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Abstract

A common view in the research on dynamic system
control is that human subjects use exemplar knowledge
of system states — at least for controlling small systems.
Dissociations between different tasks or stochastic
independence between recognition and control tasks,
have led to the assumption that part of the exemplar
knowledge is implicit. In this paper, 1 propose an
alternative interpretation of these results by demon-
strating that subjects learn more than exemplars when
they are introduced to a new system. This was achieved
by presenting the same material — states of a simple
system — with vs. without causal interpretation. If
subjects learned exemplars only, then there should be no
differences between the conditions and stochastic depen-
dence between various tasks would be expected.
However, in an experiment with N=40 subjects the group
with causal interpretation is significantly better at com-
pleting fragmentary system states and in judging causal
relations between switches and lamps, but not in
recognizing stimuli as studied. Only in the group without
causal interpretation, the contingency between recogni-
tion and completion was close to the maximum memory
dependence, estimated with Ostergaard’s (1992) method.
Thus, the results resemble those of other studies only in
the condition with causal interpretation. The results are
explained by the assumption that subjects under that
condition learn and use a second type of knowledge,
which is construed as a rudimentary form of structural
knowledge. The interpretation is supported by a compu-
tational model that is able to reproduce the set of results.

Dynamic system control (DSC) is a paradigm of great
interest for applied and basic research likewise. In
applied contexts, researchers address questions about
how human operators learn to operate new technical
systems efficiently, how training should be designed, or
what errors operators are likely to commit. In basic
research, DSC is one of the paradigms for studying
implicit learning. It has been argued that subjects
control dynamic systems predominantly with exemplar
knowledge about system states, part of which is
considered implicit (Dienes & Fahey, 1998). This
conclusion was derived from studies with systems
characterized by small problem spaces, such as the
“Sugar Factory” (a dynamic system with one input and
one output variable, connected by a linear equation;
Berry & Broadbent, 1988). However, studies with more

complex systems have delivered evidence that structur-
al knowledge (i.e. knowledge about the variables of a
system and their causal relations) can be more effective
for controlling these systems (Vollmeyer, Burns, &
Holyoak, 1996; Funke, 1993), although it is not easy to
apply and use this type of knowledge (Schoppek, 2002).
But even for small systems, the question about what
type of knowledge is learned in an implicit manner, is
still open. Simulation studies that have proven the
sufficiency of exemplar knowledge for controlling the
Sugar Factory (Dienes & Fahey, 1995; Lebiere,
Wallach, & Taatgen, 1998) have as yet not reproduced
effects that point to implicit learning. An example of
such effects is the stochastic independence between
recognition of system states of the Sugar Factory as
studied and performance in one-step control problems,
found by Dienes & Fahey (1998). Since exemplar
knowledge is typically construed as explicit rather than
implicit, it cannot account for these dissociations.

This paper addresses the question if a rudimentary
form of structural knowledge is acquired in addition to
exemplar knowledge, albeit implicitly or explicitly. The
different use of exemplar knowledge and structural
knowledge in different tasks can explain dissociations
between tasks. The basic strategy for separating the two
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Figure 1: Problem space of the Switches &
Lamps system; the states with white triangles
were studied in the learning phase



knowledge types rests on using material that can be
interpreted as states of a system or simply as spatial
patterns. Therefore, I designed a system consisting of
four lamps operated by four switches. Each switch
affects one or two lamps. Two of the effects were nega-
tive, which means that the corresponding lamp is
switched off when the switch is turned on. The problem
space of 16 possible states is depicted in Figure 1.
Subjects under both conditions (causal interpretation vs.
no causal interpretation) are shown possible states and
asked to memo rize them.

