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Abstract

One central function of categories is to allow people to in-
fer the presence of features that cannot be directly ob-
served. Although the effect of observing past category
members on such inferences has been considered, the effect
of theoretical or causal knowledge about the category has
not. We compared the effects of causal laws on feature pre-
diction with the effects of the inter-feature correlations that
are produced by those laws, and with the effect of exemplar
typicality or similarity. Feature predictions were strongly
influenced by causal knowledge. However, they were also
influenced by similarity, in violation of normative behav-
ior as defined by a Bayesian network view of causal reason-
ing. Finally, feature predictions were not influenced by the
presence of correlations among features in observed cate-
gory members, indicating that causal relations versus cor-
relations lead to different inferences regarding the presence
of unobserved features.

When an object has been classified as an instance of a con-
cept, knowledge associated with that concept can be brought
to bear in reasoning about the features that the object is
likely to possess. But what is the nature of that knowledge,
and how is it used to make inferences or predictions about
unobserved features? Recent research has demonstrated that
tasks such as category learning, categorization, and category-
based induction are often influenced by the theoretical
knowledge that one possesses. This knowledge often takes
the form of causal relations between features of a category,
and theories have been proposed to account for the effects of
such knowledge (Rehder, 1999, 2001; Waldmann, Holyoak,
& Fratianne, 1995). In this article we assess the effect of
causal relations on feature inferences, and in the first of the
following sections we present a formal model of causal
knowledge and its predictions regarding feature inferences.

Of course, another form of knowledge that may guide fea-
ture inference is empirical information derived from the first-
hand observation of category members. Prior research sug-
gests two likely effects of such empirical knowledge on fea-
ture prediction. First, feature predictions will often be influ-
enced by the overall similarity to the category of the exem-
plar with the unobserved feature. In the second section we
discuss this predicted effect of similarity and show how it
can run directly counter to the predictions of our formal
model of causal knowledge. Second, the presence of correla-
tions among category features may also allow one to infer

the presence of a feature given knowledge about the presence
of one or more other features. We discuss the effects of ob-
served inter-feature correlations in the third section, and
compare them to the effects produced by direct knowledge of
causal relations—relations that were responsible for generat-
ing the feature correlations in the first place.

Feature Inference via Causal Reasoning
It is clear that causal knowledge has predictive value. For
example, given knowledge of the causes of fire, one can
predict, with some certainty, that a flame will appear when a
match is struck, oxygen is present, and so on. Likewise,
given the causal relations that hold among features of an
object, the presence of an unobserved feature can be inferred
by reasoning about the causes of that feature and whether
those causes are present in the object at hand.

In this article we provide direct evidence of causal reason-
ing in feature inference, and we test a well specified theory
about how this sort of reasoning might be done. This theory
involves Bayesian networks—graphs in which variables are
represented as nodes, and causal relations between the vari-
ables as directed links between the nodes. Figure 1 shows a
simple Bayesian network in which three effect variables are
dependent on a single cause variable.

Rules by which inferences can be drawn from Bayesian
networks have been well developed in artificial intelligence.
One important rule is the causal Markov condition, which
states that a variable X  is independent of all variables that
are not themselves descendents of X  given knowledge about
the state of X’s (immediate) parents (Pearl, 1988). In Figure
1, for example, the state of F2 is independent of F3 and F4
given knowledge about F1.

It has been proposed that Bayesian networks are good psy-
chological models of causal knowledge—and, in particular,
of the causal knowledge associated with object concepts
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     Figure 1. A common-cause causal schema.       



(Rehder, 1999, 2001; Waldmann et al., 1995). On this
causal-model theory of concepts, the model shown in Figure
1 can be used to represent a concept with four features,
where feature F1 causes features F2, F3, and F4. Representing
causal knowledge of category features in this way has been
shown to account well for classification (Rehder, 1999,
2001), but it is an open question whether the rules of infer-
ence associated with Bayesian networks—and, in particular,
the causal Markov condition—accurately describe people’s
inferences about unobserved features.

In this article we tackle this question by explicitly ma-
nipulating the causal knowledge about a category that a par-
ticipant has and measuring the effects of that knowledge on
subsequent feature predictions. Participants in a Causal
Schema condition were told that the features of a novel cate-
gory were related as in the common-cause model of Figure
1, and were then asked to make inferences about exemplars
in which one of the four features was unobservable. We de-
termined whether participants’ responses were consistent
with the causal Markov condition.

