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Abstract

Given a small number of examples of scene-
utterance pairs of a novel verb, language learners
can learn its syntactic and semantic features. Syn-
tactic and semantic bootstrapping hypotheses both
rely on cross-situational observation to hone in on
the ambiguity present in a single observation. In
this paper, we cast the distributional evidence from
scenes and syntax in a unified Bayesian probablistic
framework. Unlike previous approaches to model-
ing lexical acquisition, our framework uniquely: (1)
models learning from only a small number of scene-
utterance pairs (2) utilizes and integrates both syn-
tax and semantic evidence, thus reconciling the
apparent tension between syntactic and semantic
bootststrapping approaches (3) robustly handles
noise (4) makes prior and acquired knowledge dis-
tinctions explicit, through specification of the hy-
pothesis space, prior and likelihood probability dis-
tributions.

Learning Word Syntax and Semantics

Given a small number of examples of scene-utterance
pairs of a novel word, a child can determine both the
range of syntactic constructions the novel word can
appear in and inductively generalize to other scene
instances likely to be covered by the concept repre-
sented (Pinker 1989). The inherent semantic, syn-
tactic, and referential uncertainty in a single scene-
utterance pair is well-established (c.f. Siskind 1996).
In contrast, with multiple scene-utterance pairs, lan-
guage learners can reduce the uncertainty of which
semantic features and syntactic features are associ-
ated with a novel word.

Verbs exemplify the core problems of scene-
utterance referential uncertainty. Verbs selectively
participate in different alternation patterns, which
are cues to their inherent semantic and syntac-
tic features (Levin 1993). How are these features
of words acquired, given only positive evidence of
scene-utterance pairs?

The syntactic bootstrapping hypothesis (Gleitman
1990) is that learners exploit the distribution of
“syntactic frames” to constrain possible semantic
features of verbs. If a learner hears /glip/ in frames
of the form /S glipped G with F/ and rarely hears /S
glipped F into G/, the learner can with high confi-
dence infer /glip/ to be in the same verb class as

/fill/ and have the same sort of argument struc-
ture. A different distribution informs the learner
of a different verb class. Considerable evidence has
mounted in support of this hypothesis (c.f. Naigles
1990, Fisher et al 1994). In contrast, the semantic

bootstrapping hypothesis (Pinker 1989) is that learn-
ers use what is common across scenes to constrain
the possible word argument structures. If a learner
sees a liquid undergoing a location change when /S
glipped F/ is uttered, then /glip/ is likely to be in
the same verb class as /pour/ and have the same
sort of meaning.

Both hypotheses require the distribution of cross-
situational observations. Prior accounts to model
word learning have either ignored the essential role of
syntax in word learning (Siskind 1996, Tenenbaum
and Xu 2000), or require thousands of training ob-
servations (Regier et al 2001) to enable learning. In
this paper we present a Bayesian model of learning
the syntax and semantics of verbs that overcomes
these barriers, by demonstrating how word-concept
mappings can be achieved from very little evidence,
where the evidence is information from both scenes
and syntax.

Bayesian Learning of Features

We illustrate our approach with a Bayesian analysis
of a single feature. On some accounts, verbs pos-
sess a cause feature which may be valued 1, *, or 0
(Harley and Noyer 2000); depending on the value of
the cause feature, the verb may appear in frame F1,
F0, or both:

1 Externally caused - Ex: touch, load
F1: He touched the glass.
F0: *The glass touched.

* Externally causable - Ex: break, fill
F1: He broke the glass.
F0: The glass broke.

