
A Dynamical Connectionist Account of Conceptual Change

 Athanassios Raftopoulos (raftop@ucy.ac.cy),
Andreas Demetriou (ademet@ucy.ac.cy)

 Department of Educational Sciences, University of Cyprus
P.O. Box 20537, 1678 Nicosia, Cyprus.

Abstract

Conceptual change can be accounted for at various levels of
explanation. The cognitive level (Marr’s computational level),
the representational (Marr’s “algorithmic”), and the
implementational level. In this paper, we offer a dynamical
account of types of conceptual change at the representational
level. Our aim is to show that some classes of neural models can
implement the types of change that we have proposed elsewhere.
First we briefly describe at the cognitive level certain types of
change that purport to account for some of the kinds of
conceptual change. Then we lay forth the framework of
dynamical connectionism; we discuss the representational level
realizations of the cognitive level and claim that these can be
depicted as points in the system’s activational landscape. We
offer, third, a dynamical account of some types change and we
claim that conceptual change can be modeled as a process of
modification, appearance of new and disappearance of attractors
and/or basins of attraction that shape the system’s landscape.
Finally, we discuss the kinds of mechanisms at the
representational level that could produce the types of change
observed at the cognitive level, as modeled by means of
dynamic connectionism.

Introduction
Conceptual change can be accounted for at various

levels of explanation. Following Marr (1980), one can
distinguish between three levels: the computational, the
algorithmic, and the implementational level of explanation
of cognitive systems. We prefer the term “cognitive” to
“computational”, and the term “representational” to
“algorithmic”, since there are accounts of cognition that
deny the algorithmic nature of mental operations.

At the cognitive level, one can discuss cognitive
operations that apply to information-processing content
(such as addition and subtraction), operations that apply to
structures as wholes, such as differentiation or coalescence
(Carey, 1985; Chi, 1992), or, conceptual combination,
generalization and abduction, and hypothesis formation
(Thagard, 1992). This level addresses the issue of the
functions computed by the information processing system.

At the representational level one can examine the
algorithmic processes that realize conceptual change at the

cognitive level by transforming representations, such as
Newell and Simon’s (1972) “problem behavior graph” in
production systems. In the connectionist paradigm one can
study the processes of the emergence of new attractors, and
repositioning of points realizing representational states in
high-dimensional state spaces (Horgan and Tienson, 1996),
or the changes in the connection weights and network
structure (Elman et al., 1996; Schultz et. al., 1995; Plunkett
& Sinha, 1992).

In this paper, we will discuss a theory of different types
of cognitive change and their implementation at the
representation level. Our aim is to show how certain classes
of neural networks could implement some of the types of
change that the authors have proposed (Demetriou and
Raftopoulos, 1999). First, we will summarize these types of
change. In the second part we will sketch the framework for
the dynamics of change, relying on the dynamical
interpretation of connectionist networks to explore possible
means of modeling the stipulated types. In the third part we
offer a dynamical account of some types change and we
claim that conceptual change can be modeled as a process of
modification, appearance of new and disappearance of
attractors and/or basins of attraction that shape the system’s
landscape. Finally, we discuss the kinds of mechanisms at
the representational level that could produce the types of
cognitive change.

To that end we will employ neural networks whose
behavior can be viewed as falling under one or the other of
our kinds of change, and describe the behavior that neural
networks should exhibit if they are to implement type of
change.

Types of Change
Demetriou and Raftopoulos (1999) previously published a
theory of conceptual change that addresses the issue of how
a learning system makes the transition from one state to
another. The theory provides a detailed analysis of the types
of change that are observed both in cognitive development
and during learning. The types of change are summarized in
Figure 1.



Fig. 1.  The types of change

We will briefly present here combination, and fusion.
Bridging is a class of types of change, whose unifying
feature is that (a) two or more existing structures are
brought together to bear on each other and form a more
complex structure, and (b) after bridging the constituent
structures retain their functional autonomy, even though
they may have been modified. The blended structures may
remain unaltered and the resulting structure(s) may retain
the characteristics of the constituent structures (as when
“striped” and “apple” are combined to produce “striped
apple”. In this case, the type of change is combination.

Fusion differs from bridging in that the mapped
structures do not retain their relative autonomy after the
mapping; instead, they fuse to one of the existing structures,
or form a new structure. An example would be the fusion of
retrieval and counting strategies, which are involved in
simple operations of addition and subtraction performed by
children aged 4-6. After fusion, around the age 6-7, the
predominant strategy is retrieval by rote memory (Siegler,
1996).

