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Abstract

In a simulated yard sale task, participants were asked to sell a
series of objects, each of which would attract three customers
making a randomly determined offer. Participants were told to
maximize the total "take" from the sale. The analysis of the
data revealed that high-performing naive participants were
using a strategy that made them relate the current event to the
seemingly irrelevant preceding events. We argue that this
strategy is consistent with Simon’s (1982) notion of
“satisficing heuristic”, which accounted for both partic ipants’
limited computation capacity and the task environment.

Introduction

Intuitive predictions and probabilistic judgments are often
used as tasks to evaluate people’s performance in judgment
and decision-making research, and a common scheme is to
collect incorrect predictions and misjudgments by “setting
up a ‘trap’ that subjects would fall into if they were using a
particular heuristic” (W. Goldstein & Hogarth, 1996, p.26).
In this type of research, predictions derived from probability
theory are often used as an objective criterion, and
violations of the normative models are labeled as biased or
irrational. Tversky and Kahneman’s “heuristics and biases”
program has been the most influential in this field. They
suggested that intuitive predictions and judgments are often
mediated by a small number of distinctive mental operations,
which they called judgmental heuristics. “These
heuristics ... are often useful but they sometimes lead to
characteristic errors or biases” (Kahneman & Tversky, 1996,
p.582). For example, people’s tendency to use a small
sample of preceding events to evaluate an overall process
was attributed to a “representativeness” bias (Tversky &
Kahneman, 1973). This bias has been used to account for
many cognitive behaviors, such as the tendency to see
streaks in random sequences (Gilovich, Vallone & Tversky,
1985), and failure to “acquire a proper notion of regression”
(Tversky & Kahneman, 1973). In a recent study on
gambling behaviors, Thaler & Johnson (1990) concluded
that “current choices are often evaluated with the knowledge
of the outcomes which have preceded them, (but) such
knowledge can often be a handicap” (p.643).

However, the heuristics and biases research program has
recently been controversial, partly because “biases”
sometimes appear highly adaptive. Thus, Tweney &

Doherty (1983) argued that confirmatory tendencies
(“confirmation biases”) can be adaptive when hypotheses
are relatively new and untested. Further, in an extensive
series of studies, Gigerenzer and his colleagues (e.g. 1991,
1994, Gigerenzer & Todd, 1999) found evidence which led
them to strongly disagree with Kahneman and Tversky.
They argued that many seemingly naive “fast and frugal
heuristics” are adaptive in an uncertain environment.
Similarly, Kareev, et al., suggested that the limited capacity
of working memory (hence the use of small samples) could
actually help the early detection of covariation since small
samples of correlated variables are highly skewed (Kareev,
1995; Kareev, Lieberman & Lev, 1997).

The present study followed Simon’s (1982) notion of
“bounded rationality”, which takes into account both
people’s limited computation capacity, and the structure of
task environments. Our findings suggest that under
circumstances when the precise prediction derived from
statistics or probability theory is not the only criterion,
heuristics based on a small sample size can be valuable.
With a satisficing strategy that only needs to “look for a
satisfactory alternative” (Simon, 1982, p.295), naive
participants were able to effectively accomplish the goal of
the task, based on the evaluation of a few preceding events.

Recognizing the Maximum of a Sequence

The statistical properties of sequential lists of evidence
have long been of interest to mathematicians. The dowry
problem (or the secretary problem) is a classic example in
the dynamic programming literature, one analyzed by
Cayley in 1875 (see Ferguson, 1989). As a mathematical
problem, the dowry problem is difficult to solve, requiring
advanced mathematical knowledge and problem solving
ability. Obviously, few, if any, people are likely to work out
the exact stopping point mathematically in an everyday life
situation when a similar problem is encountered. Instead,
without complicated calculations, a player might need to use
“common sense” to make decisions. The present study
adopted a simplified version of the problem — a simulated
“yard-sale” task — to test how naive people evaluate
preceding events and make decisions when facing sequential
events generated by an unknown process.