Feature Inference via Category Similarity
Another factor likely to influence the prediction of an unob-
served feature is the similarity of the exemplar to previously
observed category members (or to the category’s prototype).
In this case, inference is based on simple feature overlap. If
an exemplar is similar to (i.e., shares many features with)
many category members, and if many category members
possess the unobserved feature, then the exemplar probably
has the feature too. For example, if a new bird has many
features typical of birds (small, sings, eats worms, etc.) it
probably also flies, because it is similar to many birds and
most birds fly. In contrast, a new bird with many atypical
features (e.g., an ostrich) is similar to fewer birds, and so the
inference to flight is less certain.

Previous research has shown that similarity plays a key
role in a variety of feature inference tasks. For example,
Sloman’s (1993) feature-based model of the inductive projec-
tion of features across categories assumes that a feature is
projected from, say, robins to falcons by computing the
extent to which they have other features in common (cf.
Rips, 1975). Sloman also found a phenomenon called “in-
clusion similarity” in which participants projected a property
from an inclusive category to a subordinate (e.g., from bird
to robin) more strongly when the subordinate was more
typical (e.g., robin) than when it was less so (e.g., pen-
guin). Direct evidence of the role of similarity in feature
prediction (rather than projecting new features across catego-
ries) was provided by Yamauchi and Markman (2000), who
taught participants artificial categories and found that exem-
plars that were closer to the category prototype (i.e., that
possessed more features in common with training exem-
plars) supported stronger inferences of unobserved features.

The influence of similarity on feature inference presents a
particularly stringent test of the causal Markov condition,
because honoring the causal Markov condition can require
one to ignore similarity. For a category with a common-
cause causal schema (Figure 1), the causal Markov condition
states that information about the presence or absence of F2

and F3 is irrelevant to inferring F4 given knowledge of F1. In
contrast, an influence of similarity predicts that inferences to
F4 will be stronger when F2 and F3 are present, because the
presence of F2 and F3 means that the exemplar is more simi-
lar to the category prototype.

In the following experiment participants in the Control
condition were told that each feature had a 75% base rate (as
were Causal Schema participants), but were not instructed
on any causal relationships. Results from the Control condi-
tion will indicate an effect of similarity if feature inferences
increase as a function of the exemplar’s similarity to this
central tendency (i.e., as a function of the number of fea-
tures). Results from the Causal Schema condition will indi-
cate whether participants are able to override this effect of
similarity, as required by the causal Markov condition.

Feature Inference via Feature Correlations
The final influence on feature prediction performance we
consider is the presence of within-category feature correla-
tions. For example, many people know that birds that are
small tend to sing whereas large birds do not, and on the
basis of this correlation might infer the presence of a small
bird upon hearing song, or the absence of singing from a
large bird—and do so despite having no knowledge of the
causal mechanisms that link size and singing.

Prior research confirms the intuition that the observation
of within-category feature correlations can influence feature
predictions, at least when participants observe category ex-
emplars during standard classification-with-feedback training.
Some studies (Thomas, 1998; Yamauchi & Markman 1998)
have attributed this result to participants’ similarity-
matching to the training exemplars with a multiplicative
similarity rule that preserves sensitivity to feature correla-
tions. Others (Anderson & Fincham, 1996) attribute it to
participants’ inducing a direct representation of those inter-
feature correlations (also see Wattenmaker, 1993).

A final goal of the current article was to compare the ef-
fect of causal laws on feature inference with the effect of
observing the inter-feature correlations produced by those
laws. In the following experiment, participants in the Ex-
emplars condition were told that each feature manifested a
75% base rate, as were participants in the Causal Schema
and Control conditions. But then, rather than being in-
structed on causal relationships, they instead observed a
sample of exemplars that manifested the inter-feature correla-
tional structure that is implied by a common-cause causal
schema (i.e., exemplars with strong correlations between
feature F1 and features F2, F3, and F4). Because it reflects
causal laws, feature prediction performance based on this
correlational structure should ideally be qualitatively similar
to performance based on knowledge of the laws alone. In
particular, inferences regarding the presence of an unobserved
effect feature should be stronger when F1 is present as com-
pared to one of the other features.

