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Abstract

Interpretation of data is a critical part of scientific
experimentation because it involves applying one’s
background theoretical knowledge to the characteristics of
the data. Though many researchers have examined the
impact of background knowledge, few have considered the
impact of the characteristics of the data in making
decisions. In this study, we presented 3™ graders, 6"
graders, and college undergraduates with a series of
datasets that varied in sample size, consistency in data pairs
and variability relative to the mean. We found that at all
ages, participants showed sensitivity to sample size and
whether or not there were overlapping data points in
comparative datasets, but that there were age differences in
the justifications used and in conclusions drawn from the
data.

Interpretation of data is a critical part of scientific
experimentation. Expectations about features of the data
have been suggested as an important component in
assessing data (Kahneman & Tversky, 1973). These
expectations are based both on theoretical knowledge
about the domain under consideration and on features of
the data itself. While a large body of research in scientific
thinking examines the influence of domain theory on the
evaluation of data (e.g., Klahr, 2000; Koslowski, 1996;
Kuhn, Garcia-Mila, Zohar, & Andersen, 1995), little is
known about how the characteristics of data influence
how children and adults interpret it.

An important component of science is distinguishing
real effects from error, or effects caused by factors other
than the ones being explored. In the science laboratory,
statistics is a vital tool to help make these decisions.
When there are differences that are highly unlikely to
occur by chance, scientists can feel more confident about
drawing conclusions from data.

In daily life, we regularly make decisions about
evidence without the aid of formal statistics. In such
cases, we resort to relying on theory and expectations.
However, there are many situations in which we do not
have strong background information, and thus only have
evidence based in the data. Elementary school students
seem likely to have an especially large handicap in
evaluating data — they have a smaller knowledge base

about the world and also have less formal knowledge
about statistics and its applications.

Students in elementary school are beginning to learn
about experimentation and data interpretation, and third
through sixth grade is a time of important increases in
understanding of basic science fundamentals, such as the
control of variables strategy (e.g., Chen & Klahr, 1999).
In addition, elementary school teachers routinely assign
children to perform repeated trials of events, explaining
that this is how science is done (Klahr, Chen & Toth,
2001). In evaluating data in and out of the classroom
when children do not know formal statistical techniques,
we expect them to rely on their informal knowledge of the
area.

But what constitutes “informal” notions of statistical
reasoning? We suggest two components: expectations
about data distribution and expectations about the
influence of sample size. Some research that has
examined expectations for the distribution of data has
looked at probability estimates. For example, when given
data about a series of coin flips, participants expected that
a coin would land on “heads” every other flip (Gilovich,
1991). This suggests that the participants had an implicit
expectation of the distribution of data in a series of coin
flips and that the judgment of “randomness” was (at least
in part) based on a mapping between expectations and
data patterns. More recently, some have argued that
children as young as five or six have a functional
understanding of probability (Schlottman, 2001).

Although there is related research in several areas, few
studies focus explicitly on the characteristics of the data
and the effects this focus has on conclusions. There is
some evidence that children at different ages do recognize
different properties of datasets, and that this recognition
in turn affects the conclusions they draw. For example,
Jacobs and Narloch (2001) found that children as young
as seven could use sample size and variability information
in inferring the likely frequency of a future event. The
differences in variability were based on prior knowledge
of base rates (i.e., how many elephants have two eyes,
compared to how many birds are a specific color). The
sample sizes used in this study varied dramatically, with
either 1, 3, or 30 instances of an event before the



participant was asked to infer likelihood of other instances
of the event, so it is unclear what sample size leads
children to feel confident in their predictions.

However, there is also some evidence that children at
ages 11 are still struggling to understand the value of
repeated measurements within the context of a school
science laboratory (Lubben & Millar, 1996). Some
children at this age believe repeated measurements are
important, but 18% thought that repeated measures are
useful because they accommodate scatter in the data.

There is also some evidence that children can
distinguish different kinds of variability. Masnick and
Klahr (2001) examined second and fourth graders
performing experiments in which two balls were
simultaneously rolled down ramps and the distance each
travels was measured. The children expected that on a
new trial using the same experimental set-up, the relative
positions of the two balls would remain the same, but that
the precise location of each ball might be different. That
is, they were able to make a distinction between small
differences in individual data points and larger differences
in sample means.