Participants were asked to sell a series of objects in a
simulated yard sale. Each object attracted three potential
buyers, each of whom came at a different time and made a



different offer. It was explained that offers that were
rejected would not return, so that the task was to guess
which was the best offer, and to take it when available.

Imagine that a person is selling a used car, and that
visitors with different offers come up in a random order.
After 5 offers have been declined in a week, a visitor comes
in with a price higher than any of the previous ones.
Another 5 offers will probably take another week and by
then this car must be sold. Whether to stop waiting and grab
the currently available offer then depends on how satisfied
the car owner feels about the current offer. The only
information available to evaluate the current situation is the
previous encounters. Probably, “common sense” would tell
this car owner to take the offer now, because future offers
might not get better.

This is in effect a satisficing heuristic (Simon, 1990),
which is a strategy that only needs to “look for a satisfactory
alternative” (Simon, 1982, p.295), as suggested by the
notion of bounded rationality. The strategy also fits the
category of fast and frugal heuristics suggested by
ecological rationality, because it makes “a choice from a set
of alternatives encountered sequentially when one does not
know much about the possibilities ahead of time”
(Gigerenzer & Todd, 1999, p.13).

We show that in at least one situation — when the random
process that generates offers is independently and
identically distributed — this satisficing strategy is optimal.
Let R; denote the offer at time i, where i = 0 is the current
offer, -1 is the previous one, +1 is the next one, and so on.
Assume the car owner has encountered m R’s (from R_; to
R-m) and found that R, is the best one so far. If he actually
chooses it, because Ry now is the biggest number in a local
sequence of (m + 1) numbers, in the long run, the value of
such Ry has a good chance to be higher than the population
mean. For a continuous distribution from 0 to 1, the
expected value of such Ry is (m+1)/(m+2). Further, Ry might
just be a good stopping point because the potential gain
from the following n offers after Ry might not have a good
chance to get better. To see this, let 4 denote the event that
Ry is higher than its previous m offers, and B denote the
event that R, is higher than its following n offers. Then two
prior probabilities can be described as

pA)=p (Ry>R., ..., R ) =1/(mt])

pB)=p Ro>Ry, ..., Ry) = (n+1)

And the conditional probability can be calculated as

pBA) =p(AB)/p(4) = (m+1)/(m+n+1)

Note that, with a fixed n, p(B|4) approaches to an asymptote
of 1 as m increases. That is, with an appropriate m (after
considering a certain number of offers), the car owner can
make a better decision than a random guess. For example,
whenm =5,n=35, p(B|4) is 6/11, and this favors selling. To
take the message of p(B|4) in another way, it has suggested
a stopping point, because the coming n offers do not have a
good chance to get better.

Two Optimal Strategies for the Yard Sale Task

With the development above, we can easily determine the
optimal strategy for the yard sale task. Suppose there is only

one trial in the task (only one object for sale). Let P; denote
the first offer, P, the second and P; the third. Before
knowing any of the three offers, the prior probability for
each offer to be the best is equal:
p(Py is best) = p(P, is best) = p(P5 is best) = 1/3

Note that knowing the exact value of P; does not change
this probability. With a random guess, the chance of hitting
any of the three possible prices is 1/3. However, if we skip
Pj and consider P,, the conditional probability is no longer
equal. If P, is higher than P, we should take it immediately
because p(P, > P5 | P, > P;) = 2/3. Otherwise, we should
take P;. A pay-off matrix (Table 1) shows that the optimal
strategy (Option B*) is to always skip P;. If P, is better than
Py, accept P,; if P, is worse, choose P3. This strategy
increases the chance of hitting the best offer to 1/2, with a
1/3 chance of hitting the middle price, and a 1/6 chance of
hitting the lowest one. For convenience, we will refer to this
strategy as the “one deal strategy”.