In a previous experiment with that paradigm
(Schoppek, 2001), I found positive effects of causal
interpretation on recognition of patterns as studied and
on causal judgment. The effects were attributed to a
preliminary form of structural knowledge, namely
associations between switches and lamps, acquired by
the group with causal interpretation. This knowledge
enables subjects to reconstruct a system state in cases
where no exemplar representation of the state can be
retrieved. The pattern of results was reproduced by a
computational model that instantiates these assumpt-
ions. The model is written in ACT-R (Anderson &
Lebiere, 1998), a cognitive architecture that distinguish-
es between subsymbolic and symbolic levels of pro-
cessing, with associative learning residing on the
subsymbolic level.

The experiment also delivered some hints that there
was stochastic independence between recognition of
states as studied and a completion task in the group
with causal interpretation, but dependence in the other
group. Again, this supports the assumption that more
than one knowledge type is used in the causal
condition. However, to judge the empirical contingency
between tasks, it should be compared with the
maximum possible memory dependence, estimated with
a method proposed by Ostergaard (1992). This method
requires answers to nonstudied items in the completion
task, but all items that could be reasonably used in that
task (i.e. all possible system states) have been studied in
Schoppek (2001). Therefore in the present experiment,
subjects studied only a subset of system states. This fact
implies a different prediction for recognition of states as
studied: The set of possible states and the set of studied
states were identical in the previous experiment,
whereas they are different in the present experiment.
This makes the strategy of reconstructing system states
susceptible to errors, because classifying any possible
state as studied would result in many false alarms. Thus
in the present experiment, I expected no differences in
recognition performance between the two conditions.

Experiment

The experiment started with a learning phase where
subjects saw 60 system states in intervals of four
seconds. The sequence consisted of ten out of sixteen

possible system states that were repeatedly shown in a
“natural” order, i.e. only one switch changed its status
from item to item. The ten states where selected such
that all causal relations between switches and lamps
could be concluded from them. All subjects were
instructed to memorize the “states” (in the condition
“causal interpretation” or ci group) or the “patterns” (in
the condition “no causal interpretation” or nci group).
The learning phase was followed by a speeded
recognition task. 20 items, including the ten studied
states, six nonstudied states, and four impossible states,
had to be classified as studied or nonstudied. Next,
subjects worked on the completion task, where they saw
arrays of switches in certain states and were asked to
complete the patterns by clicking on the correct lamps.
All possible states, except the one where no switch is
on, were administered. Then the subjects of the group
without causal interpretation were debriefed about the
meaning and the causal nature of the material. Finally,
in a causal judgment task, subjects were asked to
estimate the causal strength of all 16 combinations
between switches and lamps on a scale ranging from
-100 (strong negative relation), through 0 (no relation),
to 100 (strong positive relation). N=42 students fom
the University of Bayreuth, participated in the
experiment. One subject had to be excluded because of
erroneous administration of the tasks; one other subject
was excluded because he had misunderstood the
instructions.

I expected medium to large effect sizes (d = 0.65) in
this experiment. With the given sample size of n=20 for
each group, the o-level is set to p<0.1 to get an
acceptable power of 0.67. All significance tests were
two-tailed'.

Recognition

I expected no differences in discrimination between the
two groups. This can be explained as follows. For the
nci group, conditions are not much different to the
previous experiment (Schoppek, 2001), except that
fewer states where shown and each state was shown
equally often. In the ci group, however, the fact that not
all possible system states were shown in the learning
phase is expected to lead to some confusion. Subjects
who know about the causal structure of the material
may recognize nonstudied system states as regular
states and mistake them as studied. Thus, in contrast to
the previous experiment, there is no advantage of
knowing the causal structure. It is hard to predict if
subjects use the strategy of reconstructing system states
at all. An indicator for using the strategy is a longer
response time.

' The power analysis was calculated with the G-Power
program by Faul & Erdfelder (1992).



As expected, discrimination indices for recognition
(calculated according to the two-high-threshold model
by Snodgrass & Corvin, 1988) are almost equal in both
groups (ci: d=046, s=0.19; nci: d=043, 5=0.17;
t=0.53). However, mean response times r¢ for hits are
significantly longer in the ci group (ci: r=2325 ms,
s=1159 ms; nci: rt=1699 ms, s=513 ms; =2.21,
p<0.05). This result, including the difference in the
standard deviations, closely replicates the findings of
Schoppek (2001). It supports the assumption that at
least some of the subjects in the ci group used the
strategy of reconstructing system states on the basis of
structural knowledge.