Students’ expectations about the essential features of
data and the features of a specific dataset may allow them
to recognize data as consistent or inconsistent with their
expectations about its distributions. These expectations
may in turn guide decisions about the usefulness of the
data and the extent to which the data are relevant to
explanatory theories. Thus, the characteristics of the data
partly determine the extent to which they are used to
guide the formation or modification of explanatory
theories.

One related body of research has examined how
children use data (in this case covariation between events)
to detect causal relationships between elements (Shaklee
& Mims, 1981; Kuhn, 1989). These studies looked at
how children evaluate evidence when events occur
together all the time, some of the time, or none of the
time.

In a series of studies by Shaklee and her colleagues,
students in grades 2-8 and adults were presented with data
about two events (e.g., plant growth-healthy/unhealthy
and use of bug spray- yes/no) in a 2x2 contingency table.
From these data, students were asked to determine the
nature of the causal relationship between the events (i.e.,
presence and direction of relationship). A majority of
participants at all ages did not use conditional probability
rules to determine covariation, yet many children used a
strategy for summing the diagonals in the contingency
table (Shaklee & Paszek, 1985). However both children
and adults could use a conditional probability rule if
instructed (Shaklee, Holt, Elek, & Hall, 1988).

Kuhn and her colleagues (Kuhn, Amsel, & O’Loughlin,
1988; Kuhn et al., 1995) extended this line of research
and examined the effect of detecting covariation on the
participant’s prior beliefs about an event. For example

Kuhn et al. (1988) interviewed sixth and ninth grade
children about the relationship between consuming
different types of foods and catching colds. Information
about each child’s prior beliefs was used to provide each
child with two sets of data: one that confirmed their prior
beliefs and one that disconfirmed their prior beliefs. The
researchers argued that children did not clearly
distinguish theory and evidence because children often
distorted the evidence to match their prior beliefs.

Although these studies suggest that data itself is
important in detecting causal relationships and in
evaluating hypotheses, there is little evidence about the
point at which children (and adults) detect covariation in a
particular dataset. In fact, in her review of scientific
reasoning literature Zimmerman (2000) states that “it is
not clear how large the difference must be in order to
conclude that the two events are related” (p. 115).

If students do rely on evidence to extend or modify a
theory, how do they go about such a task? Students’
notions of data variability may help them determine how
to weigh the potential importance of different types of
information. For example, data with little variability may
be considered more useful in drawing a conclusion than
data with greater variability a priori. The relevance of the
data to theory may be separately evaluated.

One approach to understanding how children use
evidence to extend and modify theories is to look at
category induction. In a series of studies, Gutheil and
Gelman (1997) presented 8- and 9-year-old children and
college adults with series of category exemplars.
Participants were asked whether a given property would
be expected to occur in a new exemplar. The diversity
and sample size of the initial sets were varied. Results
suggested that children used diversity and sample size
information only in combination, but were unable to use
just one successfully to infer category membership.
Adults, in contrast, used each property independently, as
well as jointly, in inferring category membership. In these
studies, however, determining that a set was homogenous
or diverse relied on domain knowledge acquired outside
of the experiment.

Clearly, patterns of data play a key role in scientific
inference, but what characteristics of the data guide
inferences about their utility? We suggest that, in
drawing conclusions about comparative data, three
characteristics that indicate the amount of variation in the
data are key: consistency within the patterns of data (i.e.,
the relative sizes of the data points), the magnitude of
differences (i.e., the range of each set of data) and the
presence of outliers. Data that show high consistency in
the direction of effects, small differences in magnitude
and few outliers suggests little variability. Data that
shows low consistency in the direction of effects, large
differences in magnitude, and many outliers suggests
more variability. This information about variability can
be assessed increasingly well with a larger number of data



points, increasing the degree to which the data itself can
inform an interpretation.

As a preliminary exploration of this area, we presented
children and college students with sets of comparative
data, and asked them to draw conclusions about
differences between the sets. The data were varied
systematically in number of data points presented and
consistency within the pattern of data.