Table 1: The pay-off matrix for the seller

Rank orders of offers

Option —wr—mr— mv MIH Hov L o
A -1 0 -1 0 1 1 0
B* 0 | | | 0 -1 2
C 1 -1 0 -1 -1 0 2

Note: L is the lowest price, M the middle, H the highest.
“LMH’ means that the lowest price comes first, and so on.
Option A: always choose P; (random guess).

Option B*: choose P, if P, > Py, otherwise choose Ps.
Option C: choose P, if P, < Py, otherwise choose P;

Gains: the seller gains —1 when hitting the lowest offer; 0
for the middle offer; 1 for the highest offer.

However, in a real-life situation, decisions are rarely made
in temporal isolation. Thus, as in a common scheme in
laboratory experimental settings, our yard sale task used
repeated trials to collect multiple data points from each
individual participant. This fact had a significant impact on
the optimal strategy. Recall that the single deal strategy
assumes that in each deal, the order in which three offers
appear is completely independent from any other events,
and requires that the first offer always be ignored. What if
the first offer actually is the best one? With the information
from the preceding trials, we can actually evaluate how
good the first offer is. Calculating an optimal strategy for
deals in a sequence is very complicated because it needs to
specify a distribution of three offers for each deal. However,
when distributions of offers in several deals within a local
sequence are similar, as an approximation, the principles we
presented above can be generalized. In our experiment, we
set the basic price for each object to range from $50 to $100,
with a maximum random fluctuation of + $16. Figure 1
shows the overall distribution of these offers.
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Figure 1 The distribution of offers. N = 5760, x-axis is
price, y-axis is proportion.

The satisficing principle suggests that the offers for
previous objects (in previous trials) can be used to predict
whether you are getting a good offer for the next item. In
other words, when you are considering a first offer for a
table, if you can recall that the last several visitors, who
were seeking other items, were not as generous as the
current customer, you may want to sell the table right now.
It seems quite against a researcher’s intuition that a
normative strategy would predict that previous offers for an
umbrella will help to predict the current offers for a table,
especially when one thinks that the umbrella deal is “over”,
and the two deals should be independent. The answer to this
counter-intuitive puzzle is that the independence is only
partial. While the order in which different offers come out
for each deal is independent, the values of these offers, if
they are in the same or similar distributions, regress to the
population mean.

There are two ways to evaluate the first offer for a given
trial. The ‘local count strategy” is based upon a count of
the number of previous low offers. That is, if the current
first offer is higher than a certain number of previous offers
(for other items), take it. The optimal strategy depends on
the specific distribution of the random offers and the payoff
matrix. In our specific experimental setting, we used
computer simulations and found that the best number of
comparisons was 6. A modification of the local count
strategy, the “moving average strategy” compares the
current offer with the average of previous several offers. We
reasoned that participants might not remember the exact
values of the previous offer but might still have a vague
memory of the overall average in a short local sequence. A
logistic regression over simulated data showed that in our
experiment setting, the value difference of the first offer for
a given item from the mean of the previous 6 offers (for the
other two items), is significant as a predictor of whether the
first offer is the best among all three offers: x2 (1, N = 1888)
= 191.03, p<.01. That is, as this difference increases, this
first offer is more likely to be the best of the three.

With this background, we were ready to find out whether
participants are good at detecting good offers when they
actually appear, and whether they use information from
previous encounters to help their current decision-making.

Method

Participants were 15 undergraduate students from an
introduction to psychology class at Bowling Green State
University, none of whom had taken a course on game
theory or probability theory. We refer to them as novice
participants. One graduate student with extensive experience
in judgment and decision-making and related research also
participated, and will be referred as the expert participant.

The task was conducted using a self-paced computer
program. Each participant completed 120 trials (the number
of objects to be sold). One object was to be sold in each trial.
Participants could take any of the three offers at the time it
was available, but could not go back to an earlier declined
offer. Once an offer was taken, offers thereafter were not
presented. The third offer was forced if the first two were
rejected by the participant, and this was the only case when
participants knew exactly if they had hit the best out of three
offers. After each trial, participants were given a
confirmation that the object was sold at the price they
selected. Participants’ choices and their total earnings were
recorded. An average experiment session lasted about 25
minutes.