0 Internally caused - Ex: laugh, glow
F1: *He laughed the children.
F0: The children laughed.

Assuming this analysis, learners who hear utterances
containing a novel verb, not knowing the value of its
cause feature, must choose between 3 distinct hy-
potheses H

1

, H§, and H
0

. Clearly, one utterance
cannot uniquely determine the value of the feature:
if learners hear F1 (/S Ved O/), the feature sup-



ports H
1

or H§; similarly, if learners hear F0 (/O
Ved/), the feature may be H

0

or H§. Two utter-
ances cannot determine the feature uniquely either.
Learners might receive both F1 and F0, supporting
H§ uniquely. But they may also accidentally receive
2 utterances of the same form (F0, F0 or F1, F1),
thus not resolving the ambiguity. If learners received
6 utterances of the same form F0 or F1, however,
then there is overwhelming support for H

0

or H
1

respectively, and H§ seems far less likely.
A Bayesian analysis renders the above analysis

precise and quantitative. Knowledge is encoded in
three core components: (1) the structure of the hy-
pothesis space H; (2) the prior probability p(H

i

) on
each hypothesis H

i

in H, before learners are pro-
vided any evidence; (3) the likelihood of observing
evidence X given a particular H

i

, p(X|H
i

). Given
evidence X = [x

1

, . . . , x
N

] of N independent obser-
vations, by Bayes’ rule the posterior probability of a
particular hypothesis H

i

is:

p(H
i

|X) =
Q

N

j=1

p(x
j

|H
i

)p(H
i

)
p(x

1

, . . . , x
N

)
(1)

signaling the support for a particular hypothesis H
i

given evidence X.
In this case, x

j

is the observation of a syntactic
frame (F0 or F1), and X is a distribution of syn-
tactic frames. One simple prior probability model
p(H

i

) has each of the 3 hypotheses are equally likely,
encoding that a verb is equally likely to be of the
/touch/, /laugh/ or /break/ class:

p(H
1

) = p(H§) = p(H
0

) =
1
3

(2)
and a likelihood model p(x

j

|H
i

) encoding how likely
we are to observe frames F0 or F1 for the 3 different
feature values of cause:

p(x
j

= F1|H
1

) = .95 p(x
j

= F0|H
1

) = .05
p(x

j

= F1|H§) = .50 p(x
j

= F0|H§) = .50 (3)
p(x

j

= F1|H
0

) = .05 p(x
j

= F0|H
0

) = .95
The above likelihood model says that when a verb
has cause=1, we expect frames of the form /S Ved
O/ 95% of the time; when a verb has cause=0, we
expect /O Ved/ 95% of the time; when a verb has
cause=*, we expect both syntactic frames.

Both the prior probability model and likelihood
model are stipulated, encoding a learner’s prior
knowledge of grammar. Given these probability
models, this allows for explicit computation of the
support of each hypothesis. Suppose a learner re-
ceives F0. Then the support for each of the 3 hy-
potheses may be computed to be:

p(H1|F0) =
(.05)(.33)

(.05 + .50 + .95)(.33)
= .033

p(H§|F0) =
(.50)(.33)

(.05 + .50 + .95)(.33)
= .333 (4)

p(H0|F0) =
(.95)(.33)

(.05 + .50 + .95)(.33)
= .633

Any number of situations may be analyzed as such:

Evidence X p(H1|X) p(H§|X) p(H0|X)
1 F0 .033 .333 .633
2 F0, F0 .002 .216 .781
3 F0, F0, F0, F0, F0, F0 2e-8 .021 .979
4 F0, F1 .137 .724 .137
5 F0, F1, F0, F1, F0, F1 .007 .986 .007
6 F0, F1, F1, F1, F1, F1 .712 .288 5e-6

When only F0 is given as evidence (situation 1),
while both H

0

and H§ are consistent with the obser-
vation, H

0

is nearly twice as likely. However, with
2 observations of F0 (situation 2) or 6 observations
(situation 3), it is increasingly likely that H

0

is the
correct hypothesis. With both F0 and F1 as evi-
dence (situation 4), in contrast, H§ is far more likely;
with more evidence (situation 5), it becomes more
so. Finally, if the first frame is a “noise” frame and
followed by 5 representative frames of F1 (situation
6), then H

1

is more likely instead.
Given this framework, just one or two observa-

tions is sufficient to make an informed judgement.
Note that each additional observation increases cer-
tainty, and noise is handled gracefully.

