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Abstract

This study investigates the strategies used by expert scientists
to evaluate hypotheses when they analyze data. We used an in
vivo methodology to observe experts' on-line thinking. In
contrast to the results of laboratory studies of scientific
reasoning, we found that the scientists rarely used
experimentation but relied on a variety of other strategies,
including conceptual simulation. This strategy was most
prevalent in evaluating a hypothesis about a phenomenon that
violated the scientists' expectations.

Introduction

How do scientists test and evaluate hypotheses? One
obvious answer is that they design and conduct experiments.
The canonical method of scientific inquiry is represented by
a cycle of hypothesis generation, experimentation, data
analysis and hypothesis refinement that has its roots in the
philosophy of science (Popper, 1956) and is frequently
taught explicitly to students (Okada & Shimokido, 2001).

Psychologists investigating the processes of scientific
reasoning have also been influenced by the "scientific
method" and so have focused on experimentation in
investigating hypothesis-evaluation strategies,. There have
been numerous laboratory studies of scientific reasoning in
which participants are asked to find the cause of a given
effect (e.g. Dunbar, 1993; Schunn & Anderson, 1999), or to
identify the role of a causal mechanism (e.g., Klahr &
Dunbar, 1988; Trafton & Trickett, 2001a; Trickett, Trafton,
& Raymond, 1998; Vollmeyer, Burns, & Holyoak, 1996). In
these studies, participants propose hypotheses, then design
and run experiments to test them

There are several reasons why participants in laboratory
studies of science use experimentation to evaluate
hypotheses. The instructions in these studies explicitly tell
participants to run experiments. Participants have little
choice—they are provided with limited time, equipment,
and materials. Moreover, they are frequently asked to reason
in a domain about which they have no relevant knowledge.
Running an experiment is also “cheap”—the variables are
already identified, it involves a few mouse-clicks, and the
results are almost instantaneous and easy to interpret.

However, practicing scientists have a wider array of
options. They can select their own methods and equipment,
and, as experts, they have domain knowledge to guide their
problem-solving. Experimentation may no¢ be the best
strategy, as it is expensive in terms of planning, paperwork,
personnel, the need for special equipment, the complexity of
data interpretation, and the high cost of errors.
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What strategies besides experimentation might scientists
use to evaluate hypotheses? Prior research on scientific
thinking suggests several possibilities. One likely strategy is
extracting information from data, whether by reading off
information, transforming data, replotting data), or looking
at data that is not currently on view but that is available.
Trafton found that expert meteorologists spent considerable
time on information extraction (Trafton et al., 2000).

Given the cost of experimentation, it is also likely that
scientists use different strategies to reason about hypotheses
before committing to an experiment. Analogical reasoning
has been shown to be a powerful strategy in science
(Clement, 1988; Dunbar, 1997; Gentner et al., 1997). It
allows people to make inferences about an unknown entity
based upon their knowledge of a different, known entity
(Gentner, 1983) and has been proposed as a mechanism of
conceptual change in numerous historic scientific advances
(Gentner et al., 1997; Nersessian, 1992; Thagard, 1992). It
is also a strategy used by successful contemporary scientists
in scientific problem-solving, such as hypothesis generation
(Clement, 1988), experimental design (Dunbar, 1997), and
discovery itself (Ueda, 1997). Given its widespread use in
other aspects of scientific reasoning, it seems plausible that
analogy may be used as a hypothesis-testing strategy;
however, whether this is the case remains an open question.

Conceptual simulation has also been shown to be a means
of successful scientific reasoning (Nersessian, 1999; Qin &
Simon, 1990; Schraagen, 1993). A conceptual simulation is
a mentally constructed model of a phenomenon or data
representation that is manipulated in such a way that there is
a resulting change of state (a formal definition is provided
below). As with analogy, conceptual simulations have been
proposed as a strategy used by both historical and practicing
scientists. In historical reconstructions, Ippolito and Tweney
have developed a model of insight that involves the
construction of a dynamic, “runnable” mental model
(Ippolito & Tweney, 1995), and Nersessian proposes that
scientists construct and conduct mental experiments that
yield usable data, in a process that mirrors an empirical
experiment (Nersessian, 1999). In contemporary scientific
problem-solving, Hegarty has found that people develop
sequences of mental animations (Hegarty, 1992). Qin and
Simon (1990) found that people used a series of mental
processes of manipulation, control, and inspection in order
to extract information that was only implicit in their initial
mental image. Similarly, participants in Schraagen's study
of experimental design used a strategy of mental simulation
to project what experimental procedures would look like
under particular circumstances (Schraagen, 1993). As with



analogy, how much scientists use conceptual simulations in
evaluating hypotheses remains an open question.

