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Abstract

In a simulated yard sale task, participants were asked to sell a 
series of objects, each of which would attract three customers 
making a randomly determined offer. Participants were told to 
maximize the total "take" from the sale. The analysis of the 
data revealed that high-performing naive participants were 
using a strategy that made them relate the current event to the 
seemingly irrelevant preceding events. We argue that this 
strategy is consistent with Simon’s (1982) notion of
“satisficing heuristic”, which accounted for both partic ipants’
limited computation capacity and the task environment.

Introduction
Intuitive predictions and probabilistic judgments are often 

used as tasks to evaluate people’s performance in judgment 
and decision-making research, and a common scheme is to 
collect incorrect predictions and misjudgments by “setting 
up a ‘trap’ that subjects would fall into if they were using a 
particular heuristic” (W. Goldstein & Hogarth, 1996, p.26). 
In this type of research, predictions derived from probability 
theory are often used as an objective criterion, and
violations of the normative models are labeled as biased or 
irrational. Tversky and Kahneman’s “heuristics and biases” 
program has been the most influential in this field. They 
suggested that intuitive predictions and judgments are often 
mediated by a small number of distinctive mental operations, 
which they called judgmental heuristics. “These
heuristics … are often useful but they sometimes lead to 
characteristic errors or biases” (Kahneman & Tversky, 1996, 
p.582). For example, people’s tendency to use a small 
sample of preceding events to evaluate an overall process 
was attributed to a “representativeness” bias (Tversky & 
Kahneman, 1973). This bias has been used to account for 
many cognitive behaviors, such as the tendency to see
streaks in random sequences (Gilovich, Vallone & Tversky, 
1985), and failure to “acquire a proper notion of regression” 
(Tversky & Kahneman, 1973). In a recent study on
gambling behaviors, Thaler & Johnson (1990) concluded 
that “current choices are often evaluated with the knowledge 
of the outcomes which have preceded them, (but) such
knowledge can often be a handicap”  (p.643).

However, the heuristics and biases research program has 
recently been controversial, partly because “biases”
sometimes appear highly adaptive. Thus, Tweney &

Doherty (1983) argued that confirmatory tendencies
(“confirmation biases”) can be adaptive when hypotheses 
are relatively new and untested. Further, in an extensive 
series of studies, Gigerenzer and his colleagues (e.g. 1991, 
1994, Gigerenzer & Todd, 1999) found evidence which led 
them to strongly disagree with Kahneman and Tversky. 
They argued that many seemingly naïve “fast and frugal 
heuristics” are adaptive in an uncertain environment.
Similarly, Kareev, et al., suggested that the limited capacity 
of working memory (hence the use of small samples) could 
actually help the early detection of covariation since small 
samples of correlated variables are highly skewed (Kareev, 
1995; Kareev, Lieberman & Lev, 1997).

The present study followed Simon’s (1982) notion of
“bounded rationality”, which takes into account both
people’s limited computation capacity, and the structure of 
task environments. Our findings suggest that under
circumstances when the precise prediction derived from
statistics or probability theory is not the only criterion, 
heuristics based on a small sample size can be valuable. 
With a satisficing  strategy that only needs to “look for a 
satisfactory alternative” (Simon, 1982, p.295), naïve
participants were able to effectively accomplish the goal of 
the task, based on the evaluation of a few preceding events.

Recognizing the Maximum of a Sequence
The statistical properties of sequential lists of evidence 

have long been of interest to mathematicians. The dowry
problem (or the secretary problem) is a classic example in 
the dynamic programming literature, one analyzed by
Cayley in 1875 (see Ferguson, 1989). As a mathematical 
problem, the dowry problem is difficult to solve, requiring 
advanced mathematical knowledge and problem solving 
ability. Obviously, few, if any, people are likely to work out 
the exact stopping point mathematically in an everyday life 
situation when a similar problem is encountered. Instead, 
without complicated calculations, a player might need to use 
“common sense” to make decisions. The present study
adopted a simplified version of the problem – a simulated 
“yard-sale” task – to test how naïve people evaluate
preceding events and make decisions when facing sequential 
events generated by an unknown process.