Modeling Semantic Bootstrapping

In this section, we extend the single feature anal-
ysis to multiple features, where each feature repre-
sents information from scenes (from any modality,
whether perceptual, mental, etc.). Setting aside ver-
bal aspect, we may model possible verb meanings as
a set of M features, where each feature represents
a predicate on one or more of the arguments of the
verb. For example, a set of single argument predi-
cates might include:

moving(x), rotating(x), movingdown(x),

supported(x), liquid(x), container(x)
specifying the perceived situation about the argu-
ment of the verb (e.g. if it is moving, or moving in a
particular manner, etc.) while a second set of two-
argument predicates might specify the relationships
between arguments, given that this is an externally
caused (cause=1) event:

contact(x, y), support(x, y), attach(x, y)
Using these predicates, an idealized (partial) lexicon
might contain the following word-concept mappings:

cause One arg x Two arg x, y
/lower/ 1 1*11** 11*
/raise/ 1 1*01** 11*
/rise/ 0 1*0***
/fall/ 0 1*1***

specifying, in linear order, the value of each of the
one and two-argument predicates above, e.g. that
/lower/ has cause=1, moving(x)=1, rotate(x)=*,
movingdown(x)=1, etc. – and thus its concept cov-
ers externally-cased motion events where an agent
moves a theme downwards through supported con-
tact. The verb /raise/ is nearly identical except it
has movingdown(x)=0, while /fall/ and /rise/ in-
volve internally-caused motion (cause=0) and do not



specify any two argument predicates. The values of *
for the 4 rotating(x), liquid(x), container(x), and at-
tach(x,y) predicates signal that these features are ir-
relevant to the verb’s concept. Perception of a scene
amounts to evaluating these predicates; scenes may
or may not fall under the verb concept, conditioned
on the values of these predicates. The presence of q
of “irrelevant” features valued as * implies 2q possi-
ble scenes consistent with the concept.

Given a hypothesis space of possible verb concepts
formed by M of these sorts of predicates, the task
of learning a verb’s meaning given N observations
X = [x

1

. . . x
N

] of scenes, is to determine which of
the 3M possible concepts is the most likely. Just
as before, a Bayesian model does so by computing
the posterior probability distribution p(H

i

|X) over
concepts, given a prior distribution on hypotheses
p(H

i

) and a likelihood distribution of generating a
particular x

j

example given H
i

:

p(x
j

|H
i

) =
Ω

1

2

q if x
j

2 H
i

0 otherwise ; p(H
i

) =
1

3M

(5)

We can use Bayes’ rule (Eq (1)) to compute the like-
lihood of any hypothesis given N independent ex-
amples. Intuitively, the above likelihood model says
that out of the 2q possible scenes that might fall un-
der the concept H

i

, all of them are equally likely;
likewise, the prior probability model holds that all
of the 3M concepts are equally likely.

Consider a reduced hypothesis space where M =
3:

q Concepts
0 000, 001, 010, 011, 100, 101, 110, 111
1 00*, 01*, 10*, 11*, 0*0, 0*1,

1*0, 1*1, *00, *01, *10, *11
2 0**, *0*, **0, 1**, *1*, **1
3 ***

Given any distribution of scenes X, we can directly
compute the posterior probability p(H

i

|X) of any
of the 27 different concepts. Four are shown here,
of increasing generality from a very specific concept
(H

000

) covering only one scene (000) to the most
general concept H§§§ covering 2M possible scenes:

Observation X: H000 H00§ H0§§ H§§§
1 000 .30 .15 .07 .03
2 000, 000, 000 .70 .09 .01 .001
3 000, 001 .00 .64 .16 .04
4 000, 001, 000 .00 .79 .10 .01
5 000, 001, 000, 001, 000 .00 .94 .03 .001
6 000, 101, 010, 111, 000 .00 .00 .00 1.0

A single scene observation 000 is explained by all 4
hypotheses (situation 1) in a graded fashion. How-
ever, with 3 repeated observations (situation 2),
most of the mass is concentrated on H

000

. When
scene observations require abstracting away irrele-
vant features, the more specific concepts must be
discarded in favor of more general concepts (situ-
ation 3 vs 6). Each example consistent with the
general concept further reduces ambiguity over the
possible concepts (situation 4 vs 5).