The Representational Level
We discuss here the way representations can be

modeled as properties of cognitive systems. At this level
one examines the mathematical implementation of the
cognitive level. In other words, we examine the way
cognitive states are represented and how they are
transformed and processed by means of operations
performed on data structures.

These transformations can be either algorithmic
(determined by a set of rules that apply to discrete static
symbols that are the representations of the system) or
dynamical (determined by mathematical relations that apply
to continuous variables and specify their interrelations and
evolution in time). This is why we call these transformative
processes mathematical-state transitions; they describe the
way the system moves between points in its state-space. We
will address the issue of change from the perspective of
connectionist theory interpreted in a dynamical way. Thus,
will assume that a cognitive system is associated with a
dynamical system physically realized by a neural network.

Neural Networks as Dynamical Systems
Recurrent neural networks (Elman, 1990) with

distributed representations and continuous activation levels
can naturally be construed in a dynamical way. They can be
described by means of the evolution of the activation values
of their units over time. To be able to model growth and
avoid problems of lifelong (mainly catastrophic
interference), one needs to consider a special class of
networks, namely adaptive or generative networks. These
networks can modify their structure during learning by
adding or deleting nodes and can change their learning rates.

The number of units of the network determines the
number of dimensions of the state-space associated with the
system. Their activation values constitute the actual position
in the state-space of the system. Adding a time-dependent
parameter yields the phase-space of the system. Both in
state- and phase-space, one can represent all the possible
states that a system can take in time. Hence, in the
connectionist account, the states of a cognitive system are
depicted by the sets of activation values of the units that
distributively encode these states.

These activation values are the variables of the
dynamical system and their temporal variation constitutes
the internal dynamics of the system. In addition to the state-
space of a system, an external control space is also defined.
The external space contains the real-value control
parameters that control the behavior of the system, i.e., the
connection weights, biases, thresholds, and, in networks in
whose structural properties are implemented as real-value
parameters (Raijmakers et. al., 1996), the structure of the
system. In dynamical systems the fast internal dynamics is
often accompanied by a slow external dynamics. The
external dynamics consist of the temporal paths in the
external control space. The external dynamics consist of the
network’s learning dynamics (the various learning rules)
and the dynamics that determine structural changes, such as
the rules for inserting nodes in cascade correlation and
growing radial basis function networks.

When the network receives input, activation spreads
from the input units to the rest of the network. Each pattern
of activation values defines a vector or a point, within the
activational space of the system whose coordinates are the
activation values of the pattern. The activation rules
determine the state transitions that specify the internal
dynamics of the system, i.e., the functions of the evolution
of the system in time. Thus, the behavior of such a system is
depicted as a trajectory between points in the activational
state space.

The activation rules, the number of units, the pattern of
their connectivity, and the learning rate(s) of the network
determine the architecture of the system. These factors are
determined by its long-term history of experiences, since the
class of networks discussed here may modify either their
patterns of connectivity, as they learn, by adding nodes,
deleting nodes, and sharpening their connections, or their
biases and learning rates. The activation vectors and the
behavior of the system evolve as a result of the synergies
among the architecture of the network, the input it receives,
and the previous activity of the network, under the control
of the external dynamics.
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The behavior of the system is a collective effect of
cooperation and competition, (Kelso, 1995). The
competition is due to the effort of the system to retain its
current state in the face of incoming information. If this
information cannot be assimilated by the system, then the
weights of a network change and the network may alter its
structure to accommodate the new input.

The activation states, in which a network may settle into
after it is provided with an input signal, are the attractors of
the system. These are the regions in state-space toward
which the system evolves in time. The points in state-space
from which the system evolves toward a certain attractor lie
within the basin of attraction of this particular attractor.
Thus, the inputs that land within the basin of attraction of an
attractor will be transformed by the connectivity of the
network so that they end up at this attractor where the
system will settle.

Networks in which the outputs change over time until
the pattern of activation of the system settles into one of
several states, depending upon the input, are called attractor
networks. The sets of possible states into which the system
can settle are the attractors. If the network is used to model
cognitive behavior, then the attractors can be construed as
realizing cognitive states to which the system moves from
other cognitive states that lie within the attractor’s basin of
attraction.