Participants were asked to sell a series of objects in a 
simulated yard sale. Each object attracted three potential 
buyers, each of whom came at a different time and made a 



different offer. It was explained that offers that were
rejected would not return, so that the task was to guess 
which was the best offer, and to take it when available.

Imagine that a person is selling a used car, and that 
visitors with different offers come up in a random order. 
After 5 offers have been declined in a week, a visitor comes 
in with a price higher than any of the previous ones.
Another 5 offers will probably take another week and by 
then this car must be sold. Whether to stop waiting and grab 
the currently available offer then depends on how satisfied 
the car owner feels about the current offer. The only 
information available to evaluate the current situation is the 
previous encounters. Probably, “common sense” would tell 
this car owner to take the offer now, because future offers 
might not get better.

This is in effect a satisficing heuristic (Simon, 1990), 
which is a strategy that only needs to “look for a satisfactory 
alternative” (Simon, 1982, p.295), as suggested by the
notion of bounded rationality. The strategy also fits the
category of fast and frugal heuristics suggested by
ecological rationality, because it makes “a choice from a set 
of alternatives encountered sequentially when one does not 
know much about the possibilities ahead of time”
(Gigerenzer & Todd, 1999, p.13).

We show that in at least one situation – when the random 
process that generates offers is independently and
identically distributed – this satisficing strategy is optimal.
Let Ri denote the offer at time i, where i  = 0 is the current 
offer, -1 is the previous one, +1 is the next one, and so on. 
Assume the car owner has encountered m R’s (from R-1 to 
R-m) and found that R0 is the best one so far. If he actually 
chooses it, because R0 now is the biggest number in a local 
sequence of (m + 1) numbers, in the long run, the value of 
such R0 has a good chance to be higher than the population 
mean. For a continuous distribution from 0 to 1, the
expected value of such R0 is (m+1)/(m+2). Further, R0 might 
just be a good stopping point because the potential gain 
from the following n offers after R0 might not have a good 
chance to get better. To see this, let A denote the event that 
R0 is higher than its previous m offers, and B denote the 
event that R0 is higher than its following n offers. Then two 
prior probabilities can be described as

p(A) = p (R0 > R-1, …, R-m) = 1/(m+1)
p(B) = p (R0 > R1, …, Rn) = 1/(n+1)

And the conditional probability can be calculated as
p(B|A) = p(AB)/p(A) = (m+1)/(m+n+1)

Note that, with a fixed n, p(B |A) approaches to an asymptote 
of 1 as m increases. That is, with an appropriate m (after 
considering a certain number of offers), the car owner can 
make a better decision than a random guess. For example, 
when m = 5, n = 5, p(B |A) is 6/11, and this favors selling. To 
take the message of p(B|A) in another way, it has suggested
a stopping point , because the coming n offers do not have a 
good chance to get better.

Two Optimal Strategies for the Yard Sale Task
With the development above, we can easily determine the 
optimal strategy for the yard sale task. Suppose there is only

one trial in the task (only one object for sale). Let P1  denote 
the first offer, P2 the second and P3 the third. Before 
knowing any of the three offers, the prior probability for 
each offer to be the best is equal:

p(P1 is best) = p(P2 is best) = p(P3 is best) = 1/3
Note that knowing the exact value of P1 does not change 
this probability. With a random guess, the chance of hitting 
any of the three possible prices is 1/3. However, if we skip 
P1 and consider P2, the conditional probability is no longer 
equal. If P2 is higher than P1, we should take it immediately 
because p(P2 > P3 | P2 > P1) = 2/3. Otherwise, we should 
take P3. A pay-off matrix (Table 1) shows that the optimal 
strategy (Option B*) is to always skip P1. If P2 is better than 
P1, accept P2; if P2 is worse, choose P3. This strategy 
increases the chance of hitting the best offer to 1/2, with a 
1/3 chance of hitting the middle price, and a 1/6 chance of 
hitting the lowest one. For convenience, we will refer to this 
strategy as the “one deal strategy”.