Modeling Syntactic Bootstrapping

In this section, we demonstrate a Bayesian model
of how the distribution of syntactic frames, as en-
visioned by Gleitman (1990), may be used to de-
termine the semantic features of a verb. To do so,
we introduce a new notion of semantic agreement,
wherein features of a lexical head must agree with its
complement. Consider the following idealized lexi-
con:

/fill/ fig: [0] con: [1]
/pour/ fig: [1] liq: [1]
/load/ fig: [*]

/into/ fig: [1]
/with/ fig: [0]
/glass/ con: [1]
/water/ liq: [1]

A lexical head /fill/ agrees with a complement of /a
glass with water/ but not with /water into a glass/,
because the lexical head and its complement have
a value 1 along the fig dimension. Likewise, a lexi-
cal head /pour/ agrees with a complement of /wa-
ter into a glass/ but not /a glass with water/, be-
cause of the opposite value of fig. Finally, a lexical
head such as /load/, because § agrees with 0 and
1, accepts both complements. Thus, both /load the
wagon with hay/ and /load hay into the wagon/ are
valid derivations. A large number of verb classes can
be seen to pattern into three classes along different
feature dimensions in this way (Nomura et al 1994).

Any number of feature dimensions may be hypoth-
esized, and may include selectional features, such as
/fill/ requiring a container (con:[1]) or /pour/ re-
quiring a liquid (liq:[1]) as its complement.

Suppose a learner hears /S glipped a glass with
water/. The features of the novel verb /glip/ are un-
known and the features of its complement /a glass
with water/ are known. For the fig feature dimen-
sion of /glip/, there are 3 possible values, with 3
corresponding hypotheses H

0

, H
1

, H§. As before,
one observation is insufficient to infer H

0

, as H§ is
also possible. The following likelihood model for an
unknown verb feature value V and the feature value
of its complement C agreeing can be used for each
feature dimension (fig, loc, con, etc.) to compute a
probability distribution over the H

i

:

p(V, C) V = 0 V = 1 V = §
C = 0 .22 .01 .11
C = 1 .01 .22 .11
C = ° .11 .11 .12

Intuitively, the above says that with high proba-
bility, V and C agree, and with low probability
(i.e. .01), they do not agree. The above joint dis-
tribution encodes both the prior distribution on V
and the conditional distribution p(C|V ):

p(V = 0) = p(V = 1) = p(V = §) =
1
3

(6)

p(C = V |V = 0or 1) = .65
p(C 6= V |V = 0or 1) = .03 p(C = 0, 1|V = §) = .32
p(C = §|V = 0or 1) = .32 p(C = §|V = §) = .35

(7)



Given an assumption of perfect knowledge of the fea-
ture values of the complement, over multiple obser-
vations, the distributional evidence X in support of
the 3 hypotheses can be readily evaluated. We can
test how different distributions of syntactic frames
correctly yield different probability distributions of
a verbs syntactic and semantic features; this is thus
a Bayesian model of Gleitman’s (1990) “syntactic
bootstrapping”. Suppose a learner gets 4 syntactic
frames of /glip/, all of the form /S glipped O with
Z/. This is equivalent to having 4 perfect obser-
vations of fig:[0], which we annotate as X = 0000.
Then the likelihood p(X|V ) and posterior probabil-
ity p(V |X) of the 3 possible hypotheses can be eval-
uated directly via Bayes’ rule:

Likelihood p(X|V ) Posterior p(V |X)
p(X|V = 0) = (.65)4 p(V = 0|X) = .941
p(X|V = 1) = (.03)4 p(V = 1|X) = .000
p(X|V = §) = (.32)4 p(V = §|X) = .059

This is shown below, along with other distributions
of syntactic frames:

Sit Utterances (X) V = 0 V = 1 V = §
1 4 /S Ved O with Z/ (0000) .941 .000 .059
2 4 /S Ved O/ (****) .292 .292 .416

3
2 /S Ved O with Z/,
2 /S Ved O into Z/ (0011) .032 .032 .936

4
2 /S Ved O/,
2 /S Ved O with Z/ (**00) .769 .000 .230

5
23 /S Ved O with Z/
10 /S Ved O/ 1.00 .000 .000

6
23 /S Ved O with Z/
5 /S Ved O into Z/
10 /S Ved O/

.960 .000 .040

With only 4 examples, the uncertainty of the value
of the feature V is rapidly reduced (situations 1-4).
As the number of examples increases (situation 4
vs 5), the evidence supports “all-or-none” or “rule-
like” behavior, even with a significant number noisy
frames (situation 5 vs 6).