Method
Materials
Six novel categories were used: two biological kinds (Kehoe
Ants, Lake Victoria Shrimp), two nonliving natural kinds



(Myastars, Meteoric Sodium Carbonate), and two artifacts
(Romanian Rogos [cars], Neptune Personal Computers).
Each category had four binary features. For example, for the
Lake Victoria Shrimp category the four binary features were
“a high quantity of ACh neurotransmitter,” “long-lasting
flight response,” “accelerated sleep cycle,” and “high body
weight.” Each feature was described as occurring in 75% of
category members. Participants in the Causal Schema condi-
tion were also taught about three causal relationships be-
tween F1 and F2, F3, and F4. Each description of a causal
relationship specified the cause feature, the effect feature, and
a brief description of causal mechanism linking them. For
example, the F1→F2 causal relationship for Lake Victoria
Shrimp was "A high quantity of ACh neurotransmitter
causes a long-lasting flight response. The duration of the
electrical signal to the muscles is longer because of the ex-
cess amount of neurotransmitter."

Participants
Fifty-four undergraduates or other members of the North-
western University community received course credit or pay
for participating in this experiment.

Design
Participants were randomly assigned in equal numbers to one
of the six categories, and to either the Causal Schema, the
Exemplars, or the Control condition.

Procedure
All phases of the experiment were conducted by computer.
Participants first studied several screens of information about
the assigned category at their own pace. All participants read
a cover story and a description of the features and their 75%
base rates. Participants in the Causal Schema condition also
received a description of three causal relationships, and a
diagram depicting those relationships similar to Figure 1.
When ready, all participants took a multiple-choice test of
this knowledge. Participants could request help, which led
the computer to re-present the information about the cate-
gory. Participants were required to retake the test until they
made 0 errors and 0 requests for help.

Participants in the Exemplars condition then observed 48
examples of the category. Although the studies reviewed
above found feature prediction performance to be sensitive to
feature correlations when training exemplars were observed
in a classification-with-feedback task, Wattenmaker (1991)
found that participants were more sensitive to feature correla-
tions on a transfer categorization test when they were asked
simply to “look over, examine, and learn about” exemplars.
Thus, category exemplars were presented sequentially at a
pace determined by the participants. They observed 26, 3, 3,
3, 1, 1, 1, 2, 2, 2, and 4 instances of exemplars 1111, 1110,
1101, 1011, 0110, 0101, 0011, 0100, 0010, 0001 and
0000, respectively, where “1” denotes the presence of a fea-
ture, “0” represents its absence, and features are given in
dimension order (F1, F2, F3, F4). These exemplars manifest
the 75% feature base rates that participants were instructed
on, and also the correlational structure that is implied by a
common-cause causal schema. Specifically, the strength of

the correlations between F1 and F2, F3, and F4 was r = .62,
and the correlations among F2, F3, and F4 conditional on F1
were approximately 0. The features of each exemplar were
listed in order (1–4) on the computer screen. For example,
participants assigned to the Lake Victoria Shrimp category
were presented with three category members that possessed
"high amounts of the ACh neurotransmitter," "a normal
flight response," "accelerated sleep cycle," and "high body
weight." The order of the 48 exemplars was randomized for
each participant.

Participants in all conditions then performed two tasks
(counterbalanced for order): a feature prediction task and a
categorization task. During the feature prediction task, par-
ticipants were presented with 32 exemplars, each with an
unobserved value on one of the four dimensions, and were
asked to rate the likelihood that the feature was present on a
100-point scale. For each unobserved dimension the other
three dimensions took on the eight possible combinations of
values, yielding a total of 32 feature prediction problems.
The features of each exemplar were listed in dimension order
(1–4), with the unknown dimension designated with “???.”
For example, participants assigned to the Lake Victoria
Shrimp category were presented with the feature list "normal
amounts of the ACh neurotransmitter," "a fast flight re-
sponse," "???," and "high body weight" and asked to rate on
a 100-point scale whether this exemplar had an “accelerated
sleep cycle.” The order of the 32 feature prediction problems
was randomized for each participant.

During the categorization task, participants rated the cate-
gory membership of exemplars on a 100-point scale. There
were 32 exemplars, consisting of all possible 16 examples
that could be formed from four binary features, each pre-
sented twice. The order of the 32 test exemplars was random-
ized for each participant.

