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Abstract

A common view in the research on dynamic system 
control is that human subjects use exemplar knowledge 
of system states – at least for controlling small systems. 
Dissociations between different tasks or stochastic
independence between recognition and control tasks,
have led to the assumption that part of the exemplar 
knowledge is implicit. In this paper, I propose an
alternative interpretation of these results by demon-
strating that subjects learn more than exemplars when 
they are introduced to a new system. This was achieved 
by presenting the same material – states of a simple 
system – with vs. without causal interpretation. If
subjects learned exemplars only, then there should be no 
differences between the conditions and stochastic depen-
dence between various tasks would be expected.
However, in an experiment with N=40 subjects the group 
with causal interpretation is significantly better at com-
pleting fragmentary system states and in judging causal 
relations between switches and lamps, but not in
recognizing stimuli as studied. Only in the group without 
causal interpretation, the contingency between recogni-
tion and completion was close to the maximum memory 
dependence, estimated with Ostergaard’s (1992) method. 
Thus, the results resemble those of other studies only in 
the condition with causal interpretation. The results are 
explained by the assumption that subjects under that 
condition learn and use a second type of knowledge, 
which is construed as a rudimentary form of structural 
knowledge. The interpretation is supported by a compu-
tational model that is able to reproduce the set of results.

Dynamic system control (DSC) is a paradigm of great 
interest for applied and basic research likewise. In
applied contexts, researchers address questions about
how human operators learn to operate new technical 
systems efficiently, how training should be designed, or 
what errors operators are likely to commit. In basic
research, DSC is one of the paradigms for studying 
implicit learning. It has been argued that subjects
control dynamic systems predominantly with exemplar 
knowledge about system states, part of which is
considered implicit (Dienes & Fahey, 1998). This
conclusion was derived from studies with systems
characterized by small problem spaces, such as the
“Sugar Factory” (a dynamic system with one input and 
one output variable, connected by a linear equation; 
Berry & Broadbent, 1988). However, studies with more 

complex systems have delivered evidence that structur-
al knowledge (i.e. knowledge about the variables of a 
system and their causal relations) can be more effective 
for controlling these systems (Vollmeyer, Burns, &
Holyoak, 1996; Funke, 1993), although it is not easy to 
apply and use this type of knowledge (Schoppek, 2002). 
But even for small systems, the question about what 
type of knowledge is learned in an implicit manner, is 
still open. Simulation studies that have proven the
sufficiency of exemplar knowledge for controlling the 
Sugar Factory (Dienes & Fahey, 1995; Lebiere,
Wallach, & Taatgen, 1998) have as yet not reproduced
effects that point to implicit learning. An example of 
such effects is the stochastic independence between 
recognition of system states of the Sugar Factory as 
studied and performance in one-step control problems, 
found by Dienes & Fahey (1998). Since exemplar
knowledge is typically construed as explicit rather than 
implicit, it cannot account for these dissociations. 

This paper addresses the question if a rudimentary 
form of structural knowledge is acquired in addition to 
exemplar knowledge, albeit implicitly or explicitly. The 
different use of exemplar knowledge and structural
knowledge in different tasks can explain dissociations 
between tasks. The basic strategy for separating the two 

Figure 1: Problem space of the Switches & 
Lamps system; the states with white triangles 

were studied in the learning phase



knowledge types rests on using material that can be 
interpreted as states of a system or simply as spatial 
patterns. Therefore, I designed a system consisting of 
four lamps operated by four switches. Each switch 
affects one or two lamps. Two of the effects were nega-
tive, which means that the corresponding lamp is 
switched off when the switch is turned on. The problem 
space of 16 possible states is depicted in Figure 1. 
Subjects under both conditions (causal interpretation vs. 
no causal interpretation) are shown possible states and 
asked to memo rize them. 