Method
Participants Thirty nine third graders (mean age = 9.1),
seventeen sixth graders (mean age = 11.8), and fifty
college undergraduates (mean age = 20.2) participated.

Procedure All participants were interviewed individually.
Participants were randomly assigned to one of two
conditions. The conditions differed in the cover story for
the data presented. In the first condition, each participant
was read the following information:

Some engineers are testing new sports equipment.
Right now, they are looking at the quality of
different sports balls, like tennis balls, golf balls and
baseballs. For example, when they want to find out
about golf balls, they use a special robot launcher to
test two balls from the same factory. They use a
robot launcher because they can program the robot
to launch the ball with the same amount of force
each time. Sometimes they test the balls more than
once. After they run the tests, they look at the
results to see what they can learn.

In the second condition, we used an isomorphic
background story in which two athletes were trying out
for one slot on a team in different sports. The coaches
asked the participants to perform certain tasks (e.g., hit a
golf ball as far as possible) to assess which athlete would
be better for the team. This condition was designed to see
if adding information about a highly likely potential
source of variability (human error) would change
participants’ responses in any way.

After reading the cover story, the participants were
shown a series of datasets, one at a time. For each
example, there was data for either two different balls of
the same type, which were not given any distinguishing
characteristics (e.g., “Baseball A” and “Baseball B”), or
for two athletes about which there was no information
other than their names (e.g., “Alan” and “Bill”). In the
athlete condition, different names were used for each
story, to prevent any carry-over knowledge effect. For
each dataset, there were 1, 2, 4, or 6 pairs of data. Each
page contained two columns of data: one listing the
distance the first ball traveled and one listing the distance
the second ball traveled.

The datasets varied in (a) sample size, (b) whether the
datasets overlapped or not, and (c) in whether the

variability in the data was high or low relative to the
means. Each participant received a total of 14
comparisons, with 8 trials including no overlap (sample
size 1, 2, 4, and 6), and 6 trials including one or two
overlapping data points (sample size 4 with one
overlapping data point, and sample size 6 with one and
two overlapping data points). Half of the trials had high
variability, in which the standard deviation was 15-20%
of the mean, and half had low variability, in which the
standard deviation was less than 2% of the mean. Each of
the fourteen trials tested a different type of sports ball.
(See Table 1 for specific examples of the different data
characteristics.)

Table 1: Examples of datasets
Example 1: Six data pairs, no overlapping data points,

low variability within columns relative to the mean, robot
condition

Golf Ball A Golf Ball B
466 feet 447 feet
449 feet 429 feet
452 feet 430 feet
465 feet 446 feet
456 feet 437 feet
448 feet 433 feet

Example 2: Four data pairs, one overlapping pair (3 out of
four times Carla throws farther), high variability within
columns relative to the mean, athlete condition

Carla Diana
51 feet 38 feet
63 feet 50 feet
43 feet 56 feet
57 feet 44 feet

For each dataset, participants were first asked what the
engineer or coach could find out as a result of this
information and to explain any reasons for their answer.
Then they were asked how sure they were about these
conclusions. To answer the questions about sureness,
participants were offered a four-level scale from which to
select their answer, choosing among “not so sure,” “kind
of sure,” “pretty sure,” and “totally sure.”

Participants were next asked if the robot or athlete
launched Ball A again, exactly how far they thought the
ball would go, and how sure they were that Ball A would
travel X feet. They were asked the same questions about
Ball B, and then they were asked how sure they were that
the ball they had just named as going the farther distance
would actually go farther. For example, if they said that
they expected Ball A to travel 50 feet and Ball B to travel
60 feet, they were asked how sure they were that Ball B
would travel farther. Again, in addition to rating their



sureness, they were asked to offer any reasons for their
choices.

This series of questions was repeated for each of the 14
sets of data.

Results

Measures Participants rated how sure they were about
their conclusions four times for each dataset: They gave a
rating of their confidence in the initial conclusions drawn
from the data, in the predictions they made of exactly how
far each ball would go, and about which ball would go
farther on the next trial. The ratings were assessed on a
four-point scale, converted to a four-point variable, with 1
equivalent to not sure and 4 equivalent to totally sure.