Modeling Integrated Syntactic and

Semantic Bootstrapping

We now integrate the two forms of bootstrapping
described above, where given a distribution of both
scenes and syntactic frames, a probability distribu-
tion over concepts consistent with both sources of
evidence is determined. Consider the following pos-
sible syntactic frames:

Utterance u Attention
/Glipping!/ *** -
/S glipped water from a glass/ 1** W
/S glipped water into a glass/ 1** W
/S glipped water/ *** W
/S glipped a glass with water/ 0** G
/S glipped a glass/ *** G

and perceptually-derived semantic features of
scenes:

Scene s Description/Semantic Features

pour-fill Person pouring water into a glass, filling it

G001 Glass: Manner: None (0) State: Full (1)

W110 Water: Manner: Pouring (1) State: None (0)

splash-fill Person splashes water into a glass, filling it

G001 Glass: Manner: None (0) State: Full (1)

W120 Water: Manner: Splashing (2) State: None (0)

spray-fill Person sprays water into a glass, filling it

G001 Manner: None (0) State: Full (1)

W130 Manner: Spraying (3) State: None (0)

pour-empty Person pouring water out of glass, emptying it

G002 Manner: None (0) State: Empty (2)

W110 Manner: Pouring (1) State: None (0)

splash-empty Person splashes water out of glass, emptying it

G002 Manner: None (0) State: Empty (2)

W120 Manner: Splashing (2) State: None (0)

pour-none Person pouring some water into a glass

G000 Manner: None (0) State: None (0)

W110 Manner: Pouring (1) State: None (0)

spray-none Person sprays water into a glass

G000 Manner: None (0) State: None (0)

W130 Manner: Spraying (3) State: None (0)

where features are ordered as:

fig, manner-of-motion, change-of-state

for each utterance u and scene possibility s. The
subscripts on G and W annotate the observation of
that argument for each of the 3 dimensions.
We may describe, just as before, how the cross-
situational distributional evidence X of N indepen-
dent scene-utterance pairs:

X = [(s
1

,u
1

), . . . , (s
N

,u
N

)] (8)
yields different word-concept mappings p(H

i

|X)
through independent combination of the two sources
of evidence:

p(H
i

|X) =
Q

N

j=1

p(s
j

|H
i

)p(u
j

|H
i

)p(H
i

)
p(X)

(9)

For expository purposes, we will consider how the
learner would rank each of the 6 precise hypotheses,
and will assume they entertain only these:

English Verb Hypothesis Feature
pour H

pour

11*
spray H

spray

12*
splash H

splash

13*
fill H

fill

0*1
empty H

empty

0*2
move H

move

1**

The likelihood p(s
j

|H
i

) for each of the D indepen-
dent dimensions (D = 3) is:

p(s
j

= s
1

. . . s
D

|H
i

) =
DY

k=1

p(s
k

|H
i

) (10)

where our model for scene observations along the
kth dimension is:

p(s
k

|H
i

) =

8
>><

>>:

1° d
k

≤ ifs
k

= 0,Hk

i

= §
≤ ifs

k

6= 0,Hk

i

= §
1° d

k

± ifs
k

= Hk

i

,Hk

i

6= §
± ifs

k

6= Hk

i

,Hk

i

6= §
(11)

We annotate the value of the kth dimension of hy-
pothesis H

i

as Hk

i

above. The first two lines model
that when a feature is not valued (Hk

i

= §), then
scenes typically have 0 for the kth dimension (d

1

=
2; d

2

= 3; d
3

= 3), but do not match with probabil-
ity ≤. That is, observing pouring, spraying, splashing
manners (s

2

= 1, 2, or 3), and observing filling, emp-
tying, or breaking change-of-states (s

3

= 1, 2, or 3)



