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Abstract 
 

Evolutionary systems are conceptualized as having four 
transfer functions between the two state spaces of genotype 
and phenotype.  The four transfer functions are epigenesis, 
survival, mate selection, and genetic recombination.  The 
treatment of these transfer functions is uneven at best.  In 
particular, some complain that epigenesis, the formation of an 
entity from the original undifferentiated cell mass into tissues, 
is treated in a too simplistic manner to allow for system 
flexibility, or creativity.  This paper reports on an interactive 
image evolving system that mimics the morphogenesis 
processes in epigenesis. System description, results, and 
theoretical implications are discussed. 

 
Introduction 

Interactive evolutionary systems seek to interface 
evolutionary programming to human preference in order to 
create systems capable of evolving artifacts that require a 
human expertise that hasn’t yet succumb to computation.  A 
common area for this endeavor is the evolving of art, 
particularly image.  The interfacing of human ability with 
machine computation requires resolving difficult issues in 
the arts, humanities, and sciences.  Further, progress in the 
design of interactive evolutionary systems allows a glimpse 
into how very human abilities such as intuition, projection, 
and holistic perception interplay with the mechanics of 
machine computation.  This paper reports on one such 
interactive evolutionary system that seeks to combine 
human perception with the genetic algorithm to evolve 
small holistic images.   

Humans lack the tremendous numerical computational 
speed of computers; yet they can process information 
holistically in an automatic, rapid, and natural manner.  
Machines possess tremendous computational capabilities; 
yet no algorithm exists to perform holistic processes as well 
as humans do.  Ideally, a good interactive system would 
integrate the best human cognitive qualities with machine 
computational capabilities enabling the resultant hybrid 
system to outperform either of the two components alone.  
Evolutionary computation as an algorithm is well suited for 
the creation of an interactive imaging system.  However, 
problems exist in implementation:  How can evolutionary 
computation best support the holistic processes of human 
cognition?  To answer this question requires an 

understanding of current theory regarding human holistic 
processes. 

 
Psychological Issues 
A well-known area in cognitive research that studies holistic 
processes is the recognition of objects and, in particular, the 
recognition of faces.  Different perceptual encoding and 
representational processes have traditionally differentiated 
theories regarding the recognition of objects as compared to 
faces.  However, the functional separation of these 
processes under all conditions of object recognition remains 
unclear (Bruce & Humphreys, 1994).  Much of basic object 
recognition theory has been based on the decomposition of 
parts and the analysis of edge features (Marr & Nishihara, 
1978; Biederman, 1987; Ullman, 1989).  On the other hand, 
face recognition theory has been based on more holistic 
processes which utilize surface characteristics such as 
texture, color, and shading (Price & Humphreys, 1989).  
Some research suggests that the distinctions between object 
and face recognition begin to fade when one examines the 
object recognition processes of experts, who may utilize 
holistic processes similar to those found in face recognition 
(Diamond & Carey, 1986; Rhodes & McLean, 1990).   

The theory regarding holistic processing of faces can be 
separated into stronger and weaker stances (Bruce & 
Humphreys, 1994).  Under the weaker stance, features may 
interact with each other through configural processes to 
form emergent properties or "second-order relational 
features" (Diamond & Carey, 1986).  Under the stronger 
stance, face recognition is completely holistic; that is, its 
representation is non-decomposable in that no explicit 
description of features exists outside the context of the face 
(Tanaka & Farah, 1993).  These stances provide two ways 
of approaching the development of an interactive system to 
support the holistic development of images:  (1) A system 
which manipulates context-free features towards 
configuration, or (2) a system which develops the 
configuration of the image first, followed by more detailed 
development of features within the established context.   

We sought to design a recognition-driven system of the 
latter type, which would support the purely holistic 
development of images, including faces and objects.  This 
system would function in a feature-free space to provide a 



non-decomposable representation of images.  For instance, a 
human may perceive or project a cloud as containing the 
image of a face, yet a cloud contains no explicit 
representation of the eyes, nose, or mouth.  Such features, 
say a nose, would only be perceived as a nose within the 
context of the cloud's facial image.  This type of perception 
or projection of a natural texture is called objet trové, and is 
thought by some (Gombrich, 1960) to be paramount to the 
perception of art.  Further, a cloud is not limited to faces; it 
might contain other animals, or objects.  The cloud merely 
contains randomly distributed textures which humans can 
organize perceptually.  Just as a cloud supports holistic 
recognition of images, an interactive evolutionary system 
could encourage recognition based upon context-dependent 
rather than context-free properties.  We intended to provide 
a mechanism by which a cloud-like representation could 
enter into "cumulative selection", in a manner not unlike the 
wishful thinking of Dawkins (1987).   