The signal of the input is transformed as it moves
through the hidden units into an attractor pattern as follows:
a given input moves the system into an initial state realized
by an initial point. This input feeds the system with an
activation that spreads causing the units of the system to
change their states. The processing may take several steps,
as the signal is recycled through the recurrent connections in
the network. Since any pattern of activity of the units
corresponds to a point in activation space, these changes
correspond to a movement of the initial point in this state
space. When the network settles, this point arrives at the
attractor that lies at the bottom of the basin in which the
initial point had landed. In this sense, the inputs fed into the
system are the initial conditions of the dynamic system.
Similarly to a dynamical system that settles into a mode
depending on its initial conditions, a neural network settles
into the attractor state in whose basin of attraction the input
falls.

For instance, in a semantic network meanings of words
are represented as patterns of activity over a large number of
semantic features. However, only some of the combinations
of semantic features are features of objects. The patterns
that correspond to these combinations are the attractors of
the network, which are points in the state space
corresponding to the semantic features of the prototype of
the object signified by the word. These attractors are the
meanings of words.

The concepts “attractor” and “basin of attraction”
suggest a way of simulating the classical notion of symbol.
The attractor basins that emerge as the network interacts
with specific inputs might be construed to have symbolic-
like properties, in that inputs with small variations that fall
within the same attractor basin are pulled toward the same
attractor (or cognitive state) of the system. Thus, various

inputs (tokens) give rise to the same stable point of
attraction, the attractor (type), which in this sense offers a
dynamical analog of the classical symbol (Elman, 1995).

The dynamical “symbols”, unlike the symbols of
classical cognitivism, are dynamic and fluid rather than
static and context independent. The dynamic properties
result from the dynamical nature of the activations of
associative patterns of units. As the network learns and
develops, the connection strengths continuously change.
The same happens when new units emerge and old units
“die” and the system reconfigures to maintain its knowledge
and skills. All these cause changes in the original pattern in
which an attractor/symbol was created in the first place, and
as a result, subsequent activations differ. The same effects
are caused by the different contexts in which the “symbol”
may be activated. This happens because connections from
the differing contextual features bias the activation of the
units of the original pattern in different ways emphasizing
some feature of the pattern or other. Thus, the
attractor/symbol is almost never instantiated with the same
activation values of the units that realize it.

The activational state-space of a network is a high-
dimensional mathematical landscape. The state transitions in
such a system are trajectories from one point on to another.
Attractors correspond to cognitive states and the activation
pattern that realizes each state is a vector, or a point. Thus,
cognitive states are realized by points on this landscape.
Since the distributed encoding of a cognitive state does not
involve all units of the system, there will be points on the
activational landscape that will realize more than one
cognitive states (the set of coordinates of a point may satisfy
the partial coordinates given by several activational
vectors).

During the phase of activation-value changes the system
passes through various possible outputs. All these outputs
can be viewed as lying on an energy surface. When the
system passes through a certain output-state whose energy is
not lower than the energies of the neighboring states, it goes
through another phase of activation-value changes in order
to reduce the energy of the output state. When it reaches a
point at which all the neighboring states have higher
energies, it settles.

These states of minimum local energy are the attractors
and can be construed as valley bottoms on energy surfaces.
Thus, attractors should be distinguished from the networks’
outputs in general. Not all outputs are settling points.
Attractors form a subset of the set of outputs of a network,
in that they are those outputs at which the system can settle.
When the input of the system is such that the activation state
of the system lies within the walls of the valley, the system
will settle at the attractor at its bottom. Hence, the valley is
the basin of attraction that leads to the specific attractor-
state of minimum energy. Since the network has many
attractors and basins of attraction, their relative position
shapes the relief of the activational landscape of the system.

Modeling the Dynamics of Cognitive Change
In this theoretical framework, cognitive change results

from the molding of the activational landscape, as a result of
changes in the weights and the architecture of the network,



as the network attempts to accommodate new input signals.
The molding may result either in the emergence of new,
and/or disappearance of old, attractors, or in the reshaping
of the basins of attraction. This process corresponds to a
trajectory on the activational landscape. The idea that
change is to be modeled by means of transitions in the state
space of a dynamic system is at the heart of dynamical
theories of cognition. Transitions in the state space of a
dynamic system substitute for the algorithmic syntactically
governed transitions of cognitivism.

The relief of the landscape determines the trajectories
that are allowed, and the possible transformations among
cognitive states. Cognitive change, thus, depends on the
activational landscape of the system that learns. When
information enters, the system tends to assimilate it within
the existing framework of knowledge, which, in neural
networks, is determined by the connection weights and the
architecture of the network, which, in their turn, distribute
the points that realize cognitive states on the network’s
landscape. We have posited certain types of cognitive
change. In what follows we will sketch their dynamic
realization at the representational level.

