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Abstract

Evolutionary systems are conceptualized as having four
transfer functions between the two state spaces of genotype
and phenotype. The four transfer functions are epigenesis,
survival, mate selection, and genetic recombination. The
treatment of these transfer functions is uneven at best. In
particular, some complain that epigenesis, the formation of an
entity from the original undifferentiated cell mass into tissues,
is treated in a too simplistic manner to allow for system
flexibility, or creativity. This paper reports on an interactive
image evolving system that mimics the morphogenesis
processes in epigenesis. System description, results, and
theoretical implications are discussed.

Introduction

Interactive evolutionary systems seek to interface
evolutionary programming to human preference in order to
create systems capable of evolving artifacts that require a
human expertise that hasn’t yet succumb to computation. A
common area for this endeavor is the evolving of art,
particularly image. The interfacing of human ability with
machine computation requires resolving difficult issues in
the arts, humanities, and sciences. Further, progress in the
design of interactive evolutionary systems allows a glimpse
into how very human abilities such as intuition, projection,
and holistic perception interplay with the mechanics of
machine computation. This paper reports on one such
interactive evolutionary system that seeks to combine
human perception with the genetic algorithm to evolve
small holistic images.

Humans lack the tremendous numerical computational
speed of computers;, yet they can process information
holistically in an automatic, rapid, and natural manner.
Machines possess tremendous computational capabilities;
yet no algorithm exists to perform holistic processes as well
as humans do. Ideally, a good interactive system would
integrate the best human cognitive qualities with machine
computational capabilities enabling the resultant hybrid
system to outperform either of the two components alone.
Evolutionary computation as an algorithm is well suited for
the creation of an interactive imaging system. However,
problems exist in implementation: How can evolutionary
computation best support the holistic processes of human
cognition? To answer this question requires an

understanding of current theory regarding human holistic
processes.

Psychological Issues

A well-known area in cognitive research that studies holistic
processes is the recognition of objects and, in particular, the
recognition of faces. Different perceptual encoding and
representational processes have traditionally differentiated
theories regarding the recognition of objects as compared to
faces. = However, the functional separation of these
processes under all conditions of object recognition remains
unclear (Bruce & Humphreys, 1994). Much of basic object
recognition theory has been based on the decomposition of
parts and the analysis of edge features (Marr & Nishihara,
1978; Biederman, 1987; Ullman, 1989). On the other hand,
face recognition theory has been based on more holistic
processes which utilize surface characteristics such as
texture, color, and shading (Price & Humphreys, 1989).
Some research suggests that the distinctions between object
and face recognition begin to fade when one examines the
object recognition processes of experts, who may utilize
holistic processes similar to those found in face recognition
(Diamond & Carey, 1986; Rhodes & McLean, 1990).

The theory regarding holistic processing of faces can be
separated into stronger and weaker stances (Bruce &
Humphreys, 1994). Under the weaker stance, features may
interact with each other through configural processes to
form emergent properties or "second-order relational
features" (Diamond & Carey, 1986). Under the stronger
stance, face recognition is completely holistic; that is, its
representation is non-decomposable in that no explicit
description of features exists outside the context of the face
(Tanaka & Farah, 1993). These stances provide two ways
of approaching the development of an interactive system to
support the holistic development of images: (1) A system
which  manipulates context-free  features towards
configuration, or (2) a system which develops the
configuration of the image first, followed by more detailed
development of features within the established context.

We sought to design a recognition-driven system of the
latter type, which would support the purely holistic
development of images, including faces and objects. This
system would function in a feature-free space to provide a



non-decomposable representation of images. For instance, a
human may perceive or project a cloud as containing the
image of a face, yet a cloud contains no explicit
representation of the eyes, nose, or mouth. Such features,
say a nose, would only be perceived as a nose within the
context of the cloud's facial image. This type of perception
or projection of a natural texture is called objet trove, and is
thought by some (Gombrich, 1960) to be paramount to the
perception of art. Further, a cloud is not limited to faces; it
might contain other animals, or objects. The cloud merely
contains randomly distributed textures which humans can
organize perceptually. Just as a cloud supports holistic
recognition of images, an interactive evolutionary system
could encourage recognition based upon context-dependent
rather than context-free properties. We intended to provide
a mechanism by which a cloud-like representation could
enter into "cumulative selection", in a manner not unlike the
wishful thinking of Dawkins (1987).