Situation Scene s Utterance u H
pour

H
spray

H
splash

H
fill

H
empty

H
move

1 pour-fill {G001, W110}/S glipped water into a glass/ (1**) .889 .008 .008 .000 .000 .093
2 pour-fill {G001, W110}/S glipped glass with water/ (0**) .000 .000 .000 .990 .009 .000
3 pour-fill {G001, W110}/Glipping!/ (***) .468 .004 .004 .468 .004 .049
4 none /S glipped water into a glass/ (1**) .246 .246 .246 .004 .004 .254
5 none /S glipped glass with water/ (0**) .007 .007 .007 .485 .485 .007
6 none /Glipping!/ (***) .166 .166 .166 .166 .166 .170
7 pour-fill {G001, W110}/Glipping!/ (***)

pour-empty {G002, W110}/S glipped water from a glass/(1**) .998 .000 .000 .000 .000 .001
pour-none {G000, W110}/S glipped water/ (***)

8 pour-fill {G001, W110}/Glipping!/ (***)
splash-fill {G001, W120}/S glipped a glass with water/(0**) .000 .000 .000 .999 .000 .000
spray-fill {G001, W100}/S glipped a glass/ (***)

9 pour-fill {G001, W110}/Glipping!/ (***)
splash-empty{G001, W120}/S glipped water/ (***) .064 .064 .064 .000 .000 .808
spray-none {G001, W100}/S glipped water/ (***)

Figure 1: Word-concept mapping p(H
i

|X), given scene-utterance evidence X of a novel verb, /glip/

is far less likely than observing no manner of motion
(s

2

= 0) or change of state (s
3

= 0) at all. Since
observing a different value s

j

6= 0 is unlikely to have
occurred by accident, it may be an important feature
to the concept. The second two lines of (11) model
that if a feature is valued (Hk

i

6= §), then scenes typ-
ically match that feature in value, but do not match
with probability ±. That is, for example, given hy-
pothesis H

pour

, then most of the scenes will contain
pouring in them. In our examples, ≤ = .1, ± = .01;
qualitatively, results are not sensitive to changes in
these values.

The output of our model is shown in Figure 1.
Suppose, as in Situation 1, a learner is given a

single scene-utterance pair (pour-fill, /S glipped wa-
ter into the glass/): X = [(s

1

= {G
110

, W
110

},u
1

=
1 § §,W )], and we wish to compute p(H

i

|X) for all
H

i

2 H. We assume the learner can attend to the
argument so as to extract relevant features from the
scene. Given the scene pour-fill paired with utter-
ance /S glipped water into a glass/, our Bayesian
model places high weight on H

pour

.
In Situation 2, the scene is the same, but now the

syntax /S glipped a glass with water/ provides the
learner with the information to attend not to the
water’s manner-of-motion but to the glass’ change
of state. Given X = [(s

1

= {G
110

, W
110

},u
1

=
0 § §, G)] our model weights H

fill

heavily.
In Situation 3, the scene is the same, but now

the syntax /Glipping!/ gives the learner less infor-
mation, since the argument in the scene that the
speaker may be referring to is unknown: X = [(s

1

=
{G

110

,W
110

},u
1

= °°°)] If there are A argu-
ments in the scene, the speaker must have had a
particular argument z in mind. The learner must
condition on all the possibilities of z:

p(s
j

|H
i

) =
AX

a=1

p(s
j

|H
i

, z
a

)p(z
a

) (12)

If learners consider all arguments equally salient
(p(z

i

) = 1

A

) then this effectively models /Glipping!/

as equivalent to /S is glipping Z1/ with probability
p(z

1

) = .5 and /S is glipping Z2/ with probability
p(z

2

) = .5. For simplicity, we assume A = 2 where
Z1 is water, Z2 is the glass – but further referential
uncertainty can be modeled with higher A. Because
of the conditioning on each of A possibilities, this
yields a less certain word-concept mapping.