Results
Feature Prediction Results
Because results for those feature prediction problems in
which the unobserved feature dimension was the first dimen-
sion were not directly relevant to the theoretical issues raised
in this article, we report results only for those problems in
which the unobserved feature was on the second, third, or
fourth dimension. Figure 2 presents feature prediction rat-
ings as a function of the total number of features in the ex-
emplar, whether the common-cause feature (F1) is present or
absent in that exemplar, and experimental condition (Causal
Schema, Control, or Exemplar). Note that the number of
features in F1-Present problems ranges from 1 to 3 whereas
the number in F1-Absent problems ranges from 0 to 2 be-
cause of the presence of F1 itself in the F1-Present problems.

In the Causal Schema condition (Figure 2a) feature predic-
tion ratings were strongly influenced by the presence or ab-
sence of the common cause F1 as compared to one of the
other features. For example, problems with one feature re-
ceived a much higher rating when that feature was F1 (e.g.,
the feature prediction problem 1x00) than when it was one
of the other features (e.g., 0x10), 70.6 versus 24.5. Simi-
larly, problems with two features received a higher rating
when one of those features was F1 (e.g., 1x10) than when



neither was F1 (e.g., 0x11), 80.9 versus 32.8. That is,
Causal Schema participants were much more likely to rea-
son from the presence (or absence) of the common-cause
feature F1 to infer the presence (or absence) of an effect than
when they were reasoning from one of the effect features.

According to the causal Markov condition, inferring the
presence of an effect in a common-cause schema should not
only depend on the common cause feature F1, it should also
not depend on any of the effect features. In fact, Figure 2a
indicates that feature prediction ratings increased as the num-
ber of effect features increased. In the F1-absent condition,
feature prediction ratings were 6.7, 24.5, and 32.9 for exem-
plars possessing 0, 1, and 2 effect features, respectively.
This occurred despite the fact that, according to the causal
Markov condition, the absence of common cause F1 makes
the presence or absence of other effects irrelevant for predict-
ing an effect feature. Likewise, in the F1-present condition,
ratings were 70.5, 80.9, and 92.8 for exemplars possessing
1, 2, and 3 features, respectively. That is, although Causal
Schema participants’ feature prediction ratings were strongly
influenced by the causal knowledge that was provided, they
also exhibited a substantial similarity effect in which more
features led to stronger inferences, in violation of the causal
Markov condition.

In comparison with the Causal Schema condition, results
from the Control condition (Figure 2b) indicate that the ef-
fect of the presence or absence of F1 on feature prediction
ratings was not greater than the effects of the other features.
This result was expected, because in the Control condition
there was nothing about F1 to make it especially predictive
of an unobserved feature. However, as in the Causal Schema
condition, feature prediction ratings exhibited an effect of
similarity; ratings increased as a function of the number of
features present in the exemplar. Ratings were 37.4, 53.6,
63.1, and 73.7 for exemplars that possessed 0, 1, 2, or 3
features, respectively. Note that this effect of similarity ob-
tained despite the fact that the Control participants observed
no members of the category, but rather just read a verbal
statement of the 75% feature base rates.

These conclusions were supported by statistical analysis.
Each participant’s ratings were predicted from a regression

equation in which the two predictors were the number of
features present and a contrast code representing the presence
or absence of F1. As expected, in the Causal Schema condi-
tion the regression weight associated with the presence or
absence of F1 was both significantly greater than zero, t(35)
= 6.95, p < .0001, and significantly different than the corre-
sponding weight in the Control condition, t(34) = 5.65, p <
.0001. Moreover, in both the Causal Schema condition and
the Control condition the regression weight associated with
the number of features was significantly different from zero,
t(35) = 4.89, p < .0001, and t(35) = 2.79, p < .01, respec-
tively. This sensitivity to number of features did not differ
between the Causal Schema and Control conditions, t < 1.

Finally, Figure 2c presents the results from the Exem-
plars condition. The figure indicates that, in contrast to the
Causal Schema condition, the presence of F1 resulted in only
a small increase in feature prediction ratings as compared to
one of the other features. For example, whereas in the
Causal Schema condition problems received a feature predic-
tion rating that was about 50 points higher when F1 was
present in the exemplar (Figure 2a), in the Exemplars condi-
tion that difference was only 10.9 points (52.9 vs. 42.0) for
one-feature exemplars and 12.4 points (69.3 vs. 56.9) for
two-feature exemplars. This result obtained despite the pres-
ence of strong correlations between F1 and the other features
in the training exemplars that might have been expected to
lead subjects to treat F1 as especially predictive. In fact, the
regression weight associated with the presence or absence of
F1 in the Exemplars condition was not significantly different
from the Control condition, t(34) = 1.17, p > .20.