System Issues

The system presented in this paper can be distinguished
from other work in the interactive evolution of images
(Dawkins, 1987, Baker & Seltzer, 1994; Sims, 1991;
Caldwell & Johnston, 1991; Johnston & Caldwell, 1997;
Todd & Latham, 1992). Many interactive evolutionary
systems (Dawkins, 1987; Baker & Seltzer, 1994; Sims,
1991; Todd & Latham, 1992) use aesthetic preference to
determine the fitness of images that are composed of
context-free features.  Under conditions of aesthetic
preference, the user evolves images opportunistically.
These systems do not easily support evolution towards an a
priori goal. Baker and Seltzer (1994) opportunistically
evolved butterflies from randomly generated lines, but when
they intentionally evolved a general "face-like" image, they
could do so only with difficulty. Further, previous systems
sometimes required input images to enable the evolution of
faces. Sims (1991) as well as Baker and Seltzer (1994)
modified facial images after providing input images of
human faces, and Johnston and Caldwell (Caldwell &
Johnston, 1991; Johnston & Caldwell, 1997) provided input
images of features to evolve configured faces.

The Johnston and Caldwell system (Caldwell & Johnston,
1991; Johnston & Caldwell, 1997) is most similar in
purpose to our system in that they used human recognition
to evolve images of criminal suspects. Their “Faceprints”
system allowed more goal-directed behavior within
interactive evolution than previously achieved, and they
developed a system that encouraged holistic processes by
presenting configured faces from the start. However, their
system differs from ours in that they took the weaker
theoretical stance towards holistic processing by providing
input images of context-free features and then placing them
in a randomly generated configuration for further evolution.

The “Faceprints” system represents an approach which is
common to evolutionary computation; that is, the majority

of evolutionary computation is based on parameterized
models which predefine features and pre-encode dimensions
upon which the features can vary. A key component of
evolutionary computation is the mapping between the
genotype and phenotype representations. The genotype
representation consists of a string of characters, usually
binary, that are used as genetic codes in the reproductive
process. The phenotype representation consists of a
description of an organism that can be evaluated for fitness
and selected for reproduction. The linkage between the
genotype and phenotype representations is accomplished by
a mathematical mapping that uses a parameterized model.
For instance, to evolve rectangles, one could create a
formula with the two parameters of height and width that
would scale suitable binary numbers to a rectangle of a
certain height and width. The binary numbers would form
the genotype, and the resultant rectangles would form the
phenotype.

There are many problems associated with approaches
based on a parameterized model (Hofstadter, 1982). The
main problem for creating images is that parameterized
models constrain the phenotype representation. A model for
rectangles can never create a circle. We might try to escape
the problem by adding a selector parameter that would
dictate the geometric shape to use. For instance, in a
rectangle model, if we wanted to represent circles also, we
could add a selector parameter that would indicate whether
to implement a rectangle model or a circle model. The
repair works, except that the addition leads to a discrete
selector parameter function and potentially requires an
infinite number of models to represent all objects. Instead,
we seek to create a system that avoids the predefinition of
features and the mapping of genotype to phenotype.

Image Elicitation System

Instead of using a feature-based space, we created a
frequency-based space based on pixel representation. The
pixel space representation affects the resolution of the
images, but forces no predefined features upon the images
themselves. The space is based upon atomic or molecular
representation, similar to the notions of atomic or molecular
decomposition by Fourier analysis or wavelets (Meyer,
1993). As championed by the pointillists, small points of
just a few colors can be used to create the psychological
impression of any form and any color. Atomic
representation works at the sub-feature level and allows the
generation of features along with their configuration. The
representation is not constrained by features and encodes a
dog, a tree, or a car as easily as a face. For instance, one
could create a pixel space of 25-by-25 pixels (625 total
units) with each pixel being any of eight colors (three bits of
information.) Such a small pixel space has the
informational potential to create an enormous number of

images, as many as 21875 The number of possible images
is so large that there exists no real constraints on the variety



of forms that may be represented; rather, the model
constrains the resolution of the image. In terms of
resolution, the space cannot represent objects that require
more than 12.5 lines of resolution (each line requires at least
one ‘on’ and one ‘off” pixel) in the vertical or horizontal
axis. However, increasing the number of pixels and
decreasing the pixels’ size can reduce the impact of the
constraint.

