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Abstract

Although categorization and multiple-cue judgment are
similar tasks, categorization models emphasize exemplar
memory, while multiple cue judgment routinely is inter-
preted in terms of mental integration of cue weights that
are abstracted in training. We investigate if these conclu-
sions derive from genuine differences in the processes in
the two tasks or are accidental to different research
methods. The results reveal large individual differences
and a shift from exemplar memory to mental cue-
abstraction when the criterion is changed from classifica-
tion to continuous. This suggests that people switch be-
tween qualitatively distinct processes in the two tasks.

Introduction

A categorization task typically requires a probe de-
scribed by a number of binary features to be classified
into one, of usually two, categories. A multiple-cue
judgment involves a probe defined by binary or con-
tinuous cues and typically requires judgment of a con-
tinuous criterion. Both tasks require inference from
known variables to an unknown variable. Despite the
structural similarity of the tasks (Figure 1), the most
successful cognitive models in the two domains are
profoundly different in terms of the computations, cog-
nitive processing, and neural substrate that they imply.
Research on categorization often emphasize exemplar
memory (e.g., Nosofsky & Johansen, 2000): retrieval of
memory traces of concrete objects from different cate-
gories. In research on multiple-cue judgment, the (ex-
plicit or implicit) interpretation is generally that people
retrieve abstracted knowledge of cue weights, which is
then mentally integrated to perform a judgment (e.g.,
Einhorn, Kleinmuntz, & Kleinmuntz, 1979).

In this article, we report an investigation into the rea-
sons for these divergent conclusions. From the outset,
we can identify two possible answers. The first is that
research on multiple-cue judgment has not benefited
from the designs and the cognitive modeling needed to
disclose the importance of exemplar memory. From this
point of view, the conclusions are accidental to differ-
ent research paradigms and once that we scrutinize the
processes carefully we find that they are essentially the

same. A second answer is that the different conclusions
derive from the differences that nonetheless distinguish
the two tasks; for example, the use of a binary criterion
in categorization tasks and a continuous criterion in
multiple cue judgment tasks. The latter answer suggests
a cognitive system with multiple levels of qualitatively
distinct representations that compete to control behav-
ior depending on the requirements (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Jones, Juslin, Olsson,
& Winman, 2000; Juslin, Olsson, & Olsson, 2002).
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Figure 1: The structural similarity between a categori-
zation task and a multiple-cue judgment task.

The Judgment Task

The task requires participants to use four binary cues
to infer a binary or continuous criterion (Jones et al.,
2000; Juslin et al., 2002). The judgments involve the
toxicity of subspecies of an exotic (but fictitious) Death
Bug. The different subspecies vary in concentration of
poison from 50 ppm to 60 ppm (a continuous criterion),
where concentrations below 55 ppm are harmless but
concentrations above 55 ppm are lethal (a binary crite-
rion, harmless vs. dangerous). The toxicity can be in-



ferred from four binary cues of the subspecies (e.g.,
short or long legs, spots or no spots on the fore-back).

The cues take on values 1 or 0 and the toxicity ¢ of a
subspecies is a linear, additive function of the cues:

c=50+4-C, +3-C, +2-C, +1-C,- ()]

C, is the most important cue with coefficient 4 (i.e., a
relative weight 4), C, is the second to most important
with coefficient 3, and so forth. The binary criterion b
is formed from the continuous criterion by assigning
¢<55 b=0 (harmless), ¢>55 b=1 (dangerous), and c=55
randomly as b=1 or b=0. A subspecies with feature
vector (0, 0, 0, 0) thus has poison concentration 50 ppm
and is harmless; a subspecies with feature vector (1, 1,
1, 1) has 60 ppm and is dangerous. The continuous and
the binary criteria for all the 16 subspecies (i.e., possi-
ble cue configurations) are summarized in Table 1.

In training, the participants encounter 11 subspecies
and make either binary judgments about the toxicity of
each subspecies (i.e., “harmless” or ‘“dangerous”) or
continuous judgments about their toxicity (e.g., “The
amount of poison is 57 ppm”). As indicated in the two
right-most columns of Table 1, five subspecies are
omitted in training. (Sets A and B, respectively, denote
two different training sets where three omitted subspe-
cies are counter-balanced.) In a test phase, the partici-
pants make the same judgments as in the training phase,
but for all 16 subspecies and without feedback.

Table 1: Structure of the judgment task. The out-
balanced constrained training sets are denoted A and B.