Results

Overall Performance To evaluate participants’ overall
performance, we ran a simulation 5000 times using each of
the three strategies: a random guess (randomly choosing one
of the three offers), the “single deal strategy” and the “local
count strategy”. Each time the simulation sold 120 items
using the actual selling list that was used in the experiment.
In the local count strategy, the first offer for each item was
compared with 6 previous offers (which were for the
preceding items ). It was accepted when it was the highest
in the comparison. Otherwise, it was declined and the single
deal strategy was applied. Table 2 shows the simulation
results and the actual participant data.

Table 2 Comparisons between human participants and 3

simulations
Mean Score
(95% confidence Std
Group N interval) Dev.
Random Guess 5000 8889.8+2.0 72.74
Single Deal
Strategy 5000 9160.7 £2.1 75.54
Local count
Strategy 5000 9277.7+34 121.22
Human
Participants 16 9196.0 +31.0 58.15

Note that all 16 participants received a score that was at
least 1.5 SD above the mean of the random guess simulation.

! When an offer was taken before all offers were presented, the
number of items whose offers were being compared may exceed 2.



Each participant’s score was then compared to the result as
if the single deal strategy had been applied to his/her actual
selling list. Ten participants’ scores were higher than the
result of the single deal strategy. Using the standard
deviation resulting from the single deal strategy simulation
(75.54), four participants’ scores were at least 1.5 SD above
the score resulting from the single deal strategy. We will
refer to these four as the “outstanding participants”.

Strategy Use We looked at participants’ choice patterns in
regard to their consistency with the optimal strategies, at
three steps when each offer was being considered. The
following three choices are consistent with the optimal
strategies (single deal or multiple deals):

C1. Accept the 1°' offer if it is better than several previous

offers (for other items).

C2. Decline the I offer, and accept the 2" offer if it is

better than the 1*' one.

C3. Accept the 3™ offer if the 2" is worse than the 1°'.

C2 and C3 are equivalent to the single deal strategy, now
separated into two parts. All three choices above are
consistent with the local sequence strategy. Since choices at
the 3™ offer were forced, whether participants’ actual
choices were consistent with the optimal strategies could be
looked at whether they had met or violated the conditions at
C1 and C2. Note that the single deal strategy actually
forbids C1. Specifically, C1 can result from considering the
count of the previous low offers (the local count strategy) or
the value difference of the first offer compared to the mean
of the previous offers (the local average strategy), and we
tested them separately.

Of all 16 participants, only the expert participant found
the single deal strategy, and followed C2 and C3
consistently. The 15 novice participants, by contrast, often
violated either C2 or C3 or both. However, to a significant
extent, their choices did follow C1. For each individual
novice participant, we ran a logistic regression, using the
value difference of the first offer from the mean of the
previous 6 offers, to predict the participant’s acceptances of
the first offers. Of the 15 participants, 11 showed significant
results at a 0.01 level. On the group level, the result is also
significant: ¥2 (1, N=1770) = 304.69, p<.01. This indicates
that the novices were at least partly using the moving
average strategy.

Since the one deal strategy is a subset of the local count
strategy, we combined the 16 participants’ reactions on all
three offers to see if their behaviors were consistent with the
local count strategy. Table 3.1 and Table 3.2 show that they
did show such consistency when the previous 1 or 6 offers
were compared to the current offer. That is, if the offer
being considered was better than all of the previous 1 or 6
offers, participants were more likely to accept it. Otherwise,
they were more likely to decline it. This finding was
consistent with the local count strategy.