In a previous experiment with that paradigm
(Schoppek, 2001), I found positive effects of causal 
interpretation on recognition of patterns as studied and 
on causal judgment. The effects were attributed to a 
preliminary form of structural knowledge, namely
associations between switches and lamps, acquired by 
the group with causal interpretation. This knowledge 
enables subjects to reconstruct a system state in cases 
where no exemplar representation of the state can be 
retrieved. The pattern of results was reproduced by a 
computational model that instantiates these assumpt-
ions. The model is written in ACT-R (Anderson & 
Lebiere, 1998), a cognitive architecture that distinguish-
es between subsymbolic and symbolic levels of pro-
cessing, with associative learning residing on the
subsymbolic level.

The experiment also delivered some hints that there 
was stochastic independence between recognition of 
states as studied and a completion task in the group 
with causal interpretation, but dependence in the other
group. Again, this supports the assumption that more 
than one knowledge type is used in the causal
condition. However, to judge the empirical contingency 
between tasks, it should be compared with the
maximum possible memory dependence, estimated with 
a method proposed by Ostergaard (1992). This method 
requires answers to nonstudied items in the completion 
task, but all items that could be reasonably used in that 
task (i.e. all possible system states) have been studied in 
Schoppek (2001). Therefore in the present experiment, 
subjects studied only a subset of system states. This fact 
implies a different prediction for recognition of states as 
studied: The set of possible states and the set of studied 
states were identical in the previous experiment,
whereas they are different in the present experiment. 
This makes the strategy of reconstructing system states 
susceptible to errors, because classifying any possible 
state as studied would result in many false alarms. Thus 
in the present experiment, I expected no differences in 
recognition performance between the two conditions. 

Experiment
The experiment started with a learning phase where 
subjects saw 60 system states in intervals of four
seconds. The sequence consisted of ten out of sixteen 

possible system states that were repeatedly shown in a 
“natural” order, i.e. only one switch changed its status
from item to item. The ten states where selected such 
that all causal relations between switches and lamps 
could be concluded from them. All subjects were
instructed to memorize the “states” (in the condition 
“causal interpretation” or ci group) or the “patterns” (in 
the condition “no causal interpretation” or nci group). 
The learning phase was followed by a speeded
recognition task. 20 items, including the ten studied
states, six nonstudied states, and four impossible states, 
had to be classified as studied or nonstudied. Next, 
subjects worked on the completion task, where they saw 
arrays of switches in certain states and were asked to 
complete the patterns by clicking on the correct lamps. 
All possible states, except the one where no switch is 
on, were administered. Then the subjects of the group 
without causal interpretation were debriefed about the 
meaning and the causal nature of the material. Finally, 
in a causal judgment task, subjects were asked to 
estimate the causal strength of all 16 combinations 
between switches and lamps on a scale ranging from 
-100 (strong negative relation), through 0 (no relation), 
to 100 (strong positive relation). N=42 students from
the University of Bayreuth, participated in the
experiment. One subject had to be excluded because of 
erroneous administration of the tasks; one other subject 
was excluded because he had misunderstood the
instructions.

I expected medium to large effect sizes (d ≈ 0.65) in 
this experiment. With the given sample size of n=20 for 
each group, the α-level is set to p<0.1 to get an 
acceptable power of 0.67. All significance tests were 
two-tailed1.

Recognition
I expected no differences in discrimination between the 
two groups. This can be explained as follows. For the 
nci group, conditions are not mu ch different to the 
previous experiment (Schoppek, 2001), except that
fewer states where shown and each state was shown 
equally often. In the ci group, however, the fact that not 
all possible system states were shown in the learning 
phase is expected to lead to some confusion. Subjects 
who know about the causal structure of the material 
may recognize nonstudied system states as regular
states and mistake them as studied. Thus, in contrast to 
the previous experiment, there is no advantage of
knowing the causal structure. It is hard to predict if 
subjects use the strategy of reconstructing system states 
at all. An indicator for using the strategy is a longer 
response time. 

1 The power analysis was calculated with the G-Power
program by  Faul & Erdfelder (1992).



As expected, discrimination indices for recognition 
(calculated according to the two-high-threshold model 
by Snodgrass & Corvin, 1988) are almost equal in both 
groups (ci: d=0.46, s=0.19; nci: d=0.43, s=0.17;
t=0.53). However, mean response times rt for hits are 
significantly longer in the ci group (ci: rt=2325 ms, 
s=1159 ms; nci: rt=1699 ms, s=513 ms; t=2.21,
p<0.05). This result, including the difference in the
standard deviations, closely replicates the findings of 
Schoppek (2001). It supports the assumption that at 
least some of the subjects in the ci group used the 
strategy of reconstructing system states on the basis of 
structural knowledge.