Table 1: The pay-off matrix for the seller

Rank orders of offersOption
LMH MHL LHM MLH HLM HML

Total

A -1 0 -1 0 1 1 0
B* 0 1 1 1 0 -1 2
C 1 -1 0 -1 -1 0 -2

Note: L is the lowest price, M the middle, H the highest. 
“LMH” means that the lowest price comes first, and so on.
Option A: always choose P1 (random guess).
Option B*: choose P2 if P2 > P1, otherwise choose P3.
Option C: choose P2 if P2 < P1, otherwise choose P3
Gains: the seller gains –1 when hitting the lowest offer; 0 
for the middle offer; 1 for the highest offer.

However, in a real-life situation, decisions are rarely made 
in temporal isolation. Thus, as in a common scheme in 
laboratory experimental settings, our yard sale task used 
repeated trials  to collect multiple data points from each 
individual participant. This fact had a significant impact on 
the optimal strategy. Recall that the single deal strategy 
assumes that in each deal, the order in which three offers 
appear is completely independent from any other events, 
and requires that the first offer always be ignored. What if 
the first offer actually is the best one? With the information 
from the preceding trials, we can actually evaluate how 
good the first offer is. Calculating an optimal strategy for 
deals in a sequence is very complicated because it needs to 
specify a distribution of three offers for each deal. However, 
when distributions of offers in several deals within a local 
sequence are similar, as an approximation, the principles we 
presented above can be generalized. In our experiment, we 
set the basic price for each object to range from $50 to $100, 
with a maximum random fluctuation of ± $16. Figure 1 
shows the overall distribution of these offers.



0.05

0.10

0.15

40 50 60 70 80 90 100 110 120 130

Figure 1 The distribution of offers. N = 5760, x-axis is 
price, y-axis is proportion.

The satisficing principle suggests that the offers for 
previous objects (in previous trials) can be used to predict 
whether you are getting a good offer for the next item. In 
other words, when you are considering a first offer for a 
table, if you can recall that the last several visitors, who 
were seeking other items, were not as generous as the
current customer, you may want to sell the table right now. 
It seems quite against a researcher’s intuition that a
normative strategy would predict that previous offers for an 
umbrella will help to predict the current offers for a table, 
especially when one thinks that the umbrella deal is “over”, 
and the two deals should be independent. The answer to this 
counter-intuitive puzzle is that the independence is only 
partial. While the order in which different offers come out 
for each deal is independent, the values of these offers, if 
they are in the same or similar distributions, regress to the 
population mean.

There are two ways to evaluate the first offer for a given 
trial. The “local count strategy” is based upon a count of 
the number of previous low offers. That is, if the current 
first offer is higher than a certain number of previous offers 
(for other items), take it. The optimal strategy depends on 
the specific distribution of the random offers and the payoff 
matrix. In our specific experimental setting, we used
computer simulations and found that the best number of 
comparisons was 6. A modification of the local count
strategy, the “moving average strategy” compares the
current offer with the average of previous several offers. We 
reasoned that participants might  not remember the exact 
values of the previous offer but might still have a vague 
memory of the overall average in a short local sequence. A 
logistic regression over simulated data showed that in our 
experiment setting, the value difference of the first offer for 
a given item from the mean of the previous 6 offers (for the 
other two items), is significant as a predictor of whether the 
first offer is the best among all three offers: χ2 (1, N = 1888) 
= 191.03, p<.01. That is, as this difference increases, this 
first offer is more likely to be the best of the three.

With this background, we were ready to find out whether
participants are good at detecting good offers when they 
actually appear, and whether they use information from 
previous encounters to help their current decision-making.

Method
Participants were 15 undergraduate students from an
introduction to psychology class at Bowling Green State 
University, none of whom had taken a course on game 
theory or probability theory. We refer to them as novice 
participants. One graduate student with extensive experience 
in judgment and decision-making and related research also 
participated, and will be referred as the expert participant.

The task was conducted using a self-paced computer 
program. Each participant completed 120 trials (the number 
of objects to be sold). One object was to be sold in each trial. 
Participants could take any of the three offers at the time it 
was available, but could not go back to an earlier declined 
offer. Once an offer was taken, offers thereafter were not 
presented. The third offer was forced if the first two were 
rejected by the participant, and this was the only case when 
participants knew exactly if they had hit the best out of three 
offers. After each trial, participants were given a
confirmation that the object was sold at the price they 
selected. Participants’ choices and their total earnings were 
recorded. An average experiment session lasted about 25 
minutes.