In situation 4 through 6, the same syntactic
frames are provided as in situations 1 through 3,
but without the scene information. When some syn-
tactic information is provided by the frame (situa-
tion 4, /S is glipping water into a glass/), then the
manner-of-motion locative verbs are preferred over
the change-of-state locative verbs, but no differenti-
ation is possible without the scenes. Likewise, when
the frame provides the opposite cue (situation 5, /S
is glipping a glass with water/), the opposite pref-
erence is achieved, again with no differentiation be-
tween possible change-of-state verb concepts. When
zero syntactic information is available (situation 6,
/Glipping!/), all hypotheses prove equally likely.

Whereas in situation 3 the verb-concept mapping
was ambiguous, primarily between H

pour

and H
fill

,
in situation 7 and 8, learners are provided 2 addi-
tional examples to disambiguate. Both the scenes
and syntactic frames in situation 7 support H

pour

,
while in situation 8 the scenes and syntactic frames
support H

fill

.
Finally, in situation 9, 2 different scene-utterance

pairs primarily support the “superordinate” con-
cept H

move

, and not any “subordinate” manner-of-
motion concept H

pour

, H
splash

, or H
spray

.

Discussion

The reason why our analysis is able to infer so much
from so little evidence is because so much is embed-
ded in the given knowledge sources:

• the structure of the hypothesis space H. Our ex-
amples contained a small number of feature di-
mensions and their possible values, but these may



be specified by interfaces to perceptual, motor,
memory, or other “theory” representations. If so,
whether these are innate or acquired are condi-
tional on their source.

• priors p(H
i

) on hypotheses in H. We used equal
priors, but updating p(H

i

) based on language in-
put is natural. In the verbal domain, such phe-
monena are commonly observed (e.g. manner vs.
path, tight/loose-fit biases).

• likelihood of scenes s given the word concept
p(s

j

|H
i

). We stipulated static values of ≤ and ±,
but this can be acquired from observation.

• perfect knowledge of the features of the comple-
ment. We made this simplifying assumption to
illustrate the essential elements of our model, but
learners must acquire these features in parallel.

• the likelihood of agreement, p(C|V ), between a
feature of a novel verb V and its complement C.
We speculate that there is sufficient structure in
partially learned words so as to acquire the struc-
ture in the joint distribution of feature values.

This richness of knowledge is in contrast to the
models employed by Regier et al (2001) and De-
sai (2001), who train connectionist neural networks
so as to learn the word-scene associations for ad-
jectives/ nouns and verbs respectively. The high
dimensionality of their models forces the need for
thousands of training trials, and the interpretation
of the weights is notoriously difficult. The assump-
tions behind these models are not justified by these
authors. In contrast, our Bayesian approach makes
the hypotheses, priors, and likelihoods explicit, hold-
ing this structure to be central.

Siskind (1996) views lexical acquisition as con-
straint satisfaction, and offers a robust algorithm
where the mapping between input and hypothesis
space is accomplished by pruning hypotheses that
do not occur cross-situationally. Provided an ideal-
ized tokenization of the world, the algorithm does
not need a large number of examples. However,
Siskind’s model does not yield any form of pref-
erence between different concepts, which is espe-
cially important when two or more concepts may
be equally constrained by the data. We have shown
how a Bayesian analysis explicitly yields preferences
between concepts in the posterior probability distri-
bution p(H

i

|X).
Tenenbaum and Xu (2000) take the important

step of putting word learning in the Bayesian frame-
work that we adopt here, showing how noun learn-
ing can occur with a small number of examples in a
continuous-variable input space.

Crucially, however, the above models ignore the
constraining role of syntax, despite considerable ev-
idence that children use syntax to guide their verb-
concept hypothesis space (Gleitman 1990, Naigles
1990, Naigles 1994, Fisher et al 1994, Snedeker and

Gleitman 2002). Qualitatively, our models’ per-
formance matches the preferences of child learners,
modeling their acquisition from as little as one ex-
ample.

Our use of statistics does not imply any commit-
ment to radical empiricism. Much prior knowledge
is stipulated: the structure of the hypothesis space,
the priors on hypotheses, and the likelihood of scene-
utterance pairs given the hypotheses. It is not spec-
ified whether these stipulations are innate or them-
selves learnable. Linguistics and lexical semantics
provide detailed theories of a much larger syntactic
and semantic hypothesis space, and little prevents
their inclusion in this framework.
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