Exemplar Cues Criteria Set
# Cl C2 Cx C4 Cont. Bin. A B
1 1 1 1 1 60 1 E E
2 1 1 1 0 59 1 T T
3 1 1 0 1 58 1 T T
4 1 1 0 0 57 1 O N
5 1 0 1 1 57 1 N O
6 1 0 1 0 56 1 N O
7 1 0 0 1 5 p=5 N O
8 1 0 0 0 54 0 T T
9 o 1 1 1 56 1 O N
10 0o 1 1 0 5 p=5 O N
11 o 1 0 1 54 0O T T
12 0o 1 0 0 53 0O T T
13 0 o0 1 1 53 0O T T
14 0o o0 1 0 52 0O T T
15 0 0 0 1 51 0O T T
16 0O 0 0 0 50 0 E E

Note: E = Extrapolation exemplar, T = training exemplar, O =
Old comparison exemplar presented in training, matched on
the criterion to one of the new exemplars, N = New compari-
son exemplar presented the first time at test, p=.5 assigns
binary criterion 1 to the exemplar with probability .5.

A criticism of previous studies that support exemplar
models is that often the artificial categories used essen-

tially contain no structure at all. There is thus, in a
sense, no other way to solve the task than to memorize
the exemplars (Smith & Minda, 2000). Our task is neu-
tral in this respect because it allows perfect perform-
ance in training both by exemplar memory and by in-
duction of the task structure (i.e., by inducing Eq. 1).

Cognitive Models

The cue-abstraction model assumes that participants
abstract explicit cue-criterion relations in training
which are mentally integrated at the time of judgment.
When presented with a probe the participants retrieve
rules connecting cues to the criterion from memory
(e.g., “Green back goes with being poisonous”). The
rules specify the sign of the contingency and the impor-
tance of the cue with a cue weight. For example, after
training the rule for cue C; may specify that C,=1 goes
with a large increase in the toxicity of a subspecies.

With a continuous criterion, cue abstraction suggests
that the participants compute an estimate of the con-
tinuous criterion c¢. For each cue, the appropriate rule is
retrieved and the estimate of ¢ is adjusted according to
the cue weight w; (i=1...4). The final estimate ¢, of ¢
is a linear additive function of the cue values C;,

4

te=k+So,-C - @

where k = 50 + .5(10-3w). If w; =4, w,=3, w;=2, and
w,=1, Eq’s 1 and 2 are identical and the model pro-
duces perfect judgments. The intercept k constrains the
function relating judgments to criteria to be regressive
around the midpoint (55) of the interval [50, 60] speci-
fied by the task instructions'. This formulation essen-
tially provides a cognitive interpretation of the linear
additive model known to provide a good account of
multiple-cue judgment data (Brehmer, 1994). Predic-
tions by the cue-abstraction model in a continuous task
are illustrated in Figure 2A.

The binary judgment involves classification of sub-
species into two categories based on their continuous
criterion. One way to obtain such judgments from Eq. 2
is by assigning all subspecies with ¢,<.5 as harmless
and all subspecies with ¢,>.5 as dangerous. Whenever
the estimates are correct (¢, =c) this implies a relation
between classification proportions p,(b=1) and the

! The constrained formulation captures the regression effect
within the interval [50, 60] that is introduced by a random
error in the cue weights or the process of cue abstraction.
For example, for the extreme subspecies, (0, 0, 0, 0: ¢=50)
and (1, 1, 1, 1: ¢=60), random error may produce judgments
that deviate from 50 and 60, respectively. However, for ex-
emplar (0, 0, 0, 0: ¢=50) we expect the errors to more often
produce a judgment above than below 50. For exemplar (1,
1, 1, 1: ¢=60) we expect the errors to more often produce a
judgment that is below than above 60. Second: it holds to a
good approximation in the data reported below. Third, it
provides a four-parameter implementation that is more eas-
ily compared to the four-parameter exemplar model de-
scribed below in terms of the number of free parameters.



criterion c that is a step function. Taking into account
that the process is likely to involve error in cue abstrac-
tion and decision making, we allow for a sigmoid func-
tion in the form of a logistic function (see Figure 1A):

ek+EW‘C’ 3)
b=1)=—"—a—
P 14+ 2MG
where W; are the cue weights in a logistic regression
and k = -5 YW, The intercept k implies a crossover

from binary judgment O to b 1 at toxicity 55, as implied
by the instructions. When the cue-abstraction model is
fitted to binary judgments below, we rely on Eq. 3.