Results
Overall Performance  To evaluate participants’ overall 
performance, we ran a simulation 5000 times using each of 
the three strategies: a random guess (randomly choosing one
of the three offers), the “single deal strategy” and the “local 
count strategy”. Each time the simulation sold 120 items 
using the actual selling list that was used in the experiment. 
In the local count strategy, the first offer for each item was 
compared with 6 previous offers (which were for the
preceding items 1). It was accepted when it was the highest 
in the comparison. Otherwise, it was declined and the single 
deal strategy was applied. Table 2 shows the simulation 
results and the actual participant data.

Table 2 Comparisons between human participants and 3 
simulations

Group N

Mean Score
(95% confidence 

interval)
Std
Dev.

Random Guess 5000 8889.8 ± 2.0 72.74
Single Deal 

Strategy 5000 9160.7 ± 2.1 75.54
Local count 

Strategy 5000 9277.7 ± 3.4 121.22
Human

Participants 16 9196.0 ± 31.0 58.15

Note that all 16 participants received a score that was at 
least 1.5 SD above the mean of the random guess simulation. 

________
1 When an offer was taken before all offers were presented, the 
number of items whose offers were being compared may exceed 2.



Each participant’s score was then compared to the result as 
if the single deal strategy had been applied to his/her actual 
selling list. Ten participants’ scores were higher than the 
result of the single deal strategy. Using the standard
deviation resulting from the single deal strategy simulation 
(75.54), four participants’ scores were at least 1.5 SD above 
the score resulting from the single deal strategy. We will 
refer to these four as the “outstanding participants”.

Strategy Use We looked at participants’ choice patterns in 
regard to their consistency with the optimal strategies, at 
three steps when each offer was being considered. The 
following three choices are consistent with the optimal 
strategies (single deal or multiple deals):

C1. Accept the 1st offer if it is better than several previous 
offers (for other items).
C2. Decline the 1st offer, and accept the 2nd offer if it is 
better than the 1st one.
C3. Accept the 3rd offer if the 2nd is worse than the 1st.

C2 and C3 are equivalent to the single deal strategy, now 
separated into two parts. All three choices above are
consistent with the local sequence strategy. Since choices at 
the 3rd offer were forced, whether participants’ actual
choices were consistent with the optimal strategies could be 
looked at whether they had met or violated the conditions at 
C1 and C2. Note that the single deal strategy actually 
forbids C1. Specifically, C1 can result from considering the 
count of the previous low offers (the local count strategy) or 
the value difference of the first offer compared to the mean 
of the previous offers (the local average strategy), and we 
tested them separately.

Of all 16 participants, only the expert participant found 
the single deal strategy, and followed C2 and C3
consistently. The 15 novice participants, by contrast, often 
violated either C2 or C3 or both. However, to a significant
extent, their choices did follow C1. For each individual 
novice participant, we ran a logistic regression, using the 
value difference of the first offer from the mean of the 
previous 6 offers, to predict the participant’s acceptances of 
the first offers. Of the 15 participants, 11 showed significant 
results at a 0.01 level. On the group level, the result is also 
significant: χ2 (1, N=1770) = 304.69, p<.01. This indicates 
that the novices were at least partly using the moving 
average strategy.

Since the one deal strategy is a subset of the local count 
strategy, we combined the 16 participants’ reactions on all 
three offers to see if their behaviors were consistent with the 
local count strategy. Table 3.1 and Table 3.2 show that they 
did show such consistency when the previous 1 or 6 offers 
were compared to the current offer. That is, if the offer 
being considered was better than all of the previous 1 or 6 
offers, participants were more likely to accept it. Otherwise, 
they were more likely to decline it. This finding was 
consistent with the local count strategy.

