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Abstract

Many real world situations do not offer unambiguous
outcome feedback on how to categorize objects. Models
in the categorization literature have mostly been formu-
lated for tasks with trial-by-trial outcome feedback. We
examined if there was evidence for exemplar memory
also when no external feedback is provided and the crite-
rion is derivative of more abstract knowledge. In a
“teacher-student” task, a teacher learns how to judge the
toxicity of bugs from external outcome feedback and
conveys this knowledge to a student that receives no out-
come feedback. The results showed that the students ex-
hibit exemplar effects even if the instructions from the
teachers were in the form of rules.

Introduction

Consider listening to your very first speech by a politi-
cian. Your previous knowledge is likely to influence
your attitude towards her or him. Perhaps, already from
childhood your father has imprinted in you that politi-
cians are guided by strictly egoist motives and your
general conceptions thus include a belief that no politi-
cian advocates a proposal that does not lay in his or her
personal interest. You hear a short speech that is neutral
in content. Later you listen to another politician. How is
your opinion of this second politician influenced by the
first encounter? You did not receive much useful feed-
back from the first encounter, as you only listened to a
short neutral speech. However, in your memory the first
politician is stored as a person only interested in pursu-
ing his own interest. This exemplar memory only in
part derives from direct experience with a politician; in
part it is derivative of more general beliefs held prior to
the encounter. However, by now this belief is supported
also by “concrete experience” of politicians.

This was an example of a real world situation that is
different from most categorization experiments where
classification models are tested in tasks with simple
perceptual stimuli and trial-by-trial outcome feedback.
Everyday situations often do not offer direct and unam-
biguous feedback and exemplar memory is thus likely
to derive in part also from other sources of knowledge
besides concrete experience with the objects.

There has been increasing interest in multiple repre-
sentation levels (e.g., Ashby, Alfonso-Reese, Turken, &
Waldron, 1998) and there is evidence that people can
adaptively shift between different representation levels

in response to the experimental demands (Jones, Juslin,
Olsson, & Winman, 2000). With experience, knowl-
edge first represented abstractly may be projected onto
concrete exemplars so that in the end the beliefs are
supported also by an extensive exemplar memory: a
phenomenon that might be called pseudo-experience.

Even if some extensions of exemplar models allows
for storage of exemplars as they are interpreted and not
solely in terms of their physical properties (e.g., the
model presented by Smith & Zarate, 1992), the argu-
ment supporting this claim is based on general observa-
tions and not linked to predictions from different mod-
els. For example, one such observation is that a reen-
counter of a stimulus facilitate the same reactions and
processes (see the review in Smith & Zarate, 1992).

In this paper, we examine the possibility of extending
the scope of exemplar models (Medin & Schaffer,
1978; Nosofsky, 1986) to situations where people do
not receive outcome feedback, but form beliefs about
the criterion from abstract knowledge of rules. In these
circumstances, one possibility is that people completely
abandon exemplar processes as a basis for their judg-
ments and directly use abstract knowledge in the form
of rules or prototypes.

Another possibility is that people generate the criteria
from abstract knowledge and store them together with
the experienced exemplars; later to rely on these stored
exemplars to make their judgments. We explore these
possibilities in a “teacher-student” task where a teacher
learns how to judge the toxicity of bugs from outcome
feedback and the student has to rely on feedforward
summary information provided by the teacher. The
question is if there is evidence for exemplar processing
in the students judgments even if they do not receive
feedback or instructions about exemplars from the
teachers.

Measuring Exemplar Effects

To develop an exemplar effect index we need to con-
sider a category structure that allows us to differentiate
between predictions by the exemplar model and other
plausible models, in this case a cue-abstraction model
that linearly integrates cues. The results previously
obtained with this task revealed large individual differ-
ences and a shift from exemplar memory to more men-
tal cue-integration processes when the criterion is
changed from classification to a continuous judgment
task (Juslin, Olsson, & Olsson, 2002).



The task requires participants to use four binary cues
to infer a continuous criterion. (Juslin et al., 2002). The
judgments involve the toxicity of subspecies of a ficti-
tious Death Bug. The different subspecies vary in con-
centration of poison from 50 ppm (harmless) to 60 ppm
(lethal). The toxicity can be inferred from four visual
cues of the subspecies (e.g., the length of their legs,
color of their back).