Completion
Since all possible system states had to be completed in 
this task, I expected the ci group to be better than the 
nci group. Subjects in the latter group have only a small 
chance to complete nonstudied items correctly. 

Performance in the completion task is measured by 
summing up deviations from the correct solution over 
all items (variable td). For each lamp, a deviation is 
counted when the lamp is in the wrong state, resulting 
in a maximum deviation of four per item. Thus, the 
total deviation td ranges between 0 and 60 (4 · 15 
items). The expected deviation for chance performance 
is 30 (0.5 · 4 · 15). As expected, there is a significant 
difference in total deviation between the groups: The ci
group deviates less from the correct solutions than the 
nci group (ci: td=21.9, s=6.7; nci: td= 25.3, s=4.6;
t=1.88, p<0.1). Generally, performance in the comp le-
tion task was low: In terms of correct items, the ci 
group solved an average of 3.9 items (26%), the nci 
group an average of 2.9 items (19%). However, these 
values are close to those found by Dienes and Fahey 
(1998) in their one-step control problems with the
Sugar Factory.

Causal Judgment
Subjects of the ci group are expected to be much better 
in judging causal relations between switches and lamps. 
At first glance, this hypothesis appears straightforward. 
However, if causal knowledge is learned implicitly in 
the form of associations between switch-events and 
lamp-events, it is possible that subjects of the nci group 
are able to judge some of the relations after they have
been debriefed about the causal nature of the material.

As a measure for causal judgment, the median of the 
16 absolute deviations between judgments and correct 
answers was calculated (variable md) for each subject. 
The ci group was significantly better at judging the 
causal relations between switches and lamps (ci:
md=27.9, s=31.1; nci: md= 64.7, s=25.1; t=3.91, p<.01).
This result makes it unlikely that many of the nci
subjects had learned associations between switches and 
lamps implicitly.

Contingency analysis between recognition and
completion task
If subjects used exemplar knowledge only, we expect 
performance in the two memory tasks to be correlated. 
If, however, subjects used exemplar knowledge and 
structural knowledge, performance in the two tasks may 
well be independent from each other. To judge the
contingency between two memory tasks, Ostergaard 
(1992) has proposed a method for estimating the
maximum possible memory dependence for a given 
data set. The method is based on the contingency tables 
crossing the answers in both tasks. Stochastic indepen-
dence is shown when there is a significant difference 
between appropriate measures of the observed conting-
ency and the contingency assuming maximum memory 
dependence.

The contingency analysis was applied separately for 
each subject, yielding distributions of observed and 
estimated values of the joint probability of giving a 
correct response to both tasks, and of the contingency 
measure ∆p. Analyses with the data collapsed over all 

Table 1: Overview over results of the experiment

Causal interpretation (ci) No causal interpretation 
(nci)

Significance

Recognition
discrimination index
response time for hits

0.46
2325 ms

0.43
1699 ms

ns
**

Completion
total deviation 21.9 25.3 *
Causal judgment
median of deviation 27.9 64.7 ***
Correlation
completion –
causal judgment

.62*** .21

Significance levels:   *: p<0.10   **: p<0.05    ***: p<0.01



subjects of each condition were conducted to cross-
check the results. Both analyses yielded equivalent 
results.

In the ci group, the observed joint probability of 
giving a correct response to both tasks equals 0.31, a 
value lying right between 0.27, the joint probability of 
the independence model and 0.34, the joint probability 
of the maximum memory dependence (MMD) model. 
Although the absolute difference between the value for 
the MMD and the observed value is rather small, it is 
still reliable (t(19)=2.41, p<0.05). The contingency
measure ∆p also discriminates between the different 
models. The ∆p = 0.22 observed in the ci group is 
significantly smaller than the ∆p = 0.37 of the MMD 
model (t(18)=2.26, p<0.05).