Combination
This type of change involves the combination of

structures in such a way that the existing attractors and the
landscape’s relief (their basins of attraction) of the system
are not affected. The new structure is superimposed, as it
were, on the constituent structures. Consider the networks
that simulate learning to pronounce words and non-words
(Plaut et. al. 1996). These networks learn the pronunciation
of both regular and irregular words, by building the
appropriate attractors. The attractors of regular words
consist of componential attractors, in which case the basin
of attraction is the intersection of the sub-basins of attraction
of the componential attractors. The exception words have
their own attractors with a lesser degree of componentiality.
Combination explains the ability of the network to learn the
pronunciation of words and non-words, in that this
knowledge is the result of the combination of the sub-
knowledge encoded by the componential attractors, as is
shown in Figure 2.

In this figure only two componential attractors are
depicted, for onset and the vowel in the reduced two-
dimensional activation space of the phonemic units of the
network. The basins of attraction for the word “by” and the
non-word “dy” are the intersections of the sub-basins for
pronunciation of b, d, and y, that is, the regions in the state
space in which these sub-basins overlap. The black circle is
the attractor for the word by, and the striped circle is the
attractor for the non-word dy. The trained network learns to
pronounce words by applying its knowledge regarding the
pronunciation of the parts of the words (and of the role of
context in pronunciation when it comes to exception words).
The reduced componentiality of the exception words is
depicted by means of a deformation of the intersection of
the salient attractors for the onset d and the vowel o. The
componential attractors and their basins of attraction remain
unaltered.

Figure 2. Componential attractors

After the new pronunciation is learned, the two basins
change their relative positions so that they intersect. Their
intersection (i.e., the pattern corresponding to both sets of
features) forms a new basin, which is the area in which the
two basins overlap. The appearance of a new basin of
attraction represents the learning of a new concept. The new
basin of attraction is superimposed onto the two intersecting
basins. The basins of attraction (sub-basins) and the
attractors do not change. Whatever input was falling within
one of the two basins before learning, still does so after the
network has learned the new concept. The only change after
learning is that some inputs fall within both the new basin
and the old basins of attraction, This is a result of the
superimposition of the new basin of attraction onto the two
sub-basins.

Fusion
 Stable structures within the neural net can be thought

of as attractor states. Thus, the activation pattern of the
structure attracts all other activation patterns that are similar
enough with it (that is, all activation patterns that fall within
the basin of attraction of the attractor). As a network learns,
a new attractor state may emerge, which swallows the
attractors that existed before. This is what happens in fusion.
The two initial basins of attraction are also swallowed by
the new one, so that all patterns that were falling within the
one or the other now fall within the new basin of attraction.
The system undergoes a phase transition that can be
described as a reverse Hopf bifurcation (Figure 3), in which
two stable states (bistability) are fused and disappear, and
one stable state emerges (unistability).

Figure 4 displays the phase transitions associated with
the fusion of “counting from one” and “memory retrieval”
strategies (used by 4-6 year old children in simple arithmetic
tasks) to the “memory retrieval” strategy that becomes
predominant between 6 and 7 years of age.
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Figure 3. Fusion as an inverse Hopf bifurcation

The generative networks designed by Schultz et. al.,
(1995) to model a series of cognitive tasks simulate the
variability of the strategies available to children. Networks
at some stage of their training in the balance-beam tasks
may “employ” two different strategies to solve the same
problem and, as training continues, progress to using
reliably the more advanced strategy. These networks
implement “fusion”, by moving from bistability to
unistability.

Figure 4. Fusion of two counting strategies

Strong and Weak Cognitive Change
In this context of dynamical connectionism, cognitive

change consists in changes in connection weights, the
structure, and the learning rates of the network. In
connectionist networks an individual’s state of knowledge is
determined by the weights of the hidden units. Cognitive
representational change is regarded as the individual’s
actual path through the space of possible synaptic
configurations, that is, as the transformations of the weight
vector in an n-dimensional weight space, where n is the
number of the weights.

The appearance of novel cognitive states, and thus, the
appearance of new attractors and the disappearance of old
ones, implies a change of relief in the network’s landscape
(molding). Since the relief depends on the structure of the
network, that is, the number of nodes, their connectivity,

and the activation functions, its molding is the result of
changes in the structure of the network. Networks evolve as
a result of the system’s effort to adapt to a new
environment, by superimposing new representations to old
ones. Thus, the system modifies the “knowing assumptions”
that do not fit in.