The binary cues C;, C,, Cs, and C, take on values 1
or 0. The toxicity ¢ of a subspecies is a linear, additive
function of the cue values:

c=50+4-C,+3-C, +2:C, +1-C, - ey

C, is the most important cue with coefficient 4 (i.e., a
relative weight 4), C, is the second to most important
with coefficient 3, and so forth. A subspecies with fea-
ture vector (0, 0, 0, 0) thus has poison concentration 50
ppm; a subspecies with feature vector (1, 1, 1, 1) has 60
ppm. The continuous criteria for all 16 subspecies (i.e.,
possible cue configurations) are summarized in Table 1.

Table 1
Structure of the Task
Exemplar C; C, C; C4 Criterion Exemplartype

1 1 1 1 1 60 E
2 1 1 1 0 59 T
3 1 1 0 1 58 T
4 1 1 0 O 57 (0)
5 1 0 1 1 57 N
6 1 0 1 O 56 N
7 1 0 0 1 55 N
8 1 0 0 O 54 T
9 0 1 1 1 56 (¢
10 0O 1 1 0 55 (0)
11 0 1 0 1 54 T
12 0O 1 0 O 53 T
13 0 0 1 1 53 T
14 0O 0 1 0 52 T
15 0 0 0 1 51 T
16 0 0 0 O 50 E

Note: C = Cue; E = Extrapolation; T = training exemplar; O =
Old comparison exemplar in training, N = New comparison
exemplar presented at test.

In training, the participants encounter 11 subspecies
and make continuous judgments about the toxicity of
each subspecies (“The amount of poison is 57%”). As
indicated in the two right-most columns of Table 1, five
subspecies are omitted in training. In a fest phase, the
participants make the same judgments as in the training
phase, but for all the 16 subspecies and without feed-
back. The task allows perfect performance in training
both by exemplar memory and induction of the task
structure (i.e., by inducing the cue weights in Eq. 1).

The exemplar model implies that participants make
judgments by retrieving similar exemplars (subspecies)
from long-term memory. The context model of classifi-
cation (Medin & Schaffer, 1978) suggests that in a task

that only requires participants to judge if a bug is dan-
gerous or not, the probability p (b =1)of categoriza-
tion as dangerous (1) equals the ratio between the
summed similarity of the judgment probe to the dan-
gerous exemplars and the summed similarity to all
exemplars:
J
E S(p,x j )b j
pelb=n=""
S(p.x;)
=
where p is the probe to be judged, x; is stored exemplar
J G=1...0), S(px;) is the similarity between the probe p
and exemplar x;, and b; is the binary criterion stored
with exemplar j (b=1 for dangerous, bj=1 for harmless).
J depends on the size of training set of exemplars.
The similarity between probe p and exemplar x; is
computed by the multiplicative similarity rule of the
context model (Medin & Schaffer, 1978):

4
S(p.x))=]]d.. 5)
=1

where d; is an index that takes value 1 if the cue val-
ues on cue dimension i coincide (i.e., both are 0 or both
are 1), and s; if they deviate (i.e., one is 0, the other is
1). s; are four parameters in the interval [0, 1] that cap-
ture the impact of deviating cues (features) on the over-
all perceived similarity S(p,x;). s; close tol implies that
a deviating feature on this cue dimension has no impact
at all on the perceived similarity and is considered ir-
relevant. s; close to O means that the overall similarity
S(px;) is close to O if this feature is deviating, assigning
crucial importance to the feature. The parameters s;
capture the similarity relations between stimuli and the
attention paid to each cue dimension, where a lower s;
signifies higher attention.

The context model was developed for classification,
in most cases to binary categories. To generate predic-
tions also for judgments of a continuous criterion we
relax the model by allowing the outcome index b; to
take not only binary but also continuous values. The
estimate ¢, of the criterion c is a weighted average of
the criteria c; stored for the exemplars, where the simi-
larities S(p,x;) are weights (see e.g., Juslin & Persson,
2000; Smith & Zarate, 1992, for similar applications).

The cue-abstraction model assumes that the partici-
pants abstract explicit cue-criterion relations in training,
which are mentally integrated at the time of judgment.
When presented with a probe the participants retrieve
rules connecting cues to the criterion from memory
(e.g., “Green back goes with being poisonous”). The
rules specify the sign of the relation and the importance
of each cue with a cue weight. For example, after train-
ing the rule for cue C; may specify that C,=1 goes with
a large increase in the toxicity of a subspecies.