As in the Causal Schema and Control conditions, feature
prediction ratings in the Exemplars condition were sensitive
to the total number of features possessed by the exemplar.
Ratings were 24.2, 44.2, 65.1, and 94.0 for exemplars that
possessed 0, 1, 2, or 3 features, respectively. The regression
weight associated with the number of features was greater
than the corresponding regression weight in the Control
condition, t(34) = 2.12, p < .05. In other words, the obser-
vation of exemplars that manifested the 75% feature base
rates led participants to be more sensitive to similarity as
compared to the Control condition, in which participants
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were simply told about the 75% feature base rates.
Individual differences. On a finer level of analysis, there is

some clustering in the data. Informally, the response pat-
terns given by participants in the Causal Schema condition
fell into a few different classes, and the most frequent was in
fact the one that respects the causal Markov condition (uni-
formly low ratings when F1 is absent, uniformly high rat-
ings when F1 is present). A look at the Causal Schema sub-
jects’ regression weights (see Figure 3) revealed a group of 8
“causal Markov” subjects who weighted the presence or ab-
sence of F1 heavily and the number of features lightly, 3
“similarity” subjects who weighted the number of features
heavily and F1 lightly, and 7 “compromisers” who assigned
moderate weights to both predictors. In contrast, examina-
tion of the Exemplars condition revealed 2 causal Markov
subjects, 11 similarity subjects, and 2 compromisers (3 sub-
jects weighted neither factor). That is, whereas the modal
response in the Exemplars condition was similarity based,
the modal response in the Causal Schema condition was
consistent with the causal Markov condition.

Categorization Results
One purpose of the categorization task was to ask to what
extent feature inference was mediated by the goodness of
category membership of the exemplar with the unobserved
feature. We summarize the main findings. First, in the
Causal Schema condition categorization ratings were influ-
enced by the two factors that influenced feature predictions:
They increased as the number of features in the exemplar
increased (i.e., as the exemplar’s similarity increased), and
they increased even more when the causally central F1 was
present (i.e., the pattern shown for feature predictions in
Figure 2a). However, unlike the prediction ratings, the cate-
gorization ratings were also sensitive to whether the causal
relation between F1 and each of the other observed features
was confirmed or violated (i.e., whether F1 and each of the
effect features were jointly present/absent or not), a finding
replicating past results (Rehder & Hastie, 2001). In other
words, whereas categorization ratings showed a sensitivity to
all three of the relations that constitute a common-cause
schema, for purposes of predicting unobserved features par-
ticipants apparently attended to only the relation in which

the unobserved feature dimension was involved. The result
was a dissociation between feature prediction and categoriza-
tion ratings in the Causal Schema condition.

Second, in the Exemplars condition category membership
ratings, like the feature prediction ratings, were sensitive to
similarity but insensitive to the presence or absence of F1 as
compared to other features (cf. Figure 2c). However, unlike
the feature prediction ratings the categorization ratings were
also sensitive to whether the correlations between F1 and each
of the other observed features were broken or preserved.

Importantly, this latter result speaks to the possibility
that Exemplars participants' insensitivity to the presence or
absence of F1 during the feature prediction task arose merely
as consequence of their failing to learn and encode the corre-
lations involving F1. In fact, results from the categorization
task indicate that participants encoded these correlations but
did not make use of them in feature inference. This repre-
sents a dissociation between feature inference and categoriza-
tion, just as in the Causal Schema condition.

Finally, in the Control condition both category member-
ship and feature prediction ratings were monotonic functions
of the number of features present, that is, the featural simi-
larity of the exemplar to the category prototype.

General Discussion
The first question asked in the current article was whether
causal knowledge about a category influences predictions
regarding the presence or absence of unobserved features. In
fact, we found that causal knowledge had a strong effect on
those inferences. Reasoners were much more likely to pre-
dict the presence of an unobserved feature when its cause was
present than when that cause was absent. In this respect,
their reasoning was similar to the normative method of in-
ference defined by Bayesian networks.

