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Abstract

The central aims of this experiment were to compare 
observational and interventional learning of a simple 
causal chain, and to ascertain whether people represent 
their interventions in accordance with the normative
model proposed by Pearl (2000). In the observation 
condition people treated putative causes as independent, 
and systematically selected the wrong model. In the 
intervention condition performance improved, in
particular greater sensitivity was shown to the relevant 
conditional independencies. However, participants’
likelihood judgments approximated the observed
frequencies rather than reflecting the appropriate causal 
model.

Introduction
Our causal knowledge of the world is closely tied to our 
ability to control or manipulate certain aspects of it. On 
the one hand, we often learn about cause-effect
relations by observing the effects of our own
interventions (e.g., running controlled experiments). On 
the other, we can exploit such knowledge by
manipulating the causes appropriate to our desired ends. 
Further, our causal knowledge allows us to predict or 
imagine the consequences of our actions, and is thus a 
prerequisite for deliberative decision-making.

Given the central role that intervention plays in 
causal reasoning, it has received scant attention in most 
accounts of human causal learning. In part this is due to 
the lack of a formal analysis of intervention, and the 
failure of standard probability theory to distinguish
action  from observation (Pearl, 2000). These lacunas 
appear to be addressed by a body of recent research in 
AI, which provides a normative analysis of causal
inference and a formal means of representing the
difference between observation and intervention (e.g., 
Glymour, 2001; Pearl, 2000).

The formulation of a normative model is at best only 
a first step towards an understanding of how people 
acquire and employ causal knowledge. The current 
experiment aims to gather some preliminary evidence 
about the difference between observational and

interventional learning, and whether people represent 
their interventions in the manner suggested by this
normative account. 

Causal Models
The causal model framework offers a method for
representing causal knowledge and formal rules for
updating this knowledge in the light of either
observation or intervention. Central to this formalism is 
the use of directed graphs to represent the mechanisms 
that underpin our causal knowledge of a domain, and 
the use of probability theory to reflect the uncertain and 
defeasible nature of this knowledge.

Figure 1: A causal graph

A causal model is made up of a set of nodes, a set of 
directed links between nodes, and a conditional
probability distribution for each node. The nodes
correspond to variables relevant to the domain (the pre-
selection of which may be non-trivial); these may be 
binary, or take on a range of values. The directed links 
between variables correspond to the autonomous
mechanisms that are supposed to mediate between these 
variables, and hence reflect the dependencies between 
them.

A simple causal graph is depicted in Fig. 1. In this 
example the model is restricted to three binary
variables: Bronchitis, Cough, and Insomnia. There is 
presumed to be one mechanism that leads from
Bronchitis to Cough , and another that leads from Cough
to Insomnia.

Typically the dependencies between variables are
probabilistic – reflecting either the incompleteness of 
the causal model or genuine noise. This uncertainty is 
represented by conditional probability distributions for 
each node (referred to as the parameterization  of the 

  Bronchitis Cough    Insomnia



graph). Thus in our simple example the strength of
dependency between Bronchitis and Cough is
represented by two conditional probabilities – the
probability of Cough given Bronchitis, and the
probability of Cough given no Bronchitis. A high
probability for the former would correspond to the
belief that Bronchitis is very likely to cause Cough; a 
high probability for the latter would correspond to the 
belief that Cough  is also very likely to be caused by 
other variables not represented in our simple model.

Given certain assumptions,1 the structure of a causal 
graph will fully capture the probabilistic dependencies 
amongst all of the represented variables. A fundamental 
relation here is that of ‘screening off’ or conditional 
independence. For any three variables A, B, C: A and B
are conditionally independent given C if P(A|B&C) = 
P(A |C); once you know the value of C, learning the 
value of B does not provide additional information 
about A. One causal graph representation that implies 
screening off is when C intercepts all directed paths 
between A and B. Thus in the causal graph in Fig.1, the 
fact that the Cough node is in between the nodes for 
Bronchitis and Insomnia implies that Bronchitis and
Insomnia are conditionally independent given Cough.
Once you know the value of Cough, learning the value 
of Bronchitis tells you nothing more about the value of 
Insomnia.