Exemplar models suggest that the participants make
judgments by retrieving similar exemplars (subspecies)
from long-term memory. The context model of percep-
tual classification (Medin & Schaffer, 1978) suggests
that the probability pg(b=1) of categorization as
dangerous equals the ratio between the summed simi-
larity of the judgment probe to the dangerous exemplars
and the summed similarity to all exemplars:

J
> S(px)) b,
prb=1)=LF—’
DS(p.x))

where p is the probe to be judged, x; is stored exemplar
Jj G=1...0), S(px;) is the similarity between the probe p
and exemplar x;, and b; is the binary criterion stored
with exemplar j (bj=1 for dangerous, b;=0 for harmless).
J depends on the size of training set of exemplars.

The similarity between probe p and exemplar x; is
computed by the multiplicative similarity rule of the
context model (Medin & Schaffer, 1978):

“

4
S(P,x,-)= d," (5)

where d; is an index that takes value 1 if the cue val-
ues on cue dimension i coincide (i.e., both are 0 or both
are 1), and s; if they deviate (i.e., one is 0, the other is
1). s; are four parameters in the interval [0, 1] that cap-
ture the impact of deviating cues (features) on the over-
all perceived similarity S(p.x;). s; close to 1 implies that
a deviating feature on this cue dimension has no impact
and is considered irrelevant. s; close to O means that the
overall similarity S(p.,x;) is close to O if this feature is
deviating, assigning crucial importance to the feature.
The parameters s; capture the similarity relations be-
tween stimuli and the attention paid to each cue dimen-
sion, where a lower s; signifies higher attention.

The context model was developed for classification.
To generate predictions also for judgments of a con-
tinuous criterion we relax the model by allowing the
outcome index b; to be a continuous value. The estimate
¢, of ¢ is then a weighted average of the criteria c;
stored for the exemplars, with similarity S(p.x;) as the
weights (see e.g., DeLosh, Busemeyer, & McDaniel,
1997; Juslin & Persson, 2000; Smith & Zarate, 1992).

Predictions

The predictions are summarized in Figures 2 (binary
criterion) and 3 (continuous criterion). In both tasks, the
models produce similar predictions when all exemplars
are presented both at training and test (the upper pan-
els). Both models thus provide accurate representations
of the environment, albeit by different means. Figures
3A and 3B illustrate that the good fit of a linear additive
model need not be informative in regard to whether
cues are really mentally integrated according to a linear
model: predictions by an exemplar model are identical.
When the extreme exemplars (c= 50 & 60) and three
intermediate exemplars (c¢=.55, 56, & 57) are withheld
in training, the models produce distinct predictions.

As illustrated in the lower panels of Figures 2 and 3,
the cue abstraction model allows accurate extrapolation
beyond the distribution of criteria in the training set
[51, 59]. Whenever the correct signs of the cue weights
are identified, the most extreme judgments are made for
exemplars 1 (¢=60) and 16 (c=50). The exemplar model
that computes a weighted average of the criteria ob-
served in training can never produce a judgment outside
the observed range (Delosh et al., 1997). The most
extreme judgments are made for criteria ¢=51 and 59.

With the cue abstraction model there should be no
systematic difference between judgments for the “New”
and “Old” exemplars with ¢=55, 56, and 57: the process
is essentially the same in both cases. However, with the
exemplar model there is more accurate judgments for
Old exemplars: these judgments benefit from retrieval
of identical exemplars with the correct criterion.

One way to predict the relative importance of mental
cue abstraction and exemplar memory in the binary and
the continuous tasks is by computational considerations
(see Juslin et al., 2002). For judgments of a continuous
variable—assuming a linear additive model, as people
tend to (e.g., Brehmer, 1994)—observation of five
exemplars with their criteria is, in principle, sufficient
to identify the structure of the task. This system of five
linear equations has the unique solution provided by
Eq. 1. Given a psychological bias towards linear addi-
tive models, the task thus has a well-defined rule-based
solution that can be induced from a small number of
observations. Binary judgment affords no unique solu-
tion, even if the correct function form is assumed and
all 16 exemplars are considered. Given the difficulty of
inducing a rule-based solution, the participants may
have little alternative but to rely on exemplar memory
(see Smith & Minda, 2000, for similar arguments).