These results contribute to a collection of findings dem-
onstrating the importance of theoretical or explanatory
knowledge in variety of feature inference tasks. For example,
Lassaline (1996) found that the projection of a new property
from one category to another was stronger when causal
knowledge supportive of that property was provided (also see
Sloman, 1994). Rehder & Ross (2001) found that the learn-
ing of a category via a feature prediction task proceeded more
rapidly when features were related on the basis of prior
knowledge. However, so far as we know, the current study is
the first to address the specific role of causal knowledge in
inferring the presence of unobserved features in a category
with known causal structure.

Although causal knowledge had a profound effect on fea-
ture predictions, we also found that normative Bayesian rea-
soning is not the whole story. Even when reasoners had
causal knowledge, their feature inferences showed a persis-
tent effect of overall similarity to the category, such that an
exemplar with a greater number of category-associated fea-
tures was deemed more likely to have an unobserved feature.
This was true even though the features that contributed to
similarity were conditionally independent of the unobserved
feature in question. In this respect, the effect of causal
knowledge on feature predictions violated the causal Markov
condition associated with Bayesian networks.

The influence of similarity on feature predictions also ob-
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tained in the Control condition. This effect held even though
participants did not observe category members (in contrast to
previous studies demonstrating similarity effects, e.g., Ya-
mauchi & Markman, 2000), but rather were provided only
with a verbal statement of the 75% feature base rates. Under
these conditions one might have expected that Control par-
ticipants would be especially likely to assume independence
among features (i.e., base each prediction only on the base
rate of the feature in question and not on the pres-
ence/absence of other features). The current results indicate
people’s tendency to reason on the basis of central tendency
or prototype information holds even when that information
is provided in summary form (and without any mention of
correlations between features) rather than experientially.

On the one hand, these findings are reminiscent of other
studies that have attempted—mostly in vain—to induce par-
ticipants to ignore the effects of similarity (e.g., Allen &
Brooks, 1991). However, our analysis of individual differ-
ences revealed considerable variation among participants in
the relative importance of causal knowledge and similarity.
In fact, 8 of 18 participants in the Causal Schema condition
ignored similarity (that is, they honored the causal Markov
condition) when predicting unobserved features, indicating
that similarity-based responding is not obligatory. The ques-
tion of under what conditions feature inferences are domi-
nated by theoretical and causal knowledge versus featural
similarity is one that merits further investigation.

Another question we asked was whether causal knowledge
has a different effect than inter-feature correlational knowl-
edge. Rather than being given an explicit causal model, par-
ticipants in the Exemplars condition observed exemplars that
manifested the correlations implied by that model. In fact,
though, the vast majority (14 of 18) of Exemplars partici-
pants failed to use those correlations in making feature infer-
ences, and their inferences were qualitatively like those of
Control subjects, who had neither causal nor empirical
knowledge. Instead, the effect of the empirical observations
was merely to make feature predictions even more sensitive
to the degree to which an exemplar was similar to the cate-
gory’s prototype.

This finding contrasts with previous studies in which fea-
ture prediction was found to be sensitive to inter-feature cor-
relations, at least when those correlations were observed
during a classification-with-feedback task (Anderson & Fin-
cham, 1996; Thomas, 1998; Yamauchi & Markman, 1998).
We used a different learning task, in which participants were
asked merely to observe category members, but we know
that the inter-feature correlations were learned and encoded
during this task because they were reflected in participants’
categorization ratings. That the same participants failed to
use these correlations in feature inference represents a disso-
ciation between categorization and feature inference.

More generally, in both the Causal Schema and the Ex-
emplars conditions, we found that categorization ratings and
feature inferences were sensitive to different kinds of infor-
mation: Categorization but not feature prediction was sensi-
tive to the overall causal or correlational structure instanti-
ated in an exemplar. This implies that feature inference is
not merely mediated by goodness of category membership.
Instead, participants in both of these conditions used the

category knowledge they possessed in different ways depend-
ing on the task at hand. That is, whereas Yamauchi and
Markman (1998) have suggested that category representa-
tions will differ depending on whether they are acquired via
categorization or feature prediction, the current results sug-
gest that categorization and feature prediction tasks can also
draw on different aspects of a single representation.
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