By representing conditional independencies in this 
way, causal graphs provide a powerful tool for
organizing knowledge, and for inferring the effects of 
new observations. As the graphs increase in size, these 
independence relations can greatly simplify such
computations. For example, one could supplement the 
simple model in Fig.1 with a comple x network of nodes 
and links between Bronchitis and Cough, but so long as 
the variable Cough  still intercepts all links from
Bronchitis to Insomnia, knowledge of Cough is all one 
needs to make inferences about Insomnia.

Making inferences given new information
The structure of a causal graph, in combination with the 
parameterization of its nodes, determines what
inferences we can make on the basis of new
information.  When this information takes the form of 
an observation, then Bayesian updating tells us how we 
ought to modify our probabilities. For example, given 
the causal model in Fig. 1, if we find out that Jim has a 
cough, we should increase (to some degree, depending 
on the parameters) both the probability that Jim has 
Bronchitis, and the probability that he has Insomnia.
However, what if we changed the value of Cough by 
giving him a cough suppressant? Such an action
warrants a change in our belief that he has Insomnia,

1 For example, the explicit representation of any variable that 
affects two or more other variables in the model.

but does not warrant any change in the probability we 
assign to him having Bronchitis.

More generally, the probabilistic inferences we are 
licensed to draw after observing the value of a variable 
may not be the same as those after intervening to set 
that variable to the same value.  Bayesian updating,
indeed any formal probability model,  fails to recognize 
this.  It does not differentiate between observing and 
acting . That is, the same conditional probability P(X|Y) 
is used to represent the probability of X given that Y is
observed, and the probability of X given that we do Y. 
But these can be quite different, as our example
illustrates – the probability of Bronchitis given the
absence of a cough is distinct from the probability of 
Bronchitis given that we remove the cough.

The Representation of Intervention
One of the innovative features of the causal model 
framework is that it proposes a normative account for 
the representation of interventions, and for the
inferences that they license. In so doing, it formalizes 
the difference between observation and intervention.

Pearl (2000) achieves this through the introduction of 
the ‘do(•)’ operator. In short, this amounts to
representing an intervention in terms of a minimal 
modification of the causal graph. Thus a simple
intervention to set a variable to a particular value is 
represented by the removal of all arrows into that
variable, without altering the other directed links in the 
graph. The effects of the intervention are then
computable through Bayesian updating on this
‘mutilated’ graph. 

To illustrate using the graph in Fig.1, consider an
intervention (e.g., use of a cough suppressant) that sets 
Cough to the value low.  This leads to the modified 
graph in Fig. 2: The directed link from Bronchitis to 
Cough is deleted whilst the link from Cough to
Insomnia is left unchanged. In effect the intervention
amounts to placing the variable Cough under the
influence of a new mechanism that sets its value to low.

Figure 2: Causal graph after intervention

This account provides a normative model for the
representation of both actual and imagined
interventions, and tells us how these interventions will 
(or would) affect the values of the other variables in the 
system. In particular it dictates which probabilistic
inferences we are entitled to make. Thus the modified 
graph in Fig. 2 permits us to infer a lower probability of 
Insomnia, but no change in the probability of
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Bronchitis. The latter prohibition is reflected in Pearl’s 
terminology by the difference between P(Bronchitis|
~Cough) and P(Bronchitis| do(~Cough)), and captures 
the basic asymmetry of the cause-effect relation:
manipulating a cause can change an effect but not vice-
versa.

Learning causal structure
The appropriate representation of intervention is not 
just critical to predicting the effects of our actions; it is 
also important for the discovery or learning of causal 
structure. Causal models can be learned from explicit 
instruction about how the world works, but we can also 
learn about causal structure through observation or
through intervention. These are not exclusive, but it is 
useful to distinguish cases in which one is restricted to 
observational data alone from those in which one also 
has the opportunity to intervene. 