Table 3.1 Compared to previous 1 offer

Worse Better Total

Decline 1773 952 2725
Accept 616 1424 2040
Total 2389 2376 4765

x* =580.177, p<01

Table 3.2 Compared to previous 6 offers

Worse Better Total

Decline 2397 328 2725
Accept 1553 487 2040
Total 3950 815 4765

¥ = 114.140, p<.01

All of the 4 “outstanding participants” were novice
participants. However, they actually outperformed the
expert participant and the one deal strategy. They were
different from the other 11 non-expert participants in that
their behaviors were consistent with one of the requirements
of the one deal strategy (C2 and C3), although not both.
Their gains on the first offers when these offers were the
best had offset the losses from violations of the condition of
C2.

Learning across Trials In a study of the Monty Hall
dilemma, Granberg & Dorr found that participants showed
signs of learning across trials under certain conditions. In
our study, we also looked at whether there were systematic
changes in participants’ choices across trials. Specifically,
we suspected that participants might have learned the
specific distribution of random offers in earlier trials, so that,
in later trials, they only needed to recognize “globally big
numbers” instead of applying their heuristics independently
and locally. For example, an offer of $116 might have been
the best one for an item sold in an early trial. If participants
had this number memorized, they might just pick an offer of
$116 or higher in a later trial, no matter when this offer was
presented (whether it was the 1, 24, or 3¢ offer). If this
were the case, “big wins” might have been over-represented
in terms of participants’ uses of simple heuristics.

However, in our experimental setting, each item's 3 offers
varied around its own basic price. Although these basic
prices could be close, there was no way to tell that $116 was
the best offer for item A only because it had been the best
offer for item B. In other words, recognizing “big numbers”
alone would not help in optimizing the total performance. In
fact, when we partitioned each participant’s 120 trials into 3
blocks with 40 trials each, we did not find any significant
differences across blocks, indicating that learning was
probably not important across trials.



Discussion

None of the 15 novice participants found and consistently
used the one deal strategy. We reasoned that this was
because finding and consistently applying this strategy
required participants to use background knowledge in
probability theory, and they simply did not have this
training. Their consistency with the local sequence strategy
explained why they had good performances. This does not
suggest that they actually did the calculation and found the
correct mathematical solution, because this would require
even more knowledge and computational capacity, not to
mention that it was within a short experiment session.
However, as we suggested before, it is not necessary for a
person to work out the correct mathematical proof to use the
local sequence strategy. Such a strategy could arise from
participants’ everyday life experiences, from which they had
learned a simple satisficing heuristic: “grab any good
chance when you can”.

Surprisingly, the outstanding performers actually
outperformed the expert participant who found and
consistently applied the one deal strategy. This was because
the one deal strategy has to give up all opportunities of
accepting the first offers when they were the best. One
reason that prevented the expert participant from finding the
local sequence strategy might have been that the everyday
life heuristic had been “blocked” by his knowledge of
probabilistic judgment research. This finding is very similar
to Goldstein and Gigerenzer’s (1999) “less-is-more” effect,
that relative ignorance can actually benefit a decision maker.
By isolating the previous encounters from the current
decision-making situation, the expert participant had to
search the infinite probability space again, and previous
experience, either beyond or within the experiment task,
could not help.

In their 1973 paper, Kahneman and Tversky suggested
that “people do not acquire a proper notion of regression, ...
they do not expect regression in many situations where it is
bound to occur”, because “regression effects typically
violate the intuition that the predicted outcome should be
maximally representative of the input information”. On the
contrary, the finding in this study that participants’
behaviors were consistent with the local sequence strategy,
indicated that people do have good intuitions about such
regression, and can also take advantage of it.

We argue that to evaluate naive people’s probabilistic
judgment and decision-making, one has to take into account
both people’s limited computation capacity and the task
environment. One obvious message of the task was that, if
we had used the single deal strategy as the only criterion, we
might have concluded that participants were being irrational,
and would then have to face the puzzling evidence that they
actually performed very well. Instead, the results suggest
that the advantages of the satisficing principle are important
and cannot be ignored. By using these strategies, people can
benefit from their own experiences, even from a small
sample of preceding events.
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