Table 3.1 Compared to previous 1 offer

Worse Better Total
Decline 1773 952 2725
Accept 616 1424 2040
Total 2389 2376 4765

χ2 = 580.177, p<.01

Table 3.2 Compared to previous 6 offers

Worse Better Total
Decline 2397 328 2725
Accept 1553 487 2040
Total 3950 815 4765

χ2 = 114.140, p<.01

All of the 4 “outstanding participants” were novice
participants. However, they actually outperformed the
expert participant and the one deal strategy. They were 
different from the other 11 non-expert participants in that 
their behaviors were consistent with one of the requirements 
of the one deal strategy (C2 and C3), although not both. 
Their gains on the first offers when these offers were the 
best had offset the losses from violations of the condition of 
C2.

Learning across Trials  In a study of the Monty Hall 
dilemma, Granberg & Dorr found that participants showed 
signs of learning across trials under certain conditions. In 
our study, we also looked at whether there were systematic 
changes in participants’ choices across trials. Specifically, 
we suspected that participants might have learned the
specific distribution of random offers in earlier trials, so that, 
in later trials, they only needed to recognize “globally big 
numbers” instead of applying their heuristics independently 
and locally. For example, an offer of $116 might have been 
the best one for an item sold in an early trial. If participants 
had this number memorized, they might just pick an offer of
$116 or higher in a later trial, no matter when this offer was 
presented (whether it was the 1st, 2nd, or 3rd offer). If this 
were the case, “big wins” might have been over-represented
in terms of participants’ uses of simple heuristics.

However, in our experimental setting, each item's 3 offers 
varied around its own basic price. Although these basic
prices could be close, there was no way to tell that $116 was 
the best offer for item A only because it had been the best 
offer for item B. In other words, recognizing “big numbers” 
alone would not help in optimizing the total performance. In 
fact, when we partitioned each participant’s 120 trials into 3 
blocks with 40 trials each, we did not find any significant 
differences across blocks, indicating that learning was
probably not important across trials.



Discussion
None of the 15 novice participants found and consistently 
used the one deal strategy. We reasoned that this was 
because finding and consistently applying this strategy
required participants to use background knowledge in 
probability theory, and they simply did not have this
training. Their consistency with the local sequence strategy 
explained why they had good performances. This does not 
suggest that they actually did the calculation and found the
correct mathematical solution, because this would require 
even more knowledge and computational capacity, not to 
mention that it was within a short experiment session.
However, as we suggested before, it is not necessary for a 
person to work out the correct mathematical proof to use the 
local sequence strategy. Such a strategy could arise from 
participants’ everyday life experiences, from which they had 
learned a simple satisficing heuristic: “grab any good
chance when you can”.

Surprisingly, the outstanding performers actually
outperformed the expert participant who found and
consistently applied the one deal strategy. This was because
the one deal strategy has to give up all opportunities of 
accepting the first offers when they were the best. One
reason that prevented the expert participant from finding the 
local sequence strategy might have been that the everyday 
life heuristic had been “blocked” by his knowledge of
probabilistic judgment research. This finding is very similar 
to Goldstein and Gigerenzer’s (1999) “less-is-more” effect, 
that relative ignorance can actually benefit a decision maker. 
By isolating the previous encounters from the current
decision-making situation, the expert participant had to
search the infinite probability space again, and previous 
experience, either beyond or within the experiment task, 
could not help.

In their 1973 paper, Kahneman and Tversky suggested 
that “people do not acquire a proper notion of regression, … 
they do not expect regression in many situations where it is
bound to occur”, because “regression effects typically
violate the intuition that the predicted outcome should be 
maximally representative of the input information”. On the 
contrary, the finding in this study that participants’
behaviors were consistent with the local sequence strategy, 
indicated that people do have good intuitions about such 
regression, and can also take advantage of it.

We argue that to evaluate naïve people’s probabilistic 
judgment and decision-making, one has to take into account 
both people’s limited computation capacity and the task 
environment. One obvious message of the task was that, if 
we had used the single deal strategy as the only criterion, we 
might have concluded that participants were being irrational, 
and would then have to face the puzzling evidence that they 
actually performed very well. Instead, the results suggest 
that the advantages of the satisficing principle are important 
and cannot be ignored. By using these strategies, people can 
benefit from their own experiences, even from a small 
sample of preceding events. 
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