geometry problems were more likely to work forward
on structurally identical test problems than those who
practiced with SGS problems. Although consistent with the
idea that RGS participants had acquired schemas (either
limited or more general), this result is also compatible with
the exemplar view. Since novices tend to use means-ends
analysis on standard problems, the solutions to SGS practice
problems will be backward-chained, whereas since RGS
problems eliminate the possibility of using a means-ends
strategy, the solutions to RGS practice problems will be
forward-chained. Applying these stored exemplar solutions
to test problems would result in forward solutions for RGS
participants and backward solutions for SGS participants.
Schematic knowledge is not required to account for this
finding.

If we assume that the greater cognitive load associated
with SGS problems interferes with storage of exemplar
solutions, then an exemplar view can also account for the
findings that SGS training leads to more errors on
isomorphic transfer test problems (Owen, & Sweller, 1985),
fewer practice problems accurately recalled (Sweller, 1988),
and other related findings.

Furthermore, none of the results mentioned above can
distinguish between the limited and general schema views,
because both limited and general schemas would apply
equally well to problems that are structurally the same as the
problems from which the schemas were generated.
Structurally different transfer problems, though, would help
make the distinction. Limited schemas, comprised of
relations between previously encountered problem states
and associated operators, would not apply to structurally
different problems that have different problem states and
different solutions. Exemplar solutions of training problems
would not apply either. General schemas that are based on
abstract principles, though, would apply to structurally
different problems, so long as they could be solved with the
same general principle. One finding that may favor the
general schema view comes from Owen and Sweller (1985).
They trained participants to solve trigonometry problems
under either SGS or RGS conditions. Training problems
gave values for one side and one angle in a right triangle,
and participants were asked to solve for either a specific
side of an adjacent triangle, or to solve for the values of as
many sides as possible, using the trigonometric ratios sine,
cosine, and tangent. Later, performance was tested on
structurally identical transfer problems, for which RGS
participants showed an advantage. They also tested
performance on a diagram construction task in which
participants were given values for two sides of a right

triangle and were asked to draw the triangle, labeling the
values for all three sides. Due to the fact that RGS
participants fared better on this diagram construction task as
well, the authors concluded that mathematical schema
acquisition involves learning mathematical principles,
where mathematical principles seem more akin to general
than limited schemas. Unfortunately, Owen and Sweller
(1985) did not control for the number of sides solved for
during training. Because the RGS condition tended to solve
significantly more sides during training, any differences
upon testing could be attributed to amount of practice rather
than goal specificity per se. In the present study, we will
use transfer problems that are structurally different from
training problems, while also controlling for amount of
practice.

Another issue with CLT that remains largely untested is
the description of the processes used to account for the
effect of goal specificity on schema acquisition. Although
Sweller (1988) constructed computational models of SGS
and RGS problem solving to show that solving SGS
problems do indeed require more cognitive resources, it is
nonetheless possible that the functional difference between
SGS and RSG problems is solely where attention is focused
when solving such problems, and does not depend on the
amount of resources available to encode problem
information during that time. That is, SGS training might
produce just as much learning as RGS training, but if
attention is focused in the wrong places, then SGS training
will result in erroneous learning. In order to examine this
idea, we will employ a structural knowledge measure that is
measured independent of problem solving performance, and
that allows relatively specific questions about the process of
schema acquisition to be tested.

Structural knowledge refers to knowledge of the
interrelationships among domain concepts, and is well
correlated with domain expertise (for a review, see
Goldsmith, Johnson, & Acton, 1991). As such, it is likely to
be at least a subset of the knowledge contained in schemas.
Trumpower (2000) has shown how network representations
of structural knowledge can be used to assess schema
acquisition.  Briefly, the process involves comparing
participants’ knowledge networks with those of domain
experts. Figure 1 displays a knowledge network of the
statistics concepts used in the present study, derived from
two statistics experts.
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Figure 1: Expert knowledge network

According to an attentional focus explanation of the goal
specificity effect, RGS training allows learning of the
relationships between problem states (i.e., the subset of



variables that are known at a given time) and appropriate
operators (i.e., the equation that can be used at that same
time to solve for an unknown). Thus, we might predict that
RGS training will result in learning of the relations among
concepts contained in the equations used to solve RGS
problems, since the equations are the operators and contain
the currently known variables. By inspecting the three
equations needed to solve training problems in the current
study (listed below in the Problem Domain & Materials
section), we see that relations among concepts in those
equations correspond almost perfectly with the pattern of
links in the expert network shown above. Therefore, we
predict that participants undergoing RGS training will
acquire knowledge structures that look very similar to the
expert network shown above.