One can imagine several other means whereby scientists
might evaluate a hypothesis. For example, a scientist might
consult a colleague or other expert or attempt to tie the
hypothesis into current theoretical understanding of the
domain. A scientist might also defer evaluation until some
later time or even abandon a hypothesis altogether.

The purpose of this research is to investigate the means by
which scientists evaluate hypotheses. In order to investigate
this issue, we adapted Dunbar’s in vivo methodology
(Dunbar, 1997), an observational technique developed to
study creative and complex thinking in a real-world context.
The main advantage of Dunbar's method is that it allows the
collection of on-line measures of thinking by experts
engaged in authentic scientific tasks.

Method

We chose to investigate scientists at work during the data
analysis phase of their research because it is a stage at which
a great deal of scientific reasoning takes place. Scientists
must integrate their expectations about the data with the
actual data; it is thus likely to be rich in hypotheses.

We analyzed 8 different datasets from 9 scientists
working in one of 4 domains—neuroscience, astronomy,
computational fluid dynamics (CFD), and psychology. Each
dataset consists of a recorded session in which one or more
scientists analyzed their data.

Participants were all working scientists recruited through
personal connection of the experimenters. Either they were
expert scientists who had earned their PhDs more than 6
years previously, or they were graduate students working
alongside one of these experts. Only experts with a Ph.D.
worked alone; in the group sessions involving graduate
students, the scientist in charge always had a Ph.D.

Participants agreed to contact a member of the research
team when they were ready to conduct some analysis of
recently acquired data, and an experimenter visited the
scientists at their regular work location. Participants
working alone were trained to give talk-aloud verbal
protocols. For scientists working in groups, we recorded
their conversation as they engaged in scientific discussion
about their data. All participants were instructed to carry out
their work without explanation to the experimenter
(Ericsson & Simon, 1993). It is important to emphasize that
all participants were performing their usual tasks in the
manner in which they typically did so. At the beginning of
the session, some participants gave the experimenter an
explanatory overview of the data and the questions to be
resolved, and after the session, the experimenter interviewed
the participants to gain clarification about any uncertainties.
During the analysis session itself, however, the
experimenter did not interrupt the participants.

All utterances were later transcribed and segmented
according to complete thought. All segments were coded by
2 coders as on-task (data analysis) or off-task (e.g., software
management, phone interruptions, jokes, etc.). Inter-rater
reliability for this coding was more than 95%. Introductory

comments from the scientists to the experimenter and post-
session interviews of the scientists were excluded from
analysis. The number and percentage of on-task utterances,
the number of participating scientists, and the duration of
the relevant portion of each individual session are reported
in Table 1. Finally, a coding scheme (described below) was
developed to examine how the scientists evaluated
hypotheses they developed in the course of analyzing data.

Table 1: Characteristics of datasets

Domain Utterances: Time ‘ #’
On-Task Total | (mins) | scientists

Astronomy 649 859 49 2
CFD sub 430 954 39 1
CFD laser 1 172 400 15 1
CFD laser 2 184 249 13 1
fMRI 317 373 55 2
Neuroscience 219 343 54 2
Psychology 1 482 541 31 3
Psychology 2 914 1426 75 2

Although each scientist or group used different tools, their
tasks shared several characteristics. All the scientists were
analyzing data that they themselves had collected, from
observations, from a controlled experiment, or from running
a computational model. They displayed this data using their
regular tools, whether custom-built visualization programs,
while others used widely available commercial products,
such as Microsoft's Excel. Figure 1 shows an example of the
type of data examined by the astronomers. Visualizations
used in other domains were similarly complex.

Figure 1: Example of data examined by astronomers.
Radio data (contour lines) are laid over optical data.