Things are different in the nci group, where the joint 
probabilities of the observed data and the MMD model 
are 0.23 and 0.24, respectively (t(19)=0.53, p=0.60).
The difference between ∆p=0.22 (observed) and
∆p=0.23 (MMD model) is not significant either
(t(19)=0.11, p=0.92).

The result that in the ci group the observed con-
tingency between recognizing states as studied and 
completing fragments of these states correctly is
significantly below the maximum, indicates that differ-
ent memories have been used for both tasks. In the nci 
group, the observed contingency between the tasks is 
almost at its theoretical maximum, indicating that only 
one type of knowledge was used for answering the 
items. The interpretation of these results is that both 
groups use exemplar knowledge in both tasks, but that 
subjects of the ci group also use structural knowledge, 
especially in the completion task. This conclusion is 
supported by different correlations between measures of 
causal judgment and completion, which are r=0.62
(p<0.01) in the ci group, and r=0.21 (ns) in the nci 
group.

Discussion
The present experiment confirmed predictions about the 
differential impact of causal interpretation on memory 
for states of a simple system. In part, these predictions 
were derived from a computational model that formal-
izes a set of assumptions about acquisition and use of 
two types of knowledge. Exemplar knowledge about 
system states is assumed to be acquired and used in all 
tasks, regardless of causal interpretation. With causal 
interpretation, subjects can additionally learn structural
knowledge based on associations between switch events 
and lamp events (Schoppek, 2001). This knowledge can 
be used to reconstruct system states in cases where no 
relevant exemplar can be retrieved from memory. For 
reasons described above, this type of knowledge was 
expected to be useful in a causal judgment task and a 
fragment completion task, but not in a recognition task, 

resulting in stochastic independence between recogni-
tion and completion in the condition with causal
interpretation.

This approach has much in common with implicit
learning paradigms. Similar to those paradigms ,
subjects are presented with material based on a
structure they do not know. In contrast to many implicit
learning experiments, subjects of the nci group of the 
present experiment did not learn much about that
structure (see the results of the causal judgment task).
However, the view that structure is always learned 
implicitly, as soon as there is one, is not unchallenged. 
Wright and Whittlesea (1998) argue against the
hypothesis that implicit learning is passive and inde-
pendent of the intentional processes during learning. 
According to them, this is a misconception resulting
from the fact that in most implicit learning experiments 
there is little or no variation in the learning phases. 
Wright and Whittlesea provided evidence that even 
small variations in the presentation of stimuli, or in the 
induction task can result in differences of what is 
learned implicitly. Causal interpretation can be viewed 
as one of these variations that affects processing in the 
learning phase. 

Other examples of the effect that providing addition-
al information about stimuli enhances memory or other 
kind of performance are found in classification learning 
(Nosofsky, Clark, & Shin, 1989) or schema acquisition 
(Ahn, Brewer, & Mooney, 1992). Common to all these 
examples is subjects’ reluctance to use the additional 
hints. Ahn et al.’s (1992) subjects used the experi-
mentally provided background knowledge only when 
they were engaged in tasks requiring the active use of 
that knowledge. Nosofsky et al. (1989) found that even 
simple rules defining a concept were only used when 
subjects were explicitly told to do so. 

In the group with causal interpretation, the results 
resemble those typically found in implicit learning
experiments. So does the stochastic independence in 
that group indicate implicit learning? It is not a new 
claim, but still useful to analyze the acquisition process-
es, the knowledge resulting from these processes, and 
the retrieval processes separately (Frensch, 1998),
rather than calling the whole thing “implicit learning”. 
Doing so in the present context results in a detailed web 
of hypotheses. According to the ACT-R model, the 
processes for acquiring associations between switches 
and lamps can be characterized as implicit, because
associative learning is an autonomous process that 
occurs without awareness. That does not mean that it is 
independent from attentional processes. In fact, what 
associations are learned depends on the sequence in
which perceptional or memory elements are focused on. 
In the Switches & Lamps System, the condition for 
acquiring useful associations is a processing sequence
that focuses on the changes first (i.e. encode the switch 



that has changed since the last item, then encode the 
lamps that have changed, then encode the rest). The 
assumption that such a sequence occurs more likely in 
the ci group, whereas in the nci group, subjects adopt 
other strategies such as processing the images from top 
left to bottom right, is plausible, although it was not 
tested empirically. When the critical difference between 
ci and nci groups lies in the processing sequence of 
stimuli, one can conclude the testable prediction that 
differences between the groups should disappear when 
nci subjects are instructed to focus on changes and are 
debriefed after the learning phase. 