For SGS training, an attentional focus explanation says
that attention is directed toward the goal and reducing
differences between current states and the goal, at the
expense of noticing the local relationships described above.
Therefore, we predict that SGS training will result in
making associations between all problem states or known
variables and the goal (e.g., links between a-SSs, dfs-SSs,
MSp-SSp, MSy-SSs, F-SS3), but a failure to notice the
relevant relations between non-goal concepts (e.g., links
between a-dfp, dfp -MSp, F- MSp, F- MSy).

To summarize, the current study addresses three
questions: (1) Does goal specificity have its effects
primarily on storage of exemplar solutions or schema
acquisition?, (2) If the effects are on schema acquisition,
then how general are the acquired schemas?, and (3) Can the
observed effects be better accounted for by the processes
proposed in CLT or an attentional focus explanation? In
order to examine these questions, we assessed problem
solving performance on transfer problems that were
structurally different than training problems, and used a
measure of schematic knowledge that is independent of
problem solving performance.

Method

Participants

Fourteen undergraduate students enrolled in an Introductory
Psychology course at the University of New Mexico
participated in this study for partial course credit. None of
them had previously completed a college-level statistics
course. Half of the participants were randomly assigned to
receive training with standard goal specificity problems
(SGS), while the other half received training with reduced
goal specificity problems (RGS).

Problem Solving Domain & Materials

The problem solving domain used in the present study was
one-way analysis of variance (ANOVA). All problems used
were relatively simple word problems that could be solved
with the following three equations: dfz=a-1, MSz=SSp/df,
and F=MSy/MSy, where a = number of groups, dfy =
between groups degrees of freedom, MSy = between groups

mean square, SSp = between groups sum of squares, F = F-
ratio, and MS), = within groups mean square.

All training problems gave values for a, MSy, and F.
Those used in the SGS condition asked to solve for SSp,
while those used in the RGS condition asked to solve for as
many unknown values as possible. Notice that in both
conditions successful solutions required participants to first
solve for dfy and MSj (in either order), and then solve for
SSp.

Structurally identical transfer problems for both
conditions were identical in structure to the training
problems received in the SGS condition during training in
that they gave values for a, MSy, and F, and asked to solve
for SSz.  Structurally different transfer problems were
different in structure from the training problems in that they
gave values for different variables, and asked to solve for a
different variable. Thus, structurally different transfer
problems still required use of the same three equations to
solve, but they required that the equations be used in a
different order and that the equations be manipulated in a
different way than was done during training.

A relatedness rating task was also used in which
participants were asked to rate the relatedness of all pairwise
combinations of the six statistics terms contained in the
equations listed above on a 5-point scale (1="Not at all
related”, 5="Very related”).

Procedure

All participants were tested individually in the presence of
an experimenter. Participants were first asked to solve three
training problems. During this training period, they were
given a Rolodex containing separate note cards containing
each of the three equations necessary for solution of the
problems, as well as a calculator to perform computations.
Participants were allowed five minutes to solve each
problem.  Within this time, the experimenter would
immediately notify the participant if they made a mistake,
but would not tell them the nature of the mistake. If the
problem was not solved within five minutes, the
experimenter would guide them to the solution. After
solving a problem, participants went on to the next problem
and could not refer back to previous problems.

Upon completion of the third training problem,
participants were asked to complete the relatedness rating
task, which took approximately five minutes. The equations
were not made available to participants during completion
of this task.

Next, participants were asked to solve four transfer
problems (2 structurally identical, 2 structurally different).
Approximately half of the participants in each condition
were given the two structurally identical transfer problems
first, while the other half were given the two structurally
different transfer problems first. Participants were again
given the necessary equations, and problem solving
proceeded as during training.