Almost all sessions represented the initial investigation of
this data (the exception was the second CFD session, which
was a follow-up to the first session). Although in some
sessions the scientists did not have strong a priori beliefs
about the data (these sessions were thus exploratory), in
others, the scientists did approach the task with particular
hypotheses that they expected to be supported by the data. It
is interesting to note, however, that none of the scientists
performed any statistical analyses

Coding Scheme

In addition to coding all segments as on- or off-task, we
coded the following (see Table 2 for examples):

Table 2: Examples of coding scheme
(Coded utterance in italics)

Code Utterance
You'd think [the number of
reclassifications] would go up for condition
Hypothesis | C, but it didn't...So maybe the subjects are
having a better memory of the ones they've
already done (Psychology 2)
Do you think it’s worth getting some more
Data | . .
collection time, just to do an offset plane, or offset
velocity? (Astronomy)
. Well, that’s a really clean neuron,, uh it
Information
. goes down and up and away from the edges
extraction .
(Neuroscience)
Consult | I'm gonna have to discuss it with ah, Robbie
colleague | when he gets back. (CFD submarine)
Tie-in with | OK, so how do these Fourier modes work?
theory | (CFD laser 1)
Analogy . . .
(general) Think of this as a spiral arm (Astronomy)
Anal And, if I’ve got a scaling problem, then it
(ali nmgft}; should show up here too, but it doesn’t
& show up here (CFD submarine)
In a perfect sort of spider diagram, if you
looked at the velocity contours without any
sort of streaming motions, no, what I'm
Conceptual X . ;
. . trying to say is, um, in the absence of
simulation . . )
streaming motions, you’'d probably expect
these lines here to go all the way across,
you know, the ring (Astronomy)

Hypotheses All statements that attempted to explain or
account for a phenomenon identified in the data were coded
as hypotheses. After a hypothesis, utterances that pertain to
(elaborate) that hypothesis were identified. Such utterances
constitute further investigation of the hypothesis and may be
support or oppose the hypothesis. All subsequent utterances
pertaining to a hypothesis were coded as follows:

Data collection Utterances in which the scientist proposed
to collect more data were coded as data collection strategies.
These include statements that propose an experiment, plans

to run such an experiment, or plans to collect additional data
for an experiment that has already been run (e.g., increasing
the sample size or making some other adjustment) or to
collect more observational data. Data collection strategies
also include plans to build and run computational models.

Information extraction Statements that "read off" data
from the visible display (i.e., extract information) were
coded as information extraction (Trafton et al, in press). In
addition, we coded as information extraction strategies
statements that refer to looking at data in a different way
(e.g., replotting the data or displaying it in a different
visualization), to "tweaking" data (by transformation,
removing outliers, etc.), or to looking at data that is not
currently on view but that is available.

Consult a colleague Utterances that refer to showing the
data to or asking the opinion of a co-worker or other expert
were coded as consulting a colleague.

Tie-in with theory We expected that expert scientists with a
vast array of domain knowledge stored in memory were
likely to apply that theoretical domain knowledge to their
hypotheses. We coded as “tie-in with theory” utterances that
refer to theoretical underpinnings of the data.

Analogy/Alignment Although different theories of analogy
specify different processes by which the mapping between
source and target occurs (Gentner, 1983; Holyoak, 1985), all
theories share these elements: source, target, and a process
of mapping or alignment. During alignment, the relevant
parts of the source are "applied" to the target. It is thus
during this phase that inferencing occurs, and hence we
expected that scientific reasoning would occur during this
part of the analogical process.

We coded analogies using the definition and coding
scheme developed by Dunbar (1997). According to this
scheme, analogy is coded when a scientist either refers to
another base of knowledge to explain a concept or uses
another base of knowledge to modify a concept. Analogies
were coded at both a "general" level (e.g., "The atom is like
the solar system") and at the level of the actual mapping or
alignment. Statements of similarity (i.e., "X is like Y") were
not considered analogies; they do not provide explanations
nor result in mapping features from the source to the target.

Conceptual Simulations Recall that a conceptual
simulation is a mentally constructed model of a
phenomenon or data representation. The initial
representation may be grounded in memory (e.g., theoretical
knowledge of the phenomenon) or in a mental modification
of the displayed image. The key feature of a conceptual
simulation is that it involves a simulation “run" that alters
the representation, such that there is a change of state.

To code conceptual simulations, we adapted Trafton's
spatial transformation framework (Trafton & Trickett,
2001b; Trafton, Trickett, & Mintz, in press; ). We conducted



a spatial transformation analysis to determine for each on-
task utterance whether the speaker was extracting
information from the display (“read-off") and which mental
operations, if any, were applied to a representation. Some
possibilities include rotation, modification, moving an
image, creating a mental representation, animating features,
and comparison. Conceptual simulations may be defined
formally as a specific sequence of spatial transformations:

1. Create representation: The scientist creates a mental
representation that is not the same as the currently displayed
representation. This representation creation may occur via
the display (it modifies the display), via theory, (a
theoretical construct); or via memory (the scientist recalls a
previously viewed representation).