Cue abstraction implies that participants compute an
estimate ¢, of the continuous criterion c. For each cue,
the appropriate rule is retrieved and the estimate of c is
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adjusted according to the cue weight @, (i=1...4). The
final estimate ¢, of c is a linear additive function of
the cue values C;,

4
éR=k+2wi'Ci’ 2

where k=50+5-10- Yo, - If w,=4, 0,3, w,=2,
and @,=1, Eq’s 1 an are identical and the model
produce perfect judgments. The intercept k constrains
the function relating judgments to criteria to be regres-
sive around the midpoint (55) of the interval [50, 60]

specified by the task instructions.
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Figure 1: Panel A: Cue abstraction model predictions
for the constrained training set. Panel B: Exemplar
model predictions with similarity parameter s=.1 for the
constrained training set. O = Old comparison exemplar
in training, N = New comparison exemplar presented at
test, E = Extrapolation exemplars.

The predictions from the two models are summarized
in Figure 1 and shows that the models predict distinct
patterns. The cue abstraction model allows accurate
extrapolation beyond the distribution of criteria in the
training set [51, 59]. Whenever the correct signs of the
cue weights are identified, the most extreme judgments
are made for exemplars 1 and 16. The exemplar model,
that computes a weighted average of the criteria ob-
served in training, can never produces a judgment out-
side the observed range. The most extreme judgments
are made for criteria ¢c=51 and 59.

Moreover, with cue abstraction there should be no
systematic differences between judgments for “New”
and “Old” exemplars with ¢=55, 56, and 57: the process
is the same in both cases. However, with the exemplar
model there is more accurate judgments for Old exem-
plars, because these judgments benefit from retrieval of
identical exemplars with the correct criterion.

These differences in predictions allow us to define
measures of the amount of exemplar processing. First,
The old-new difference index AON is defined as,

AON =d,, -d,,, (6)

where d,, is the mean absolute deviation between
judgment and criterion for the three old exemplars and
d New 18 the corresponding mean deviation for the three
new exemplars in Table 1. When judgments for old

rather than new exemplars are more accurate, the index
is negative. The extrapolation index EI is the mean
deviation from linear extrapolation,
(5 = X5p) + (Xg = X59) —2b) (7)
2

where X5, Xs5;, X59,and Xy, are the judgments for
exemplars with criteria 50, 51, 59 and 60, respectively.
The value of b is determined by the difference X, - X
(or equivalently X, - Xs4) predicted by a linear regres-
sion relating judgments to criteria. Perfect linear ex-
trapolation implies an extrapolation index that is O (e.g.,
when the judgments are perfectly accurate). If the index
is negative, the exemplars with extreme criteria do not
receive as extreme judgments as implied by linear ex-
trapolation. For example, the indices in Figures 1A are
0, but the indices in Figure 1B are negative. The mean
of AON and EI provides a total index of exemplar ef-
fects, Total EE.

El =

Method

Participants

Forty undergraduate students participated. The partici-
pants were paid between 50 and 100 SEK depending on
their performance.

Apparatus and Materials

The experiment was carried out on a PC—compatible
computer. The exemplars varied in terms of four binary
cues; leg length (short or long), nose length (short or
long), spots or no spots on the fore back and two pat-
terns on the back. The cues and the cue values in the
abstract structure in Table 1 were randomly assigned to
new concrete visual features for each new participant.
Two types of presentation modes were used, one ana-
logue where drawings of the bugs were presented and
one propositional with written descriptions of the bugs.

Design and Procedure

The task was done in pairs, one participant in each pair
was randomly assigned as teacher and the other as stu-
dent. Half of the teacher-student pairs were randomly
assigned to the analogue condition and the other half to
the propositional condition.

The written instructions informed the participants
that the task involved judgments of the toxicity of sub-
species of a Death bug from 50 to 60 ppm and that the
difference between teachers and students was that the
teacher receives outcome feedback and that the student
does not. The participants were also informed that they
would receive a minimum payment of 50 SEK and up
to 100 SEK depending on the performance of the stu-
dent. The performance bonus was calculated by taking
half the correlation between the students’ judgments
and the criterion values in the test phase times 100. In
addition, the teacher was told that after each training
block they were to write down instructions to the stu-



dent on how to assess the toxicity of the bugs as a Word
file. The teachers were free to give any instructions they
wanted. The word files were collected for further analy-
sis by the experimenter. No additional contacts between
teachers and students were allowed (except for strictly
clarifying questions in regard to spelling errors, as me-
diated by the experimenter).

The training phase consisted of four blocks with 55
trials each making a total of 220 trials. Only the teacher
received outcome feedback of the correct toxicity level
in the learning phase. After each training block the
teacher wrote down instructions to the student and the
experimenter handed it over to the student that were
seated in another room. In the test phase each exemplar
were presented four times without feedback for both
teachers and students making a total of 64 trials. The
entire experiment took from one hour and fifteen min-
utes to two hours.