Results

Separate one-way ANOVAs were used to compare the SGS
and RGS conditions on time to solve each of the training
problems, and on time to solve structurally identical and
structurally different transfer problems.  Additionally,
separate one-way ANOVAs were used to compare the
number of various kinds of links found in the structural
knowledge representations of participants in the SGS and
RGS conditions. A .05 significance level was used for all
tests.

Training

Participants in the RGS condition solved the first two
training problems significantly faster than those in the SGS
condition, F(1,12)=5.03, p=.045 and F(1,12)=6.89, p=.022,
respectively for the first and second training problem. This
is consistent with the idea that SGS problems require greater
cognitive load, and should therefore require more time to
solve. There was no significant difference between the SGS
and RGS conditions on time to solve the final training
problem, F(1,12)=1.52, p>.10, suggesting that participants
in both conditions had acquired similarly efficient solution
procedures by the end of training (see Table 1).

Table 1: Time (in seconds) to solve training, structurally
identical transfer (S-I), and structurally different transfer
(S-D) problems as a function of training condition.

Problem SGS RGS
Mean (SD) Mean (SD)
First training 300.00 (0.00) 238.14* (72.94)
Second training 219.00 (58.25) 145.00* (46.59)
Third training 139.00 (50.39) 106.29 (48.85)

S-I transfer
S-D transfer
*p<.05

108.29 (31.30)
254.93 (45.27)

99.64 (55.44)
164.93 (78.52)*

Structurally Identical Transfer

There was no difference between the SGS and RGS
conditions on average time to solve structurally identical
transfer problems, F<1 (see Table 1). Apparently, both
conditions learned to solve problems of the structure that
they were trained on equally well. Although CLT (both the
limited schema and general schema views) had predicted
better performance from the RGS condition, it is possible
that the task was too easy to disrupt learning in the SGS
condition. If so, then we would expect no difference on the
structurally different transfer problems.

Structurally Different Transfer

Participants in the RGS condition solved the structurally
different transfer problems significantly faster than those in
the SGS condition, F(1,12)=6.90, p=.022 (see Table 1).
This suggests that although both conditions learned to solve
problems structured like the training problems equally well,
those in the RGS condition gained qualitatively different

knowledge that allowed superior transfer to structurally
different problems. This is in contrast to both the limited
schema and exemplar views. Schemas comprised of
knowledge of problem states encountered during training
and associated operators would not apply to the structurally
different transfer problems, since these problems involved
different problem states. Neither would exemplar solutions
acquired during training apply, since the structurally
different transfer problems required different solutions.
Based on these results, it appears that the schematic
knowledge acquired during RGS training is more general
than previously thought.

Structural Knowledge

Participant’s relatedness ratings were submitted to the
Pathfinder scaling algorithm to generate a knowledge
network for each (for a review of Pathfinder, see
Schvaneveldt, 1990). These networks were then analyzed
for the number of: (1) critical links with the training goal,
(2) irrelevant links with the training goal, and (3) critical
links with non-goal concepts (see Table 2).

There are two critical links with the training goal (SS3)
found in the expert network, one with each of the subgoals,
(dfs and MSp). There was no difference in the mean number
of these links possessed by participants in the SGS and RGS
conditions, F<Il, as predicted by an attentional focus
explanation.

Four other irrelevant links (i.e., those not found in the
expert network) with the training goal are possible. As
predicted by the attentional focus explanation, participants
in the SGS condition possessed significantly more of these
irrelevant links than participants in the RGS condition,
F(1,12)=7.59, p=.017.

Four other critical links, not involving the training goal,
are present in the expert network. Of these links,
participants in the SGS condition possessed significantly
fewer than participants in the RGS condition, F(1,12)=7.36,
p=.019, again consistent with predictions made by the
attentional focus explanation.

Taken together, these structural knowledge results are
consistent with an attentional focus explanation. Under
SGS training, attention is focused on the goal, resulting in
both relevant and irrelevant associations being made with
the goal, at the expense of other critical schematic
associations. RGS training, on the other hand, focuses
attention precisely where it is needed for schema
acquisition, on the local relations described by the
equations.

Table 2: Number of links as a function of training condition.