2. Simulation Run: The scientist builds on the created
representation by spatial transformation (e.g., extend, add,
delete) such that its state is changed.

Note that these codes are not mutually exclusive, and that
the created representation and explicit run can occur in the
same utterance. Approximately 20% of the data has been
coded for conceptual simulations by 2 independent coders,
and initial inter-rater reliability was greater than 90%.

Results

Eight in vivo datasets, comprising 330 minutes of relevant
protocol and 3508 on-task utterances were analyzed. We
coded 68 hypotheses, an average of approximately 1
hypothesis every 5 minutes. 57 hypotheses (84%) were
elaborated; that is, the scientist made some follow-up
utterance(s) that further explored the hypothesis.

How did the scientists evaluate the hypotheses?

We identified and counted the type of utterance following
each hypothesis. Table 3 summarizes this count. Counts
were performed in the following manner: Each individual
instance of information extraction was included in the count.
For example, the sequence “If I look at the average of that,
it’s a nice clean spike” (utterance 1) “and I can look at the
standard deviation around that and it’s pretty tight right in
the middle where it needs to be” (utterance 2) was coded as
two instances of information extraction. Each utterance
identifies a different piece of information extracted
(average, standard deviation). In all other cases, the count
was based on the number of instances of the coded
phenomenon. For example, the sequence “In a perfect sort
of spider diagram” (utterance 1) “if you looked at the
velocity contours without any sort of streaming motions,
(utterance 2) “no, what I’m trying to say is, um, in the
absence of streaming motions,” (utterance 3) “you probably
would expect these lines here [gestures] to go straight
across, you know, the ring” (utterance 4) was coded as one
conceptual simulation because each utterance contributed to,
but did not constitute, one conceptual simulation.

As Table 3 shows, the most frequent strategy used for
evaluating hypotheses was information extraction. This
result is unsurprising, in that the scientists' task was to
examine and analyze the data; one would therefore expect

them to devote a significant amount of time to extracting
information directly from the data itself. Similarly, the
second most frequent strategy, tie-in with theory, might also
be predicted from an understanding of the general
procedures of science. These scientists have significant
expertise and knowledge of the theories relevant to their
domains, and one would expect them to consider new data
in the context of current theoretical understanding of the
domain. One might also expect data collection strategies
(which include plans to design or conduct experiments) to
occur frequently; however, these were one of the /least
frequent strategies used by these scientists.

Table 3: Frequency of hypothesis-evaluation strategies

Strategy Frequency
Information extraction 268
Tie-in with theory 36
Conceptual simulation 34
Analogy/Alignment 30
Data collection 3
Consult a colleague 1

The use of analogy is also of interest. Of the 30 uses of
the analogy/alignment strategy, only one consisted of a
"general" analogy. The remaining 29 were alignments in
which the mapping between source and target actually took
place. This result is consistent with findings of other studies
in which analogy use has been found to be more "local" than
"global" (Dunbar, 1997; Saner & Schunn, 1999). The use of
alignment is discussed in more detail below.

Of particular interest is the relative frequency of the
conceptual simulation strategy. Specifically, this strategy
was linked with the alignment strategy in a sequence that
took the form of conceptual simulation followed by
alignment. There were 34 conceptual simulations and 29
alignments; out of these, there were 27 Conceptual
Simulation —> Alignment sequences. Thus most (79%) of
the conceptual simulations were immediately followed by
an alignment, and most (93%) of the alignments
immediately followed a conceptual simulation.

The frequency of the Conceptual Simulation—>
Alignment sequence suggests a tight coupling between the
two strategies. It appears that the scientists used conceptual
simulation to build a "mental model" of the data, based on
assumption that the hypothesis under evaluation was true.
The scientists used the data on display and their domain
knowledge to investigate the implications of the hypothesis,
by dynamically constructing a mental simulation of a series
of processes. The result of this conceptual simulation was an
inspectable mental model that was used as the source of
comparison with the actual data in the alignment process.
To the extent that the two models aligned, the hypothesis
was supported; if there were relevant differences between
the models, the hypothesis would be rejected. Figure 2
illustrates this process of model-building and alignment.