Note the alternative hypothesis suggested by a single-
systems account (Nosofsky & Johansen, 2000): that the
participants rely on exemplar memory in both tasks. On
computational grounds there seems to be no reason why
exemplar memory should not be equally applied in both
tasks. Both tasks allow a linear combination of criteria
stored with exemplars. The hypothesis proposed here is
based on a dual-process account. Because rule-based
knowledge affords better communication and system-



atic elaboration, we expect explicit rule-based processes
to be applied when the task structure and the feedback
allow participants to induce the task structure, whereas
exemplar memory provides a general and flexible back-
up system when the task structure or feedback is poor.
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Figure 2: Predictions for the binary task. Panel A: Cue
abstraction models with no noise and noise for the
complete training set. Panel B: Exemplar model with all
similarity parameter s equal to .0001 and .1 for the
complete set. Panel C: Cue abstraction model with
noise for the constrained set. Panel D: Exemplar model
with similarity parameter s=.1 for the constrained set.
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Figure 3: Predictions for the continuous task. Panel A:
Cue abstraction models with no noise and noise for the
complete training set. Panel B: Exemplar model with all
similarity parameter s equal to .0001 and .1 for the
complete set. Panel C: Cue abstraction model with
noise for the constrained set. Panel D: Exemplar model
with similarity parameter s=.1 for the constrained set.

Method

Participants

Sixty-four persons participated in the experiment (35
women and 29 men, with an average age of 23.5 years).
All participants were undergraduate students at Umed
University and rewarded with 70 SEK (app. 7 US $) for
their participation in the experiment.

Materials and Procedure

The written instructions informed the participants that
there were different subspecies of a Death bug. The
subspecies differed in toxicity between 50 and 60 ppm,
toxicity below 55 is harmless and toxicity above 55 is
dangerous. In the binary task condition, the instruction
asked the participants to categorize the subspecies into
dangerous and harmless. The training phase provided
trial-by-trial outcome feedback about the binary crite-
rion (“This bug is dangerous™). In the continuous task
condition, the task was to directly estimate the toxicity
of the subspecies as a number between 50 and 60. In
training, the participants received feedback about the
continuous criterion (“This bug has toxicity 57 ppm”).
The question on the computer screen was “Is this sub-
species harmless or dangerous? (binary task)” or “What
is the toxicity of this subspecies? (continuous task )”.

The subspecies varied in terms of four binary cues;
leg length (short or long), nose length (short or long),
spots or no spots on the fore back, and two patterns on
the buttock. The cues had the weights 4, 3,2, and 1 (Eq.
1). The weights determine the portion of toxicity that
each cues adds to the total amount. In the analogue
stimulus condition, the participants were presented with
pictures of the subspecies, in the propositional stimulus
condition they were presented with four propositions
that provided information about the cue values.

The training phase consisted of 220 trials, where the
11 training exemplars in Table 1 were presented 20
times each. The remaining five exemplars were omitted
in the training phase. Two different training sets were
used (Sets A and B in Table 1). In Set A, Exemplars 5,
6, and 7 were omitted; in Set B, Exemplars 4,9, and 10.
The exemplars in the two training sets were pair-wise
equal in toxicity and the omission of these exemplars
was thus counterbalanced across the training sets.

In the test phase, all participants judged all 16 exem-
plars, twice with an analogue stimulus format and twice
with a propositional stimulus format. The stimulus
formats were presented in two 2x16 blocks, the order of
which was counterbalanced across the participants. No
feedback was provided in the test phase. Half of the
participants were trained with analogue stimuli and the
other half with propositional stimuli, whereas all par-
ticipants were tested with both presentation formats.



Results

Results and model fits were collapsed over the ana-
logue and propositional conditions, as the aim of this
paper is to investigate the relative importance of mental
cue abstraction and exemplar memory in binary and
continuous tasks. Figure 4 presents model fits (> &
Root Means Square Deviation) and mean judgments.
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Figure 4: Panel A: Model fits for the binary task. Panel
B: Model fits for the continuous task. Panel C: Re-
sponse proportions in the binary task. Panel D: Mean
judgments in the continuous task.

Inspection of Figure 4C suggests exemplar effects in
the binary judgment task (notice the difference between
new and old exemplars with criterion 55, 56, and 57).
The mean difference in proportion of dangerous deci-
sions between old and new intermediate exemplars was
-33 (95% CI: -45 — -21). Both the cue abstraction
model and the exemplar model were fitted to data. The
four parameters in each model were estimated with a
Quasi-Newton procedure that minimized the sum of
squared deviations between data and model predictions
for the last 110 trials in the training block. These pa-
rameters were used to predict data in the test phase (i.e.,
all free parameters were determined by training data
and thus produce cross-validation for training exem-
plars and genuine predictions for new exemplars).