Observational learning 
The causal model literature in AI has developed various 
algorithms for inferring causal structure from
observational data, many of which exploit the
conditional dependencies encoded in the structure of a 
causal graph.  So far none of these have been proposed 
as models of actual human discovery, although they do 
suggest some general principles that are relevant to 
such enquiries. For example, the establishment of
conditional dependencies is a crucial starting point for 
the construction of a causal graph, so it is important that 
people are able to make judgments of conditional
dependence versus independence. In contrast, the
precise parameterization of those dependencies is not 
always required to discover correct causal structure

Moreover, the graphical approach clarifies which 
causal structures can be differentiated on the basis of 
observational data alone.  It establishes equivalence
classes of structures ("Markov equivalence") that share 
conditional dependencies and are thus indistinguishable 
on the basis of observation alone.2 For example, in a
model made up of just two nodes, A and B, ascertaining
their probabilistic dependence does not tell us whether 
A causes B, or B causes A.

Even if causal structures are from different Markov 
equivalence classes, it might be difficult for people to 
distinguish them on the basis of observational data.
Indeed, selecting between certain structures requires
careful tracking of observed frequencies and subtle
inferences based on what one would expect to see. For 
example, consider the two possible causal structures 
depicted in Fig. 3. In order to distinguish these on the 

2 One important qualification here is in the case of graphs in 
which causal links are necessary but not sufficient; that is, for 
a directed link from A to B: 1 > P(B|A) > 0 and P(B|~A) = 0. 
Networks built from such links may be distinguishable even 
though they are Markov equivalent.

basis of observation alone, one must determine whether 
or not blurred vision and headache are independent 
given high wine consumption (conditional
independence would only hold if the data were
produced by the model on the right). This may require
many observations and careful tracking of the relevant 
relative frequencies. 

Figure 3: Two possible causal models

Interventional learning
Another way to learn about causal structure is to
actively interact with the system under study and to
observe the consequences. This seems to apply to the 
infant playing with a new toy as much as to the scientist 
running controlled experiments. Whilst this is often 
recognized as an important source of causal knowledge, 
it has received less attention in the human causal
learning literature.3

Intuitively, the ability to intervene on a system
should facilitate our learning about its causal structure. 
To take the simplest example, consider two variables 
that are known to be probabilistically dependent.
Assuming no other relevant variables, the direction of 
this link can be determined by manipulating one of the 
variables and observing whether or not the other also 
changes. In a noisy system such learning may still 
require multiple trials and sensitivity to the observed 
frequencies. But interventional learning has several
advantages over passive observation. Not only can it 
help to determine the direction of the causal links, it 
also allows selection of the kind of data to see, and thus 
to test out critical relations between variables. For
example, let us return to the task of distinguishing
between the two possible causal models in Fig. 3. One 
possible intervention is simply to drink a large amount 
of wine and then keep your eyes closed. If you don’t get 
a headache, you can be reasonably sure that the chain 
model is the correct one. If the system is rather noisy 
you may have to repeat this experiment several times, 

3 The dominant approaches to human causal learning (e.g. 
Cheng, 1997; Dickinson, 2001; Shanks, 1995) concentrate on 
observational learning.
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but it will still lead to greater confidence than making 
the distinction on the basis of observation alone.

Overview of Experiment
The central aims of this experiment were to compare 
the observational and interventional learning of a
simple causal model, and to ascertain whether people 
represent their interventions in accordance with the
normative model proposed by Pearl (2000). We used a 
typical observational learning paradigm (e.g. Shanks, 
1995), but adapted it to include an interventional
learning condition and a model selection task. The
learning data were generated from a simple chain model 
(see Fig. 4). 

Learning performance was assessed both through a 
model selection task and through the sensitivity of
people’s probability judgments to the appropriate
conditional dependencies. 

Figure 4: Causal graph used to generate stimuli for both 
observational and interventional tasks

Method
Participants. Thirty-three undergraduates from Brown 
University received course credit for their participation. 