These deliberations are well in line with the view of 
Wright and Whittlesea (1998), who claim that “the only 
major difference between implicit and explicit learning 
may be that consciously knowing that a domain
possesses some important structural property can cause 
one to learn specifically about that property, whereas 
the processing performed when unaware that such a 
property exists may focus selectively on less relevant 
properties” (p. 419).

As a form of subsymbolic knowledge, associations 
can be viewed as implicit knowledge. In ACT-R, sub-
symbolic knowledge exerts its influence through
activation processes, but is not directly accessible by 
production rules. The explanatory potential of the
subsymbolic level of ACT-R for implicit memory
phenomena has also been demonstrated by Taatgen 
(1999) with a model of word recognition and com-
pletion. In his model it is the dynamics of baselevel 
learning rather than associative learning that accounts 
for dissociations.

Only at the stage of applying the knowledge a con-
scious strategy of utilizing the associations between 
switch events and lamp events is assumed, a strategy of 
retrieving the most active lamp event with a given 
switch-turned-on event as cue.

Since the system I used here was a static one, some
considerations about the generalization of the results to 
dynamic systems are indicated. Dynamic systems are 
characterized by dependence on their own state, which 
gives them momentum. This is not the case in the
Switches & Lamps System. However, similar to dyna-
mic systems, its output variables depend on multiple
input variables. The momentum is an important
property that makes it hard to handle dynamic systems 
(Funke, 1993). This might be one of the reasons why
subjects typically focus on the relations between input
and output variables, often disregarding the output-out-
put relations that establish the momentum (Schoppek,
2002). Thus, from the point of view of many subjects,
the Switches & Lamp System can appear very similar to
small dynamic systems like the Sugar Factory.

If one accepts “Switches & Lamps” as a model for
small dynamic systems , the work presented here
questions the common interpretation that controlling

those systems is accomplished with exemplar
knowledge only (Dienes & Fahey, 1995; Lebiere,
Wallach & Taatgen, 1998). For obvious reasons,
proving the sufficiency of this type of knowledge does
not prove that human subjects are making do with this 
type, too. The findings of the group with causal
interpretation parallel those of Dienes and Fahey
(1998), who found stochastic independence between 
recognition and a completion task and arrived at similar 
conclusions. The present experiment extends Dienes 
and Fahey’s approach by demonstrating that without 
causal interpretation the contingency between these
tasks is close to its possible maximum, indicating that 
in that case only one type of knowledge is used.
Moreover, it involves a real dissociation in the sense 
that the experimental manipulation affected one task 
(causal judgment, completion), but not another
(recognition). It would be interesting to see if a
variation of causal interpretation with the Sugar Factory 
yielded similar results.

Although many of the predictions were derived from 
a cognitive model, I have as yet not succeeded in 
reproducing the whole set of results with the model. For 
example, the present model overestimates discrimi-
nation between old and new states. The main reason for 
this is the simplified assumption that every state is 
encoded by three chunks in a one trial fashion: One 
chunk representing all switches, one representing all 
lamps, and one grouping the two other chunks together. 
This assumption has to be replaced by an appropriate 
theory about how humans form chunks from unfamiliar 
material, such as the competitive chunking theory
(Servan-Schreiber & Anderson, 1990), or EPAM
successors like CHREST (Gobet & Jackson, 2001).
Nevertheless, even when a model does not reproduce all 
aspects of the data, the cognitive modeling perspective 
forces the analyst to explicate assumptions on all stages 
of processing, thus helping to draw a detailed picture of 
reality that goes far beyond the simple distinction
between implicit and explicit learning.
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