The exemplar model is clearly superior in the binary
judgment task. The model fit indexes in Figure 4A for
the binary task, RMSD and P, suggests predominant use
of exemplar processes with model fits almost identical
to the mean standard error in data (SEM) and r* above
90. In the continuous task, the model fits are more
ambiguous, although there is a slight advantage for the
cue abstraction model (Figure 4B). However, there are
nonetheless signs of exemplar effects (e.g., the judg-
ments for the extreme exemplars are at the level of, or
below, the judgments for the second-to-most extreme).

A comparison between the two tasks revealed that the
percentage of participants showing exemplar effects
dropped from 81% in the binary task to 63% in the
continuous task (p = .06).
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Figure 5: Exemplar effect in the data for continuous
judgments with the same training and test stimuli. Panel
A: Mean difference (slope) with 95% CI between each
successive data point. Panel B: Mean absolute differ-
ence from the correct value for each data point.

The signs of exemplar effects are evident in Figure 5
presenting data for continuous judgments with the same
training and test stimuli. Panel 5A plots the difference
between each successive data point (slope) in a graph
like Figure 4D. This slope is 1 for perfect judgments.
Panel 5A also provides the slope of the best fitting
linear regression of the mean judgments on the crite-
rion. Panel 5B presents the mean absolute error of
judgment for each criterion. It is clear that the slopes
turn negative for the extreme criteria (inability to ex-
trapolate) with more error in the judgments for new
exemplars. There is poorer ability to extrapolate the
continuous judgments when training and test stimuli
were in the same format (F(1, 30) = 4.62, p = .04), thus
suggesting more exemplar retrieval.

The ambiguous results for the continuous judgments
suggest that the group-level data may actually be a mix
of the two processes. Investigation of individual par-
ticipants indeed revealed individual differences. Some
participants relied on cue-abstraction, others on exem-
plar retrieval (Figure 6). Somewhat arbitrarily, but as
bench-mark, we deemed best-fitting models accounting
for more than 70% of the variance in individual data as
producing acceptable fit. On this criterion, 11 partici-
pants (34%) were best accounted for by the exemplar
model, 13 (41%) were best accounted for by the cue
abstraction model, whereas 8 (25%) were not accounted
for (1’<.7 for both models). In sum: although there are
exemplar effects also with a continuous criterion, there



is an increased prevalence of cue abstraction with some
participants clearly relying on cue abstraction.
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Figure 6: Individual-participant data: Panel A exempli-
fies a participant guided by exemplar retrieval and
panel B a participant guided by cue abstraction.

Discussion

The question addressed in this article is why the theo-
retical conclusions from categorization and multiple
cue judgment research are different, considering that
the task structure is so similar (Figure 1). Perhaps, the
most salient difference between the paradigms is that
categorization often involves a binary whereas multi-
ple-cue judgment often involves a continuous criterion.

The results suggest that the differential emphasis in
the conclusions is not accidental to different research
traditions, with more cognitive modeling in categoriza-
tion research and more statistical modeling in multiple
cue judgment research. Changing the criterion from
binary to continuous thus creates a shift from exemplar
memory to a mix of exemplar- and rule-based process-
ing that involves cue abstraction in training and cue-
integration at the time of judgment. In the continuous
judgment condition just as many individual participants
extrapolated appropriately and relied on cue abstraction
as on exemplar memory. Figure 6 highlights the indi-
vidual differences in preferred representational mode
(see Shanks & Darby, 1998, for similar results). These
results raise the question of the appropriateness of the
routine procedure of applying quantitative models to
group-level data. The exemplar retrieval with continu-
ous judgments moreover seems to increase when train-
ing and test conditions coincide.

There is no reason why exemplar memory should not
be used in both tasks (as it indeed was by some partici-
pants). Exemplar retrieval is an equally efficient way to
solve both tasks. However, it seems that as soon as the
feedback is informative enough, people eagerly induce
explicit rule-based representations, corresponding to the
“rule-bias” suggested by Ashby et al. (1998). This sug-
gests that people change between qualitatively distinct
representation levels depending on the task properties
(Ashby et al., 1998; Jones et al, 2000; Juslin et al.,
2002). Jones et al. showed that people spontaneously
tend to integrate cues in a task like the one used here,
either explicitly by cue abstraction or implicitly by
exemplar retrieval. A principled understanding of the

interplay between — and properties of — these distinct
levels of representation in human judgment and catego-
rization should be a prime goal of cognitive science.
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