Completion
Since all possible system states had to be completed in
this task, I expected the ci group to be better than the
nci group. Subjects in the latter group have only a small
chance to complete nonstudied items correctly.
Performance in the completion task is measured by
summing up deviations from the correct solution over
all items (variable td). For each lamp, a deviation is
counted when the lamp is in the wrong state, resulting
in a maximum deviation of four per item. Thus, the
total deviation td ranges between 0 and 60 (4 - 15
items). The expected deviation for chance performance
is 30 (0.5 - 4 - 15). As expected, there is a significant
difference in total deviation between the groups: The ci
group deviates less from the correct solutions than the
nci group (ci: td=219, s=6.7; nci: td= 25.3, s=4.6;
t=1.88, p<0.1). Generally, performance in the comp le-
tion task was low: In terms of correct items, the ci
group solved an average of 3.9 items (26%), the nci
group an average of 2.9 items (19%). However, these
values are close to those found by Dienes and Fahey
(1998) in their one-step control problems with the
Sugar Factory.

Causal Judgment

Subjects of the ci group are expected to be much better
in judging causal relations between switches and lamps.
At first glance, this hypothesis appears straightforward.
However, if causal knowledge is learned implicitly in
the form of associations between switch-events and
lamp-events, it is possible that subjects of the nci group
are able to judge some of the relations after they have
been debriefed about the causal nature of the material.

As a measure for causal judgment, the median of the
16 absolute deviations between judgments and correct
answers was calculated (variable md) for each subject.
The ci group was significantly better at judging the
causal relations between switches and lamps (ci:
md=27.9, s=31.1; nci: md= 64.7, s=25.1; =391, p<.01).
This result makes it unlikely that many of the nci
subjects had learned associations between switches and
lamps implicitly.
Contingency analysis between
completion task
If subjects used exemplar knowledge only, we expect
performance in the two memory tasks to be correlated.
If, however, subjects used exemplar knowledge and
structural knowledge, performance in the two tasks may
well be independent from each other. To judge the
contingency between two memory tasks, Ostergaard
(1992) has proposed a method for estimating the
maximum possible memory dependence for a given
data set. The method is based on the contingency tables
crossing the answers in both tasks. Stochastic indepen-
dence is shown when there is a significant difference
between appropriate measures of the observed conting-
ency and the contingency assuming maximum memory
dependence.

The contingency analysis was applied separately for
each subject, yielding distributions of observed and
estimated values of the joint probability of giving a
correct response to both tasks, and of the contingency
measure Ap. Analyses with the data collapsed over all

recognition and

Table 1: Overview over results of the experiment

Causal interpretation (ci) No causal interpretation Significance
(nci)

Recognition
discrimination index 0.46 0.43 ns
response time for hits 2325 ms 1699 ms ok
Completion
total deviation 21.9 25.3 *
Causal judgment
median of deviation 27.9 64.7 ok ok
Correlation
completion — 62%** 21
causal judgment

Significance levels: *: p<0.10 **: p<0.05 ***:p<0.01



subjects of each condition were conducted to cross-
check the results. Both analyses yielded equivalent
results.

In the ci group, the observed joint probability of
giving a correct response to both tasks equals 0.31, a
value lying right between 0.27, the joint probability of
the independence model and 0.34, the joint probability
of the maximum memory dependence (MMD) model.
Although the absolute difference between the value for
the MMD and the observed value is rather small, it is
still reliable (#(19)=2.41, p<0.05). The -contingency
measure Ap also discriminates between the different
models. The Ap = 0.22 observed in the ci group is
significantly smaller than the Ap = 0.37 of the MMD
model (#(18)=2.26, p<0.05).