System implementation required addressing additional
issues in the method of reproduction and mutation function.
First, usually, simple cross-over points are used as the
method of reproduction, but such a linear system is
inappropriate for a two-dimensional space. Instead, we
increased the number of cross-over points until the
reproductive system considered a cross-over point at every
allele.  Such a system of uniform -crossovers was
implemented by randomly selecting between the genes of
the two parents with equal probability. Although some
researchers consider uniform crossovers to be deleterious to
evolutionary computation (Fogel, 1995), others have found
them to be useful (Syswerda, 1989). Secondly, if one uses a
mutation function that chooses among all possible genes
with equal probability for an allele, the mutation function
will eventually return the image to a random state. Instead,
we limited the mutation function to the gene values of
neighboring pixels, causing smaller changes and greater
adaptability.

Each generation has a population of fifty images of which
the human selects ten images for use as the parents for the
next generation. The resulting image elicitation system
consists of a comma plus system since the parents are
available for selection in the next generation so that each
generation after the first is made of parents plus their
offspring (Heitkottere & Beasley, 2002). The genotype
representation is an array of alleles that has the same size as
the pixel representation (25x25 pixels). Each allele is a
character that corresponds to one of the possible colors (or
genes) for the pixel. Reproduction creates the offspring
genotype by randomly and uniformly selecting between the
genes of two randomly selected parents at each allele site.

Results

For purposes of this paper, and given our emphasis on
holistic processes, we chose a face as the image to be
elicited. The first author began with the specific goal of
"elicit Abraham Lincoln" and elicited an image of Abraham
Lincoln using four levels of gray (figure 1). The image
represents the results of image elicitation after 245
generations. The image was originally generated on a
SVGA monitor using a black background. A human's
ability to recognize Abraham Lincoln is very dependent on
the spatial frequency of the image. In other words, viewing
figure 1 at too close or too far of a distance reduces the
perceptual quality of the image. Figure 2 displays the
evolution of the stochastic prototype of Abraham Lincoln.

The matrix represents every fifth generation of Abraham
Lincoln's image up to generation 245. The matrix should be
scanned from left to right and from top to bottom. Each
image is a stochastic prototype created by randomly
selecting and copying a gene from one of the ten parents
into the corresponding allele of the prototype until each
allele of the prototype is created. The sampling function is a
uniform, random distribution over the parents. As a result,
the composite prototype is similar to all of its parents and
evokes the average recognition of its parents.

Theoretical Impact

The process in image elicitation is best described in terms of
co-evolution or holistic evolution. This description runs
contrary to mainstream thought on how evolutionary
computation works. There are currently two ideas on how
convergence happens in evolutionary computation: the
Building Block Hypothesis by Goldberg (1989) and the
Schema Theorem by Holland (1992). We argue that both of
the hypotheses are feature analytic and are insufficient to
explain what is happening in image elicitation.

The Building Block Hypothesis suggests that the
convergence process in evolutionary computation is based
upon building blocks or small groups of characters whose
introduction into any genotype representation will likely
increase the fitness of the phenotype representation.
Goldberg suggests that the genetic computation first finds as
many of these building blocks as possible, and later in
evolution, the building blocks are combined together to give
the highest fitness. For instance, a series of 1's in the
genotype might give rise to an eyebrow in the image. The
presence of an eyebrow in any picture of a face should
increase the image quality, and, therefore, the fitness.