Materials and procedure. Initial instructions to the
participants included an introduction to the notion of a 
causal model with examples of five candidate models. 
Each participant then completed both an observational 
and an interventional learning task. Two cover stories 
were used, one for each task (task order and scenario 
were counterbalanced across participants). Participants 
were asked to imagine that they were space engineers 
(chemists) running tests on a new rocket (perfume) in 
order to discover the underlying causal structure. They 
were told that previous tests had identified two
variables as relevant to the success of the test. In the 
space engineer scenario the relevant variables were
Temperature (either high or low) and Pressure (either 
high or low), and the outcome variable was whether or 
not the rocket launched. In the chemist scenario the
variables were Acid level (either high or low) and Ester
level (either high or low), and the outcome variable was 
whether or not the perfume was produced. In the
observation task participants viewed the results of 50 

test trials. On each trial they were shown the values of 
the two relevant variables, and then clicked on a button 
to view whether or not the outcome occurred. The
learning set was constructed according to a chain model 
(see Fig. 4) and is shown in Table 1 (order of
presentation was randomized for each participant). 

Table 1:  Frequency of presented instances in 
Observational Learning condition.

Participants then proceeded to a test phase, in which 
they made various conditional likelihood judgments
(e.g., given that Temperature is high, and Pressure low, 
what is the likelihood that the rocket launches?) plus a 
model selection question. This question presented
participants with five candidate causal models – two 
chains, two forks, and a collider (Fig.5 shows one
model from each category) – and asked them to select 
the model that they believed was most likely to have 
produced the data. 

Figure 5: Three models from the selection task

In the learning phase of the intervention task,
participants were able to set the value of one of the two 
relevant variables. They then viewed the resulting
values of the outcome variable and the variable they 
had not intervened on. This learning set was generated 
from a pseudo-random table constructed in accordance 
with the same chain model. After running 50 tests they 

Temperature Pressure Rocket  Launch No Prob
High High Yes 16 0.32
High High No 4 0.08
High Low Yes 0 0
High Low No 5 0.1
Low High Yes 0 0
Low High No 0 0
Low Low Yes 0 0
Low Low No 25 0.5

 Temperature Pressure
Rocket
Launch

P(Temperature) = 0.5
P(Pressure | Temperature) = P(Rocket | Pressure) = 0.8
P(Pressure |~Temperature) = P(Rocket |~Pressure) = 0

Temp Pressure Rocket

Pressure

Temp
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proceeded to an identical test phase as  in the
observation task. 

Results and discussion
Model Selection.  The results for the model selection 
task are shown in Fig. 6, with the correct chain model 
designated as chain 2.4 There were more correct model 
selections in the intervention than in the observation 
condition. However, whilst the correct model was the 
modal response in the intervention condition, overall 
responses were not significantly different from the
uniform distribution (χ2(4) =  2.91, ns.). By contrast in
the observational condition there was an overwhelming 
bias in favor of the collider (χ2(4) =  40.79, p < 0.001).

Figure 6: Model selection results in interventional and 
observational conditions (the correct model is chain 2).

Derived judgments of conditional independence. On
the model used to generate the learning set (see Fig. 4), 
Temperature was independent of Rocket launch
conditional on Pressure, that is: P(R |T&P) = P(R|P).
Participants' mean ratings for these two likelihoods are 
shown in Fig. 7. No significant difference obtained
between the two likelihoods in the intervention
condition, suggesting that participants were sensitive to 
this conditional independence. This is reinforced by the 
fact that 19 out of 33 participants judged the two
likelihoods equal. This contrasts with the observation 
condition, in which the mean likelihoods differed

4 One complication is that the chain model used to generate 
the data is Markov equivalent to fork 2. However, although
not inconsistent with the observational data, this model
requires an idiosyncratic parameterization whereby one effect 
(temperature) occurs more often than its sole cause (pressure). 
Very few people chose this model in the observation
condition.

substantially, and only 8 out of 33 participants judged 
them equal. 