Things are different in the nci group, where the joint
probabilities of the observed data and the MMD model
are 0.23 and 0.24, respectively (#(19)=0.53, p=0.60).
The difference between Ap=0.22 (observed) and
Ap=0.23 (MMD model) is not significant either
(#(19)=0.11, p=0.92).

The result that in the ci group the observed con-
tingency between recognizing states as studied and
completing fragments of these states correctly is
significantly below the maximum, indicates that differ-
ent memories have been used for both tasks. In the nci
group, the observed contingency between the tasks is
almost at its theoretical maximum, indicating that only
one type of knowledge was used for answering the
items. The interpretation of these results is that both
groups use exemplar knowledge in both tasks, but that
subjects of the ci group also use structural knowledge,
especially in the completion task. This conclusion is
supported by different correlations between measures of
causal judgment and completion, which are r=0.62
(p<0.01) in the ci group, and 7=0.21 (ns) in the nci

group.

Discussion

The present experiment confirmed predictions about the
differential impact of causal interpretation on memory
for states of a simple system. In part, these predictions
were derived from a computational model that formal-
izes a set of assumptions about acquisition and use of
two types of knowledge. Exemplar knowledge about
system states is assumed to be acquired and used in all
tasks, regardless of causal interpretation. With causal
interpretation, subjects can additionally learn structural
knowledge based on associations between switch events
and lamp events (Schoppek, 2001). This knowledge can
be used to reconstruct system states in cases where no
relevant exemplar can be retrieved from memory. For
reasons described above, this type of knowledge was
expected to be useful in a causal judgment task and a
fragment completion task, but not in a recognition task,

resulting in stochastic independence between recogni-
tion and completion in the condition with causal
interpretation.

This approach has much in common with implicit
learning paradigms. Similar to those paradigms,
subjects are presented with material based on a
structure they do not know. In contrast to many implicit
learning experiments, subjects of the nci group of the
present experiment did not learn much about that
structure (see the results of the causal judgment task).
However, the view that structure is always learned
implicitly, as soon as there is one, is not unchallenged.
Wright and Whittlesea (1998) argue against the
hypothesis that implicit learning is passive and inde-
pendent of the intentional processes during learning.
According to them, this is a misconception resulting
from the fact that in most implicit learning experiments
there is little or no variation in the learning phases.
Wright and Whittlesea provided evidence that even
small variations in the presentation of stimuli, or in the
induction task can result in differences of what is
learned implicitly. Causal interpretation can be viewed
as one of these variations that affects processing in the
learning phase.

Other examples of the effect that providing addition-
al information about stimuli enhances memory or other
kind of performance are found in classification learning
(Nosofsky, Clark, & Shin, 1989) or schema acquisition
(Ahn, Brewer, & Mooney, 1992). Common to all these
examples is subjects’ reluctance to use the additional
hints. Ahn et al.’s (1992) subjects used the experi-
mentally provided background knowledge only when
they were engaged in tasks requiring the active use of
that knowledge. Nosofsky et al. (1989) found that even
simple rules defining a concept were only used when
subjects were explicitly told to do so.

In the group with causal interpretation, the results
resemble those typically found in implicit learning
experiments. So does the stochastic independence in
that group indicate implicit learning? It is not a new
claim, but still useful to analyze the acquisition process-
es, the knowledge resulting from these processes, and
the retrieval processes separately (Frensch, 1998),
rather than calling the whole thing “implicit learning”.
Doing so in the present context results in a detailed web
of hypotheses. According to the ACT-R model, the
processes for acquiring associations between switches
and lamps can be characterized as implicit, because
associative learning is an autonomous process that
occurs without awareness. That does not mean that it is
independent from attentional processes. In fact, what
associations are learned depends on the sequence in
which perceptional or memory elements are focused on.
In the Switches & Lamps $stem, the condition for
acquiring useful associations is a processing sequence
that focuses on the changes first (i.e. encode the switch



that has changed since the last item, then encode the
lamps that have changed, then encode the rest). The
assumption that such a sequence occurs more likely in
the ci group, whereas in the nci group, subjects adopt
other strategies such as processing the images from top
left to bottom right, is plausible, although it was not
tested empirically. When the critical difference between
ci and nci groups lies in the processing sequence of
stimuli, one can conclude the testable prediction that
differences between the groups should disappear when
nci subjects are instructed to focus on changes and are
debriefed after the learning phase.