Link type SGS RGS
Mean (SD) Mean (SD)
Critical, with goal 1.14 (.69) 1.43 (.53)
Irrelevant, with goal 1.57 (.98) .29 ((98)*
Critical, with non-goals 1.71 (.76) 3.00 (1.00)*

*p<.05



Discussion

The results of the current study support and extend previous
studies of the goal specificity effect. Reducing the
specificity of training goals led to problem solving
advantages. However, the advantage was found on transfer
problems that were structurally different than training
problems. Thus, it is argued that the schematic knowledge
that is more readily acquired under RGS than SGS training
is more general than previously considered.

These results are consistent with Owen and Sweller’s
(1985) contention that schema acquisition involves learning
abstract principles. It appears that these principles are not
tied to problems of a specific form. With respect to the
structural knowledge measure employed in the current
study, results suggest that the acquired relational
information is not unidirectional.  Such findings are
important for theories of expertise, since we expect expert-
like schemas to be applicable to a wide range of novel
problems, not just those encountered in the past. If schemas
were limited, then experts would gain no advantage at
solving novel problems. The very basis for schema theory
is that experts possess not only more knowledge through
experience, but also better structured knowledge.

The finding that RGS training leads to the acquisition of
general knowledge that can be transferred to structurally
different problems than encountered during training is
pedagogically important as well. Despite being one of the
foremost goals of educators, the difficulty in obtaining
transfer to non-isomorphic problems has been well
documented (e.g., Gick, & Holyoak, 1983).

The structural knowledge results obtained in the current
study are consistent with an attentional focus explanation
for the goal specificity effect. It should be pointed out that
although the attentional processes invoked by this
explanation are described in CLT, they are not dependent
upon greater cognitive load being present in the SGS
condition. Instead, the present results can be explained by
SGS training focusing attention on pedagogically irrelevant
relations, and RGS focusing attention towards
pedagogically relevant ones. This explanation is similar to
one advanced by Miller, et al. (1999). They had participants
learn about electrical fields by interacting with a microworld
called Electronic Field Hockey (EFH). Participants who
practiced moving a puck around the EFH workspace in a
no-goal condition performed better on a subsequent test of
declarative and procedural knowledge of electrical fields
than those who practiced by directing the puck around
obstacles and into a specific goal. However, participants
who practiced by trying to make the puck follow a well-
specifed path denoted by a line leading around obstacles and
into a goal, performed almost as well as those in the no-goal
condition. Miller, et al. (1999) posit that eliminating the
goal worked by requiring interaction with the pedagogically
relevant aspects of EFH, just like the specific-path
condition. In other words, the specific-path condition
directs attention away from the ultimate goal toward a series
of more immediate subgoals. By directing attention from

more distant goals, it can be focused on local relations
involved in solving current subgoals. Similarly, eliminating
distant goals altogether allows attention to be focused on
immediate local relations, which turn out to be the
pedagogically relevant ones.

The results of Miller, et al. (1999) may also be explained
by a cognitive load interpretation. If following a specific
path shifts attention completely away from the ultimate
goal, then the task becomes one of meeting a continuous
series of smaller goals. If attention is directed at solving
each of the immediate goals (i.e., staying on the path), and if
each of these small goals can be solved without use of a
means-ends strategy, then the specific-path condition would
require no more cognitive resources than the no-goal
condition. It may be argued that problem solvers solving
no-goal problems do adopt a strategy of setting a series of
small goals for themselves that can be solved in a forward-
chained manner.

Thus, although neither the present results nor the results
of Miller, et al. (1999) require an explanation based on
cognitive load, they do not rule it out as a possibility. One
way to resolve the issue concerning whether RGS training
works due to reduced cognitive load or to a pedagogically
relevant focus of attention would be through a dual task
paradigm. Problem solvers could be asked to solve RGS
problems either while concurrently performing another
resource demanding task or not. If the concurrent task
interferes with learning in a manner consistent with SGS
training, then the cognitive load explanation would be
justified.

Overall, this study indicates that eliminating specific
goals during training can benefit schema acquisition, and
that this advantage is more general than previously
considered. Training on problems with non-specific goals
allowed better transfer to structurally different problems. It
is concluded that non-specific goals allow learning
pedagogically relevant, local relations, as opposed to
standard problems which interfere with such learning. It is
suggested that problems with non-specific goals provide this
advantage by focusing attention on relations necessary for
schema acquisition.
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