Figure 7: Mean conditional likelihood ratings for the 
outcome variable R (rocket launch).

Compatibility of judgments with the do operator.
One way to assess the extent to which participants 
represent their interventions in line with the do operator 
is to look at their judgments of the likelihood that 
Pressure was high given that Temperature was low, 
P(P |~T). Recall that the correct judgment for this
likelihood is zero; Pressure is never high if
Temperature is low. However, when participants
intervene on the Pressure variable and set it to high 
they temporarily break the link between Temperature
and Pressure. In such cases the value of Temperature is 
equally likely to be high or low (its base rate = 0.5). If 
participants fail to represent their interventions
appropriately, by not ‘mentally’ removing the link from 
Temperature to Pressure when they intervene on
Pressure, they may erroneously judge that P(P|~T) > 0. 
This is because 50% of the time when they set Pressure
high they will observe Temperature as low. In other 
words, they might fail to mark the distinction between 
action and observation. 

To test out this possibility we compared people’s 
judgments for P(P|~T) with the relative frequencies
they actually observed; i.e., with the proportion of times 
they observed both low Temperature and high Pressure
(regardless of whether they intervened on Temperature
or Pressure). As shown in Fig. 8, participants' mean 
judgments for P(P |~T) were very close to the
frequencies they observed, and significantly different 
from the normative value of zero. 
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Figure 8: Mean likelihood ratings and observed relative 
frequencies in the intervention condition.

This result could indicate a failure by participants to 
implement the do operation when inferring the relation 
between Pressure and Temperature. However, there are 
alternative explanations for this finding. One possibility 
is that participants interpreted the likelihood question in 
terms of observational rather than interventional
probabilities, and accurately reported the relative
frequency with which low Temperature and high
Pressure co-occurred, regardless of whether they
believed that low Temperature would cause high
Pressure. This fits with numerous studies showing that 
people encode the relative frequencies of events
automatically, and often use these as a basis for their 
likelihood judgments (e.g., Hasher & Zacks, 1984).

 Second, on Pearl’s account the notion of an
intervention is only well defined relative to a specific 
causal model. Thus if people uphold an incorrect model 
(as the majority of the participants did) they are
unlikely to give appropriate estimates for the
interventional probabilities. Moreover, even those
participants that do select the correct model will have 
entertained various incorrect ones through the course of 
learning, and it may be very hard for them to
retrospectively revise their prior observations.

Conclusions
This experiment demonstrated a contrast between
observational and interventional learning, both with 
respect to people’s model selection and their likelihood 
judgments. Under observational learning, participants 
exhibited a strong bias for the collider, despite the fact 
that the variables they judged to be independent were 
highly correlated in the data. This suggests that they 
were engaged in predictive learning of the outcome 
variable (e.g., Rocket launch) on the basis of two 
indicator cues (e.g., Temperature and Pressure),
effectively treating them as independent causes of the 
outcome. This resonates with research on associative 

learning (e.g., Shanks, 1995), and multiple cue
probability learning (e.g., Hammond, 1996), where
models that assume the independence of causes fit the 
human data well. One factor likely to encourage this 
kind of learning was the manner in which the data were 
presented (e.g., indicator variables followed by
outcome variable). 

Interventional learning increased sensitivity to the 
appropriate conditional independencies and eliminated 
the bias for the collider, but the effect on model
selection was not entirely beneficial.  Although the
correct chain was the modal choice, the majority of 
participants still chose the wrong model. Taken together 
with the observational results this implies that
participants might have experienced too few trials to 
confidently discriminate between the models. 

Whatever the precise reasons for sub-optimal
performance in these tasks, the experiment shows that 
the automatic mechanisms that allow us to engage in 
the predictive learning and encoding of noisy
information can sometimes override our discovery of 
the causal model that generates this information.
Nevertheless, the difference we did find between
observational and interventional learning encourages us 
that people are able to make use of the special kind of 
information afforded by intervention, and that future
models of learning need to incorporate methods that 
represent the effect of action.
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