pertained to some expected phenomenon. The coding

[Scientist proposes pattern criteria for this categorization were adapted from Trickett et
% Hypothesis |—» displayed is caused by al., 2000. In some cases, the scientists made explicit verbal
= streaming motions] reference to the fact that something was expected or
E | unexpected. If there was no explicit reference, domain
§ - Tn a perfect sort of spider knowledge was used to determine Whether a phenom.enon
S Initial . N diagram was expected or not. A phenomenon might be associated
~ | Representation ’ with (i.e., identified as similar or dissimilar to) another
§ phenomenon that had already been established as expected
E or not, or the scientist might question a phenomenon, thus
a if you looked at the velocity implying that it was not what was expected. This coding
2z, - - contours without any sort of scheme was applied by two independent coders to a subset
8 || Simulation I—P streaming motions, no, what of the data (the entire astronomy protocol), and agreement
Run I'm trying to say is, in the between those coders was 87%. Table 4 provides examples.
absence of streaming
motions Table 4: Examples of expectation-violation hypotheses
y()u'd probab]y expect (hypotheses in italics)
Result : these lines here [gestures]
(Source) to go all the way across, Domain Utterance
.................................... you kn()\;v~ the ring_ CFD COmputatiOnal mOdel does not agree Wlth
(submarine) the experiments in the least.../t could be
that the turbulence is all screwed up too.
Alignment p without any sort of, um, That, that's odd...Why isn't there star
: b Astronomy | formation going on there?.../t may be
changes in the . .
because of the large velocity dispersion.

. — slope and stu

Target

Figure 2: Conceptual simulation as source of
comparison in alignment process

Why were conceptual simulations used?

There were 57 elaborated hypotheses in these datasets,
and 34 conceptual simulations. The high frequency with
which conceptual simulation was used as an evaluation
strategy indicates that its use is important and significant.
Under what circumstances did the scientists use this
strategy? Conceptual simulations were used across a variety
of criteria: in both group and individual settings, when the
data consisted of either images or numerical tables, in
exploratory and confirmatory analysis sessions, and across a
variety of domains. It seems, therefore, less likely that
conceptual simulations were motivated by characteristics of
the data than by some characteristic of the task.

An examination of the structure of a conceptual
simulation reveals that its dynamic nature allows an
understanding of the processes involved in constructing the
revised mental representation of the relevant phenomenon.
Understanding process may be particularly important when
there is significant uncertainty. For example, a poorly
understood phenomenon is likely to evoke more
investigation than one that is well understood (Trickett,
Trafton, & Schunn, 2000). Thus we conjectured that the use
of conceptual simulation, with its associated construction of
underlying process, was associated with attempts to account
for a phenomenon that violated the scientists' expectations.

In order to investigate this possibility, the hypotheses in
this dataset were categorized into those that attempted to
account for some expectation that wasn't met, and those that

After we coded the hypotheses as associated with
expectation violation or confirmation, we counted the use of
conceptual simulation and information extraction strategies
to evaluate each type of hypothesis. Note that the purpose of
the analysis was to determine the circumstances under
which each strategy was used, not the frequency with which
the strategy followed a hypothesis; thus, only the first
instance of each strategy use was counted. We performed a
phi coefficient association measure. The correlation between
hypothesis type and conceptual simulation was significant,
ry = 487, p < .01. There was no correlation between
hypothesis type and information extraction, » = .006. Table
5 summarizes the results of this analysis.

Table 5: Strategy use and hypothesis type

Violate Expectation | Confirm Expectation
ancept}lal 29 3
Simulation
Information
Extraction 27 20

General Discussion and Conclusion

The protocol data discussed above have provided a rich
dataset by which to investigate the on-line thinking of
working scientists analyzing data. The scientists develop
hypotheses to account for the data and then evaluate those
hypotheses in light of theoretical knowledge and the data
itself. In contrast to results of laboratory studies of scientific
reasoning, the analyses presented above reveal that the
scientists rarely chose to evaluate hypotheses by




experimentation (including planning experiments). They
frequently used a strategy of conceptual simulation followed
by alignment. In particular, they used the conceptual
simulation-alignment strategy most often to evaluate a
hypothesis about something that violated their expectations.
Conceptual simulation is a process of mental model-
building and manipulation that results in a revised mental
model, or “Qualitative Mental Model” (QMM) (Trafton et
al., 2000). This QMM serves as the source of an analogy
that allowed the scientists to compare the QMM with the
observed data and from there to evaluate the scientist’s
current hypothesis. Insofar as the QMM matched the data,
the scientist found evidence for the hypothesis; in the
absence of a match, the scientist needed to revise the
hypothesis. The alignment between source (QMM) and
target (data) occurred as a series of mental processes, which
amount to a recreation of the processes that underlie the
external manifestation of the phenomenon of interest.
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