 
System Issues 
The system presented in this paper can be distinguished 
from other work in the interactive evolution of images 
(Dawkins, 1987; Baker & Seltzer, 1994; Sims, 1991; 
Caldwell & Johnston, 1991; Johnston & Caldwell, 1997; 
Todd & Latham, 1992).  Many interactive evolutionary 
systems (Dawkins, 1987; Baker & Seltzer, 1994; Sims, 
1991; Todd & Latham, 1992) use aesthetic preference to 
determine the fitness of images that are composed of 
context-free features.  Under conditions of aesthetic 
preference, the user evolves images opportunistically.  
These systems do not easily support evolution towards an a 
priori goal.  Baker and Seltzer (1994) opportunistically 
evolved butterflies from randomly generated lines, but when 
they intentionally evolved a general "face-like" image, they 
could do so only with difficulty.  Further, previous systems 
sometimes required input images to enable the evolution of 
faces.  Sims (1991) as well as Baker and Seltzer (1994) 
modified facial images after providing input images of 
human faces, and Johnston and Caldwell (Caldwell & 
Johnston, 1991; Johnston & Caldwell, 1997) provided input 
images of features to evolve configured faces. 

The Johnston and Caldwell system (Caldwell & Johnston, 
1991; Johnston & Caldwell, 1997) is most similar in 
purpose to our system in that they used human recognition 
to evolve images of criminal suspects.  Their “Faceprints” 
system allowed more goal-directed behavior within 
interactive evolution than previously achieved, and they 
developed a system that encouraged holistic processes by 
presenting configured faces from the start.  However, their 
system differs from ours in that they took the weaker 
theoretical stance towards holistic processing by providing 
input images of context-free features and then placing them 
in a randomly generated configuration for further evolution.   

The “Faceprints” system represents an approach which is 
common to evolutionary computation; that is, the majority 

of evolutionary computation is based on parameterized 
models which predefine features and pre-encode dimensions 
upon which the features can vary.  A key component of 
evolutionary computation is the mapping between the 
genotype and phenotype representations.  The genotype 
representation consists of a string of characters, usually 
binary, that are used as genetic codes in the reproductive 
process.  The phenotype representation consists of a 
description of an organism that can be evaluated for fitness 
and selected for reproduction.  The linkage between the 
genotype and phenotype representations is accomplished by 
a mathematical mapping that uses a parameterized model.  
For instance, to evolve rectangles, one could create a 
formula with the two parameters of height and width that 
would scale suitable binary numbers to a rectangle of a 
certain height and width.  The binary numbers would form 
the genotype, and the resultant rectangles would form the 
phenotype. 

There are many problems associated with approaches 
based on a parameterized model (Hofstadter, 1982).  The 
main problem for creating images is that parameterized 
models constrain the phenotype representation.  A model for 
rectangles can never create a circle.  We might try to escape 
the problem by adding a selector parameter that would 
dictate the geometric shape to use.  For instance, in a 
rectangle model, if we wanted to represent circles also, we 
could add a selector parameter that would indicate whether 
to implement a rectangle model or a circle model.  The 
repair works, except that the addition leads to a discrete 
selector parameter function and potentially requires an 
infinite number of models to represent all objects.  Instead, 
we seek to create a system that avoids the predefinition of 
features and the mapping of genotype to phenotype. 

 
Image Elicitation System 
Instead of using a feature-based space, we created a 
frequency-based space based on pixel representation.  The 
pixel space representation affects the resolution of the 
images, but forces no predefined features upon the images 
themselves.  The space is based upon atomic or molecular 
representation, similar to the notions of atomic or molecular 
decomposition by Fourier analysis or wavelets (Meyer, 
1993).  As championed by the pointillists, small points of 
just a few colors can be used to create the psychological 
impression of any form and any color.  Atomic 
representation works at the sub-feature level and allows the 
generation of features along with their configuration.  The 
representation is not constrained by features and encodes a 
dog, a tree, or a car as easily as a face.  For instance, one 
could create a pixel space of 25-by-25 pixels (625 total 
units) with each pixel being any of eight colors (three bits of 
information.)  Such a small pixel space has the 
informational potential to create an enormous number of 
images, as many as 21875.  The number of possible images 
is so large that there exists no real constraints on the variety 



of forms that may be represented; rather, the model 
constrains the resolution of the image.  In terms of 
resolution, the space cannot represent objects that require 
more than 12.5 lines of resolution (each line requires at least 
one ‘on’ and one ‘off’ pixel) in the vertical or horizontal 
axis. However, increasing the number of pixels and 
decreasing the pixels’ size can reduce the impact of the 
constraint.   