These deliberations are well in line with the view of
Wright and Whittlesea (1998), who claim that “the only
major difference between implicit and explicit learning
may be that consciously knowing that a domain
possesses some important structural property can cause
one to learn specifically about that property, whereas
the processing performed when unaware that such a
property exists may focus selectively on less relevant
properties” (p. 419).

As a form of subsymbolic knowledge, associations
can be viewed as implicit knowledge. In ACT-R, sub-
symbolic knowledge exerts its influence through
activation processes, but is not directly accessible by
production rules. The explanatory potential of the
subsymbolic level of ACT-R for implicit memory
phenomena has also been demonstrated by Taatgen
(1999) with a model of word recognition and comr
pletion. In his model it is the dynamics of baselevel
learning rather than associative learning that accounts
for dissociations.

Only at the stage of applying the knowledge a con-
scious strategy of utilizing the associations between
switch events and lamp events is assumed, a strategy of
retrieving the most active lamp event with a given
switch-turned-on event as cue.

Since the system I used here was a static one, some
considerations about the generalization of the results to
dynamic systems are indicated. Dynamic systems are
characterized by dependence on their own state, which
gives them momentum. This is not the case in the
Switches & Lamps System. However, similar to dyna-
mic systems, its output variables depend on multiple
input variables. The momentum is an important
property that makes it hard to handle dynamic systems
(Funke, 1993). This might be one of the reasons why
subjects typically focus on the relations between input
and output variables, often disregarding the output-out-
put relations that establish the momentum (Schoppek,
2002). Thus, from the point of view of many subjects,
the Switches & Lamp System can appear very similar to
small dynamic systems like the Sugar Factory.

If one accepts “Switches & Lamps” as a model for
small dynamic systems, the work presented here
questions the common interpretation that controlling

those systems is accomplished with exemplar
knowledge only (Dienes & Fahey, 1995; Lebiere,
Wallach & Taatgen, 1998). For obvious reasons,
proving the sufficiency of this type of knowledge does
not prove that human subjects are making do with this
type, too. The findings of the group with causal
interpretation parallel those of Dienes and Fahey
(1998), who found stochastic independence between
recognition and a completion task and arrived at similar
conclusions. The present experiment extends Dienes
and Fahey’s approach by demonstrating that without
causal interpretation the contingency between these
tasks is close to its possible maximum, indicating that
in that case only one type of knowledge is used.
Moreover, it involves a real dissociation in the sense
that the experimental manipulation affected one task
(causal judgment, completion), but not another
(recognition). It would be interesting to see if a
variation of causal interpretation with the Sugar Factory
yielded similar results.

Although many of the predictions were derived from
a cognitive model, I have as yet not succeeded in
reproducing the whole set of results with the model. For
example, the present model overestimates discrimi-
nation between old and new states. The main reason for
this is the simplified assumption that every state is
encoded by three chunks in a one trial fashion: One
chunk representing all switches, one representing all
lamps, and one grouping the two other chunks together.
This assumption has to be replaced by an appropriate
theory about how humans form chunks from unfamiliar
material, such as the competitive chunking theory
(Servan-Schreiber & Anderson, 1990), or EPAM
successors like CHREST (Gobet & Jackson, 2001).
Nevertheless, even when a model does not reproduce all
aspects of the data, the cognitive modeling perspective
forces the analyst to explicate assumptions on all stages
of processing, thus helping to draw a detailed picture of
reality that goes far beyond the simple distinction
between implicit and explicit learning.
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