In addition, participants offered reasons for their initial
conclusions and final predictions of relative position.
These reasons were coded for mention of any of the
following factors: the precise proportion of times one ball
went farther, a trend in the data, sample size, the
magnitude of the difference between the two datasets,
whether the datasets overlapped, a property of the ball
that affected the results, a property of the robot or athlete
that affected the results.

Participants also made specific numerical predictions of
how far the two balls would go if launched one more
time.

Levels of confidence Mixed model ANOVAs were used
to examine the effects of condition, data size, overlap, and
variability on ratings of sureness on the four-point scale.
For each assessment, data size, overlap, and variability
were within-subjects variables, and subject was treated as
a random variable.

Across all age groups, there was no effect of condition
(robot or athlete) on ratings of sureness. Therefore, on
later analyses of these questions, we collapsed the data
across conditions.

For conclusions about how sure the engineer or coach
could be, based on the original data, that one athlete/ball
threw/went farther, there were several notable effects.
College students were highly sensitive to sample size, the
sixth graders showed a small but not significant trend
upwards, and the third graders showed a small but
significant inverse trend. The data are summarized in
Figure 1. Overall, there was a highly significant effect of
grade (F (2, 1448) = 56.38, p < 0.0001), with third graders
on average much more sure than sixth graders, who in
turn were more sure than college students, across all
sample sizes smaller than 6.

In addition to sample size, participants demonstrated a
sensitivity to the presence of overlapping data points,
such that they were less sure of conclusions when the data
contained overlapping points. This effect was significant
for all grades.

Similar patterns emerged on the assessments of
participants’ sureness about their predictions, both about

the specific distance the balls would travel, and about
which ball they expected to go farther on a repeated trial.
The strongest relationships were for the college students,
who appeared to always link their sureness rating to the
number of data points, the proportion of overlapping data
points, and occasionally to the level of variation in the
data.

Although similar features in the data affected the level
of sureness, there were striking differences in the sureness
responses to the different questions. Participants were
much less sure about specific predictions than about
overall conclusions or about predictions of relative
placement on a future trial. Overall, general linear
models for each dataset, considering the measure of
sureness as a repeated factor indicate a strong relationship
between both grade and the specific question asked (i.e.,
the assessment of sureness for general conclusions,
specific predictions and relative predictions). Across all
grades, there was a relationship between the level of
sureness and what question was asked, but it was weakest
in the third graders and strongest in the sixth graders.
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Figure 1: Average ratings of sureness by grade, sample
size and number of overlapping data points

Reasons offered Participants offered justifications for
confidence in their conclusions and for the predictions
they made about which ball would go farther on a
subsequent trial. We examined whether participants
mentioned each reason at any point in response to a
question about each of the fourteen datasets. We then ran
Chi-square tests to look for grade differences in the
frequency of participants mentioning each factor.



Table 2 presents a summary of these results. An
overwhelming majority of the responses were in reference
to the data and not to theoretical issues such as properties
of the ball or robot/athlete. Young children were most
likely to mention either the proportion of the data (e.g.,
“Five out of six times A went farther”) or a trend in the
data (e.g., “B generally went farther”). In general, college
students used a much wider range of responses than
younger children, with nearly all of them mentioning
sample size at least once. Interestingly, despite the
significant increasing trend, only a small percentage of
the participants mentioned within-column variability, one
of the factors we manipulated (variability in Table 2).

Table 2: Percentage of participants at each age who
mentioned each justification for their sureness ratings

3" Gr. [ 6™ Gr. | College

Data responses

Precise proportion 92 86 86
Trend in data* 90 89 100
Sample size** 10 25 96
Overlap 56 64 72
Variability** 0 11 28
No Overlap** 5 7 58
Magnitude of diffs** 36 75 90
Outlier* 0 0 10
Theory responses

Ball property 8 14 14
Robot/athlete property 18 18 22

Grade differences: *p<0.05; **p<0.01

Justifications of predictions of which ball would go
farther in a new trial followed a very similar pattern as
that described above, for all three age groups.