The account of cognitive change at the representational
level allows us to recast the discussion regarding strong and
weak representational change in terms of dynamic systems
theory. Whether a cognitive change is weak or strong
depends on whether the new structure increases the
representational resources of the system. Since
representations are points in the state space of the system,
the expressive contents of the system correspond to such
points. If the relief of the landscape is such that the system
cannot settle at a content realizing point, that is, if this point
is not a possible attractor state, the content that is realized
by this point is not within the expressive capabilities of the
system. When changes in the relief render this point an
attractor, the change is strong; it results in an increase in
representational power.

But the mere appearance of an attractor does not
necessarily imply that a radical change has taken place, that
is, that this is a novel attractor state. This is so if the content
realizing point that appears as a new attractor was in fact
expressible within the system; that is, if the system could
have settled at that point, even if it had not done so, up to
that time. When the structures “striped” and “apple” are
combined an attractor state “appears and the system
acquires the new concept of “striped apple”. This “new”
attractor is a region in the state space, which realizes the
content “striped apple” and is superimposed on the
attractors of “apple” and “striped”. But this is not a novel
attractor, because this content was already within the
expressive power of the system, since the relief of the
landscape was such that the system could have settled if fed
with the appropriate input at this point. In other words, the
“new” attractor was situated at a local energy minimum in
which the system could have settled if it had been fed with
the appropriate input (the experience of a striped apple). The
attractor appears without the landscape being molded and
this attractor is just the sum of information expressed by the
other attractors, which remain intact. In this case, the
ensuing change is weak.

Weak change refers to changes in the semantic content
of representations, which broaden their field of application
but do not increase the expressive capabilities of the system.
Attractors are merely repositioned in the landscape, which
means that the activation patterns that define them do
change. Reposition of any content-realizing point is
accompanied by changes in the activation values that
constitute the point’s activation pattern, and changes in its
spatial relations with other content realizing points. Since
semantic information in dynamic systems is captured by the
relative positions of content realizing points, repositioning is
accompanied by semantic change.

This scenario does not apply to the case of fusion. No
mere intersection of existing basins of attraction or any
simple repositioning, could accommodate the salient input.
A reshaping of attractor basins is required, as well as the
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disappearance of an older attractor and the emergence of a
novel one. These changes mould the landscape.

Thus, when new information is learned with
repositioning of attractors and basins of attraction, and
attractors are preserved (though the slope of the basins may
change, with some becoming steeper and others becoming
less steep), the resulting change is weak. Updating the
connection weights seems to suffice for this. If the change in
weights does not suffice for learning, the landscape is
molded by changes in the network’s structure (Horgan and
Tienson, 1996). This may induce the appearance of new
attractors; since the attractors are points on the landscape,
the appearance of new cognitive states realizing points on
this landscape, and the disappearance of old constitute
strong changes, since the content-expressive power of the
system increases. This process may require structural, i.e.,
qualitative, change.

Mechanisms of Change
At the cognitive level, the main Piagetian mechanisms

driving conceptual changes are assimilation,
accommodation, and equilibration. It is time now to
consider the mechanisms driving change at the
representational level. In each of the types of change
discussed previously the processes that lead to the change
are the same, always reducing to quantitative and qualitative
changes in connection weights and the architectural
structure of the network. These processes cause the
repositioning of existing attractors, the disappearance of old
ones, the appearance of new ones, and changes in the basins
of attraction that shape the relief of the landscape. It could
hardly be otherwise. In connectionism the computational
mechanisms are domain general, statistical learning
mechanisms, based on brain-style computation, that is, (a)
on the spreading of the activation of each unit to other units,
(b) on the modification of the connection weights, and (c)
on the modification of the network structure.

McClelland (1989) argued that Piagetian “assimilation”
corresponds to the activation spread in a network when a
signal is presented to the input units and propagates through
the network causing the activation of its units. The alteration
of the weights, as a result of the network’s learning, models
Piaget’s “accommodation”, that is, the change that the
network undergoes trying to fit in new experiences. Shultz,
et al., (1995), and others, have proposed networks that adapt
their structure as they learn by increasing their hidden units
to accommodate the demands of the task. They offer a
variation of McClelland’s account that is suited better for
networks that can modify their structure. The quantitative
phase of error reduction and weight change may correspond
to Piaget’s “assimilation” of information in a pre-existing
structure, whereas the qualitative structural change
corresponds to Piaget’s “accommodation” of the system.
Quantitative change renders possible knowledge acquisition
within a fixed representational framework, whereas
qualitative change allows an increase in representational
power.
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