System implementation required addressing additional 
issues in the method of reproduction and mutation function.  
First, usually, simple cross-over points are used as the 
method of reproduction, but such a linear system is 
inappropriate for a two-dimensional space.  Instead, we 
increased the number of cross-over points until the 
reproductive system considered a cross-over point at every 
allele.  Such a system of uniform crossovers was 
implemented by randomly selecting between the genes of 
the two parents with equal probability.  Although some 
researchers consider uniform crossovers to be deleterious to 
evolutionary computation (Fogel, 1995), others have found 
them to be useful (Syswerda, 1989).  Secondly, if one uses a 
mutation function that chooses among all possible genes 
with equal probability for an allele, the mutation function 
will eventually return the image to a random state.  Instead, 
we limited the mutation function to the gene values of 
neighboring pixels, causing smaller changes and greater 
adaptability.   

Each generation has a population of fifty images of which 
the human selects ten images for use as the parents for the 
next generation.  The resulting image elicitation system 
consists of a comma plus system since the parents are 
available for selection in the next generation so that each 
generation after the first is made of parents plus their 
offspring (Heitköttere & Beasley, 2002).  The genotype 
representation is an array of alleles that has the same size as 
the pixel representation (25x25 pixels).  Each allele is a 
character that corresponds to one of the possible colors (or 
genes) for the pixel.  Reproduction creates the offspring 
genotype by randomly and uniformly selecting between the 
genes of two randomly selected parents at each allele site.   

 
Results 

For purposes of this paper, and given our emphasis on 
holistic processes, we chose a face as the image to be 
elicited.  The first author began with the specific goal of 
"elicit Abraham Lincoln" and elicited an image of Abraham 
Lincoln using four levels of gray (figure 1).  The image 
represents the results of image elicitation after 245 
generations.  The image was originally generated on a 
SVGA monitor using a black background.  A human's 
ability to recognize Abraham Lincoln is very dependent on 
the spatial frequency of the image.  In other words, viewing 
figure 1 at too close or too far of a distance reduces the 
perceptual quality of the image.  Figure 2 displays the 
evolution of the stochastic prototype of Abraham Lincoln.  

The matrix represents every fifth generation of Abraham 
Lincoln's image up to generation 245.  The matrix should be 
scanned from left to right and from top to bottom.  Each 
image is a stochastic prototype created by randomly 
selecting and copying a gene from one of the ten parents 
into the corresponding allele of the prototype until each 
allele of the prototype is created.  The sampling function is a 
uniform, random distribution over the parents.  As a result, 
the composite prototype is similar to all of its parents and 
evokes the average recognition of its parents. 
 

Theoretical Impact 
The process in image elicitation is best described in terms of 
co-evolution or holistic evolution.  This description runs 
contrary to mainstream thought on how evolutionary 
computation works.  There are currently two ideas on how 
convergence happens in evolutionary computation: the 
Building Block Hypothesis by Goldberg (1989) and the 
Schema Theorem by Holland (1992).  We argue that both of 
the hypotheses are feature analytic and are insufficient to 
explain what is happening in image elicitation. 

The Building Block Hypothesis suggests that the 
convergence process in evolutionary computation is based 
upon building blocks or small groups of characters whose 
introduction into any genotype representation will likely 
increase the fitness of the phenotype representation.  
Goldberg suggests that the genetic computation first finds as 
many of these building blocks as possible, and later in 
evolution, the building blocks are combined together to give 
the highest fitness.  For instance, a series of 1's in the 
genotype might give rise to an eyebrow in the image.  The 
presence of an eyebrow in any picture of a face should 
increase the image quality, and, therefore, the fitness. 

The Schema Theorem suggests that the ongoing process 
in evolutionary computation is implicit parallelism caused 
by schema processing.  Schemata are defined as patterns of 
characters in the genotype representation that may include 
"don't care" states.  A schema can be specified by a 
genotype representation in which each gene contains a 1 for 
"on", 0 for "off", or X for "don't care".  In a sense, a schema 
is a relaxed building block in that it relaxes how tightly 
clustered the group of "care" genes are.  Each genotype 
representation can contain a large number of schemata.  
This leads to the implicit parallelism and speeds up search. 

The basis for our criticism of the current theories lies in 
their assumption that one can analyze the genotype while 
disregarding the phenotype.  It also requires one to accept 
that all intermediate representations (patterns in the 
genotype that are tried and not kept) are coincidental to the 
process.  In such a view one need only look back from the 
evolved solution and trace the heritage of its genes.  In both 
theories, the implied process is analytical. 