The Schema Theorem suggests that the ongoing process
in evolutionary computation is implicit parallelism caused
by schema processing. Schemata are defined as patterns of
characters in the genotype representation that may include
"don't care" states. A schema can be specified by a
genotype representation in which each gene contains a 1 for
"on", 0 for "off", or X for "don't care". In a sense, a schema
is a relaxed building block in that it relaxes how tightly
clustered the group of "care" genes are. Each genotype
representation can contain a large number of schemata.
This leads to the implicit parallelism and speeds up search.

The basis for our criticism of the current theories lies in
their assumption that one can analyze the genotype while
disregarding the phenotype. It also requires one to accept
that all intermediate representations (patterns in the
genotype that are tried and not kept) are coincidental to the
process. In such a view one need only look back from the
evolved solution and trace the heritage of its genes. In both
theories, the implied process is analytical.

Image elicitation challenges these theories in terms of
process and representation. Image elicitation relies on
multiple-gene (holistic) representation as opposed to



variable-encoded (feature-based) representation. In image
elicitation, the image exists in the phenotype and in the
perception of the observer, whereas, in other evolutionary
computation, the image description exists in the genotype.
Our system allows polygeny and pleiotropy, whereas
current theory is based on a direct mapping from the
genotype to the phenotype and no separate mapping
backwards from the phenotype to the genotype. We can
illustrate our theoretical differences through what we call
"the gray argument" for holistic processes.

Consider the evolution of a medium gray. Mapping from
the gray phenotype back to the genotype reveals two
optimal representations as shown by a and b in figure 3.
Using binary representation, where 1 equals an "on" pixel, 0
equals an "off" pixel, and X equals "don't care", one finds
that 1010101... is one representation (a) and it's complement
0101010... is the other (b). Strangely, one can breed
together these complimentary representations and the
offspring ¢ and d will still appear grayish in the phenotype,
regardless of genotype of the parents, or type of crossover
function used. Grays ¢ and d result from the use of simple
and uniform crossover respectively. How can one describe
the process of evolving grays in terms of building blocks or
schemata when the phenotype being selected does not
depend upon any particular gene being a 1 or 0 or X? The
gray phenotype can only be described in the genotype as a
fairly uniform distribution of 1's and 0's. Given that the
difficulties in phenotype-to-genotype mapping of grays
extend to all images, the Building Block Hypothesis and the
Schemata Theorem are insufficient to describe an image's
evolution. In fact, the gray argument is problematic for
many current approaches used to understand, or represent
phenotype-to-genotype mapping.

Conclusions

Image elicitation promotes wholeness or a lack of distinct
features. If one observes the evolving of Lincoln's image
one will notice that the features all co-evolve together. At
no time does the process treat the nose differently from the
eye. The process is so tightly interwoven that to distinguish
the nose from the rest of the face constitutes a false
distinction; the nose gets it description from itself and the
context provided by the rest of the image.

Image elicitation affords high-order interactions. The
placement, sizing, shading, and coloring of an image that
bears strong resemblance to the original (e.g., a face) can
only be described as highly interactive. The placement,
size, etc. of the nose is dependent upon all the other features
of the face, for if the nose is anywhere but the right place in
relation to other features the image would have no
resemblance. High-order interactions are a problem for
analytical processes, but not this method. It evolves a
complex stimulus within a large information space while

maintaining a small population size and a reasonable
number of generations.

Image elicitation appears to promote holistic rather than
analytical processes. It begins with the grossest of detail
and ends with the finest of detail. The elicitation process
uses intermediate approximations as placeholders for
features and as a means of resolution building. This process
of organizing an undifferentiated representation into finer
and finer regions, or features appears to mimic the process
of morphogenesis found in biological reproduction. We
argue that features, which by their nature are fine detail and
not available until the end of convergence, cannot be used to
explain the process. Such findings are problematic for the
building block and schemata theories that are currently used
to explain the processes in evolutionary computation.

Summary

The present image elicitation system provides a new
technique for integrating the best qualities of human and
machine capabilities to create images. Neither system could
produce theses images alone. Machines lack the perceptual
and memory skills, and humans lack the computational
energy to evolve an image. The results show that current
theories of evolutionary computation are insufficient to
explain the convergence of the images in the absence of a
feature-based parameterized space.