Results

Performance for teachers and students in the learning
phase of the analogue and the propositional conditions
measured by the absolute deviation between judgment
and criterion are presented in Figure 2. The perform-
ance for teachers and students are about the same in the
last part of training. Performance is better in the ana-
logue condition than in the propositional condition.
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Figure 2: Panels A-D: Mean absolute deviation between
judgment and criterion for teachers and students. The
curves are fitted according to a negative exponentially
weighted smoothing procedure.

Figure 3 shows that there appears to be some exemplar
effects in all the conditions, for both teachers and stu-
dents. The judgments of the new exemplars are less
accurate than the old exemplars and underestimate the
criteria. The figure also shows that both teachers and
students have some difficulties with extrapolating be-
yond the distribution of criteria in the training set.
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Figure 3: Panels A-D: Mean judgments for the different
criteria for teachers and students.

The exemplar indexes were collapsed over the ana-
logue and the propositional conditions as no significant
differences were found between the two conditions for
any of the indexes. Figure 4 shows that there are clear
exemplar effects for both teachers and students, as the
95% confidence intervals does not include zero.
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Figure 4: Panel A: Mean Old-New difference index,
AON. Panel B: Mean extrapolation index EI. Panel C:
Mean total exemplar effects index, EE. The error bars

are 95% confidence intervals.

We coded the instructions the teachers gave the stu-
dents as containing exemplars or not by a strict coding
scheme that assigned any ambiguous case as an exem-
plar instruction. Six teachers had instructions contain-
ing exemplar information, for example “Green body,
short legs, long nose, no spots = 51%”. A typical part of



an instruction that did not contain exemplar instruction
was “Begin with 50% and add: short grey legs

+2...green long legs +0 [and so on for all the cues]”.
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Figure 5: Panel A: Mean total exemplar effects index,
EE, for No exemplar instructions and Exemplar instruc-
tions over all conditions. Panel B: Mean total exemplar
effects index, EE, for No exemplar instructions and
Exemplar instructions for teachers. Panel C: Mean total
exemplar effects index, EE, for No exemplar instruc-
tions and Exemplar instructions for students. The error
bars are 95% confidence intervals.

Shown in Figure 5 is the total exemplar effects index
separately for the participants with no exemplars in the
teachers’ instructions and those with exemplars in the
instruction. It can be seen that there is an effect of in-
struction with larger exemplar effects for exemplar
instructions, t(38) = 2.00, p = .026, one-tailed. More
importantly, students with no exemplar instructions
from their teachers exhibit evidence for exemplar proc-
essing, as the confidence intervals do not include zero.
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Figure 6: Mean judgments for two students that did not
receive any exemplar information. Panel A: A student
better described with a cue-abstraction model. Panel B:
A student better described with an exemplar model.

Investigation of individual participants data reveals
large individual differences. Figure 6 shows two stu-
dents that did not receive any exemplar information
from their teachers. One student is better described as a

cue abstraction participant and the other student as an
exemplar participant.

Discussion

In this paper, we have shown that people can sponta-
neously rely on pseudo-experience in a judgment task.
Even when the information people receive does not
contain information about specific exemplars, people
cannot help project abstract rule knowledge onto con-
crete exemplars and then use these exemplars in the
judgment process.

Even if there are large individual differences in data
with some people operating only in accordance with the
cue-abstraction model, it seems difficult for most peo-
ple to totally abandon exemplar processing. Even if you
initially execute a rule to determine what response you
will make, the very act of executing the rule implies
processing the exemplar in front of you. For example,
you need to scan the object for features that fit the rule
conditions. Even if you do not consciously trying to
remember exemplars, the end result is incidental learn-
ing of exemplars that later influences judgments.

One caveat is that the types of categories used could
affect the prevalence of exemplar based processing. For
example, the results in a series of experiments by
Minda, Smith and colleagues (e.g., Minda & Smith,
2001) suggest that larger categories, better structured
categories, and more complex stimulus promotes proto-
type processing at the expense of exemplar processing.

In this, and other tasks, rule based representations
provide great powers of generalization and communica-
tion. One answer why we sometimes cannot avoid stor-
ing and using exemplars may be found in the idea that
our cognitive system consists of multiple levels of rep-
resentation that work together or compete to determine
responses in specific tasks (see e.g., Ashby et al., 1998).
Our results fit into the notion that the exemplar repre-
sentation has a function that separates it from other
representational formats in that it acts like an automati-
cally activated back-up system that preserves distribu-
tional and individuating information about the world.
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