One area in which a condition difference might be
expected is in use of justifications that refer to qualities of
the ball, the robot, or the athlete. Mentioning the property
of the robot or athlete did vary considerably by condition,
with nearly all mentions in the athlete condition (i.e.,
participants sometimes said that a property of athlete was
a reason for the outcome, but almost never attributed it to
a property of the robot). This trend was even stronger
when justifying predictions of future outcomes.

Predictions Participants predicted how far each ball
would go if the experiment were repeated. The data from
two third graders and one sixth grader were not included
in this analysis because they included numbers that
differed from the mean by more than twice the range of
the data. These outliers skewed the data considerably,
and suggested that these participants did not understand
the prediction task.

Overall, however, the participants were very good at
predicting how far the balls would go, and their

predictions averaged close to the mean. Third graders
averaged predictions that were 108.4% of the actual data
means (SD =10.0); sixth graders averaged predictions that
were 102.7% of the means (SD = 3.7); and college
students averaged 100.1% of the means (SD = 1.4).

Discussion

Our overall conclusion is that in the absence of clear
domain knowledge upon which to base theoretical
explanations, children and college students paid attention
to several features of data. At the same time, there were
clear age differences in many responses, indicating
changes over time that likely come from a combination of
education, experience, and development.

In all age groups, participants were less confident about
conclusions from datasets in which there were
overlapping data points, indicating a sensitivity to
variation in the patterns of the data. College students
were significantly more confident when there were more
data points, though third graders were actually slightly
more confident with smaller sample sizes. It is possible
that the third graders were overwhelmed by the variability
and became more confused about drawing conclusions
when there were more data points to consider.

Participants also showed an appreciation for some types
of variability by differentiating their sureness ratings for
different types of predictions. At all ages, they were more
sure of conclusions about relative distances on a future
trial than about specific distances, with the effect most
pronounced in college students. This response pattern
indicates an expectation that variation is more likely in
precise measurements than in overall patterns of results.
Participants seemed less attuned to within-column
variability in the data, rarely citing it as a justification for
either their conclusions or predictions, though older
participants were still more likely to cite it.

The lack of major differences between conditions was
an unexpected outcome. We had anticipated that the two
different ways of framing the data would lead to different
theoretical explanations of the data. However, most of
the justifications offered for drawing conclusions from the
data were based on the numerical evidence (e.g., a trend
in the data, sample size), while very few were linked to
mechanistic explanations such as a feature of the ball that
might cause the outcome. There was a small but
significant trend for those in the athlete condition to be
more likely to justify their explanations and predictions
by suggesting that the athletes may have varied in some
way. However, a minority of participants at all age levels
used such theoretical justifications. Some researchers
have argued that children mistakenly justify conclusions
that should be based on data by using their background
theoretical knowledge (e.g., Kuhn, et al., 1995). In
contrast, we suggest that in fact when children do not
have background knowledge upon which to rely, they are
likely to talk about the data in justifying conclusions.



In making distance predictions, overestimation was
more common than underestimation, particularly among
the youngest children. Similarly, third graders often
claimed to be totally sure of conclusions they could draw
after seeing only one pair of data, while college students
tended to reserve their enthusiasm until seeing at least
four consistent pairs of data. In general it appears that
third graders often overestimate both their confidence in
their ability to judge the quality of evidence, and their
predictions of future performance. College students were
very skilled at basing predictions of future events on the
mean of observed events.

This study is a first step toward a clearer understanding
of the many factors that influence the use of data in
different contexts. Many other data manipulations could
be examined to explore this question more thoroughly.
For example, one could manipulate the size of within-
column variation, the relative size of outliers, and the size
of the means. In addition, one could consider multiple
groups of data or a single set of data to be evaluated.

Our long-term goal is to better understand the
interaction between features of data and theoretical
framing, as people of all ages most often encounter data
in contexts in which they have some background
knowledge. This study was designed to tease apart some
of the specific features of data that are used when there is
not a lot of theoretical background knowledge influencing
conclusions drawn. Future studies will continue to
examine different characteristics of data within a range of
contexts, to learn more about how they interact to affect
reasoning.
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