The technique of image elicitation allows humans to use
their perceptual and cognitive systems to organize visual
noise into the objects of their memories. This process of
literally pulling an image out of chaos will affect our
understanding of intelligent systems and future
investigations across many disciplines. Image elicitation
will be useful in studying machine intelligence, as well as in
studying top-down processes in interactive intelligent
systems. The system provides a means for humans to
experience how evolutionary computation works by directly
immersing themselves in the process. And, it provides
cognitive researchers with a means of studying holism in
human recognition.

Figures

Figure 1: A stochastic prototype of Abraham Lincoln at generation
245.



Figure 2: The evolution of an image of Abraham Lincoln, showing
every fifth generation up to generation 24

(a) (b))

(c) (d)

Figure 3: The gray argument for multiple-gene (holistic)
representation. Grays a and b have complimentary phenotype.
Grays ¢ and d result from the use of simple or uniform crossover,
respectively.

References

Baker, E. & Seltzer, M. (1994). Evolving line drawings.
Graphics Interface '94 Proceedings.

Biederman, 1. (1987). Recognition-by-components: A
theory of human image understanding. Psychological
Review.

Bruce, V. & Humphreys, G. (1994) Recognizing objects
and faces. Visual Cognition.

Caldwell, C. & Johnston, V. (1991). Tracking a Criminal
Suspect through "Face-Space" with a Genetic Algorithm.
Proceedings of the Fourth International Conference on
Genetic Algorithms, Morgan Kaufman.

Dawkins, R. (1987). The blind watchmaker.
Scientific and Technical, Essex, UK.

Diamond, R. & Carey, S. (1986). Why faces are and are not
special: An effect of expertise. Journal of Experimental
Psychology: General.

Fogel, D. (1995). Evolutionary computation: Toward a new
philosophy of machine intelligence. 1EEE Press, New
York.

Goldberg, D. (1989).  Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley.
Gombrich, E. (1960). Art and illusion: A study in the
psychology of pictorial representation. Princeton

University Press, Princeton.

Heitkottere, J. & Beasley, D. (2002). The hitch-hiker's
guide to evolutionary computation.
www.cs.bham.ac.uk/Mirrors/ftp.de.uu.net/EC/clife/www/
- 7k - 04 Feb 2002 .

Hofstadter, D. (1982). Metafont, metamathematics, and
metaphysics: Comments on Donald Knuth's article 'The
concept of a meta-font'. Visible Language.

Holland, L. (1992). Adaptation in natural and artificial
systems. An introductory analysis with applications to
biology, control, and artificial intelligence. Cambridge,
MA: MIT Press/Bradford Books.

Marr, D. & Nishihara, N. (1978). Representation and
recognition of the spatial organization of three-
dimensional shapes. Proceedings of the Royal Society of
London.

Meyer, Y. (1993). Wavelets: Algorithms and applications.
(Translated and revised by R. Ryan). Society for
Industrial and Applied Mathematics, Philadelphia.

Price, P. & Humphreys, G. (1989). The effects of surface
detail on object categorization and naming. Quarterly
Journal of Experimental Psychology.

Rhodes, G. & McLean, 1. (1990). Distinctiveness and
expertise effects with homogenous stimuli: Towards a
model of configural coding. Perception.

Sims, K. (1991). Artificial evolution for computer graphics.
Computer Graphics.

Syswerda, G. (1989). Uniform crossover in genetic
algorithms.  Proceedings of the Third International
Conference on Genetic Algorithms. J. D. Shaffer (Eds.),
Morgan Kaufmann Publishers, Los Altos, CA.

Tanaka, J. & Farah, M. (1993). Parts and wholes in face
recognition. Quarterly Journal of Experimental
Psychology.

Todd. S. & Latham, W. (1992). Evolutionary art as
computers, Academic Press: Harcourt Brace Jovanovich,
London.

Ullman, S. (1989). Aligning pictorial descriptions: An
approach to object recognition. Cognition.

Longman