Image elicitation challenges these theories in terms of 
process and representation.  Image elicitation relies on 
multiple-gene (holistic) representation as opposed to 



variable-encoded (feature-based) representation.  In image 
elicitation, the image exists in the phenotype and in the 
perception of the observer, whereas, in other evolutionary 
computation, the image description exists in the genotype.  
Our system allows polygeny and pleiotropy, whereas 
current theory is based on a direct mapping from the 
genotype to the phenotype and no separate mapping 
backwards from the phenotype to the genotype.  We can 
illustrate our theoretical differences through what we call 
"the gray argument" for holistic processes. 

Consider the evolution of a medium gray.  Mapping from 
the gray phenotype back to the genotype reveals two 
optimal representations as shown by a and b in figure 3.  
Using binary representation, where 1 equals an "on" pixel, 0 
equals an "off" pixel, and X equals "don't care", one finds 
that 1010101... is one representation (a) and it's complement 
0101010... is the other (b).  Strangely, one can breed 
together these complimentary representations and the 
offspring c and d will still appear grayish in the phenotype, 
regardless of genotype of the parents, or type of crossover 
function used.  Grays c and d result from the use of simple 
and uniform crossover respectively.  How can one describe 
the process of evolving grays in terms of building blocks or 
schemata when the phenotype being selected does not 
depend upon any particular gene being a 1 or 0 or X?  The 
gray phenotype can only be described in the genotype as a 
fairly uniform distribution of 1's and 0's.  Given that the 
difficulties in phenotype-to-genotype mapping of grays 
extend to all images, the Building Block Hypothesis and the 
Schemata Theorem are insufficient to describe an image's 
evolution.  In fact, the gray argument is problematic for 
many current approaches used to understand, or represent 
phenotype-to-genotype mapping. 

 
Conclusions 

 
Image elicitation promotes wholeness or a lack of distinct 

features.  If one observes the evolving of Lincoln's image 
one will notice that the features all co-evolve together.  At 
no time does the process treat the nose differently from the 
eye.  The process is so tightly interwoven that to distinguish 
the nose from the rest of the face constitutes a false 
distinction; the nose gets it description from itself and the 
context provided by the rest of the image.  

Image elicitation affords high-order interactions.  The 
placement, sizing, shading, and coloring of an image that 
bears strong resemblance to the original (e.g., a face) can 
only be described as highly interactive.  The placement, 
size, etc. of the nose is dependent upon all the other features 
of the face, for if the nose is anywhere but the right place in 
relation to other features the image would have no 
resemblance.  High-order interactions are a problem for 
analytical processes, but not this method.  It evolves a 
complex stimulus within a large information space while 

maintaining a small population size and a reasonable 
number of generations. 

Image elicitation appears to promote holistic rather than 
analytical processes.  It begins with the grossest of detail 
and ends with the finest of detail.  The elicitation process 
uses intermediate approximations as placeholders for 
features and as a means of resolution building.  This process 
of organizing an undifferentiated representation into finer 
and finer regions, or features appears to mimic the process 
of morphogenesis found in biological reproduction. We 
argue that features, which by their nature are fine detail and 
not available until the end of convergence, cannot be used to 
explain the process.  Such findings are problematic for the 
building block and schemata theories that are currently used 
to explain the processes in evolutionary computation. 
 

Summary 
The present image elicitation system provides a new 
technique for integrating the best qualities of human and 
machine capabilities to create images.  Neither system could 
produce theses images alone.   Machines lack the perceptual 
and memory skills, and humans lack the computational 
energy to evolve an image.  The results show that current 
theories of evolutionary computation are insufficient to 
explain the convergence of the images in the absence of a 
feature-based parameterized space.   

The technique of image elicitation allows humans to use 
their perceptual and cognitive systems to organize visual 
noise into the objects of their memories.  This process of 
literally pulling an image out of chaos will affect our 
understanding of intelligent systems and future 
investigations across many disciplines.  Image elicitation 
will be useful in studying machine intelligence, as well as in 
studying top-down processes in interactive intelligent 
systems.  The system provides a means for humans to 
experience how evolutionary computation works by directly 
immersing themselves in the process.  And, it provides 
cognitive researchers with a means of studying holism in 
human recognition.   
 
Figures 
 

 
 
Figure 1:  A stochastic prototype of Abraham Lincoln at generation 

245. 
 
 

 
 



 
 
Figure 2:  The evolution of an image of Abraham Lincoln, showing 

every fifth generation up to generation 24 
 

           (a.)                                     (b.) 
 

          (c.)                                    (d.) 

Figure 3:  The gray argument for multiple-gene (holistic) 
re
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