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Abstract

This paper presents a formalisation and analysis method for
the dynamics of a reasoning process in which multiple
representations play a role. Dynamics of reasoning processes
are described by reasoning traces consisting of sequences of
reasoning states over time. Reasoning states have a
compositional structure; they are composed of different parts,
for example, for different representations. Transitions between
two reasoning states model reasoning steps. In relation to the
compositional structure of the states, transitions are classified
into a number of types. An example reasoning process
involving multiple representations is used to illustrate how its
dynamics can be formalised and analysed using the approach.

Introduction

Within Cognitive Science in recent years the dynamical
perspective on cognitive phenomena has been emphasized
and received much attention. In most literature focussing on
the dynamics of cognition, the Dynamical Systems Theory
(DST) is taken as a point of departure; e.g., (Port and
Gelder, 1995). This theory assumes that, in contrast to the
use of symbolic representations, modelling and analysis of
dynamics of cognitive phenomena can be done more
effectively by using representations based on real numbers
and mathematical techniques, in particular difference and
differential equations. The convincing examples illustrating
the usefulness of this perspective often address lower level
cognitive processes such as sensory or motor processing.
Indeed one of the advantages of the Dynamical Systems
Theory is that it is able to model the temporal aspects of
events taking place on a continuous time scale, such as, for
example, recognition time, response time, and time involved
in motor patterns and locomotion.

Also some examples of higher level cognitive processes
have been addressed using DST; for example the dynamic
models for decision making developed by Busemeyer and
Townsend (1993). Especially the continuous adaptive
aspects of the decision making are covered nicely in this
approach. Areas for which the quantitative approach based
on DST is assumed to have less to offer are the dynamics of
higher level processes with mainly a qualitative character,
such as certain capabilities of language processing and
reasoning. In the last two decades, within the areas of
Computer Science and Artificial Intelligence alternative
techniques have been developed to analyse the dynamics of
phenomena using qualitative means. Examples are process
algebra; transition systems; dynamic and temporal logic;

event, situation and fluent calculus; e.g., (Eck, et al. 2001;
Holldobler and Tielscher, 1990; Kowalski and Sergot, 1986;
Reiter, 2001). Just as difference or differential equations,
these alternative techniques allow to consider and relate
states of a process at different points in time. The form in
which these relations are expressed can cover both
quantitative and non-quantitative aspects. This paper
illustrates the usefulness of such an approach for the
analysis and formalisation of the dynamics of reasoning.
Here a broad perspective is taken on reasoning, subsuming,
for example, reasoning involving multiple representations.

A formal analysis method for the dynamics of reasoning
is presented and illustrated by an example reasoning pattern
involving geometric and arithmetic representations. This
pattern is analysed and characterised in terms of a set of
dynamic properties. The properties have been formalized,
thus enabling automated support of analysis by an analysis
environment that has been developed.

Below, first the dynamic perspective on reasoning is
discussed in some more detail. Next, the example reasoning
pattern is introduced, and the first steps of an analysis are
made. Third, a number of dynamic properties identified for
the example reasoning pattern are presented. Finally the
analysis method is summarised and the contribution of the
research presented in the paper is discussed.

Reasoning Dynamics

Analysis of the cognitive capability to perform reasoning
has been addressed from different areas and angles. Within
Cognitive Science, the two dominant streams are the
syntactic approach (based on inference rules applied to
syntactic expressions, as common in logic), e.g., (Rips,
1994), and the semantic approach (based on construction of
mental models); e.g., (Johnson-Laird, 1983; Yang and
Johnson-Laird, 1999).

Reasoning steps in natural contexts are usually not
restricted to the application of logical inference rules. For
example, a step in a reasoning process may involve
translation of information from one representation form
(e.g., geometrical) into another one (e.g., arithmetical). Or,
an additional assumption can be made, thus using a dynamic
set of premises within the reasoning process. Decisions
made at specific points in time during the process, for
example, on which representations to use or which
assumptions to make, are an inherent part of the reasoning.
Such reasoning processes or their outcomes cannot be



understood, justified or explained without taking into
account these dynamic aspects.

To formalise the dynamics of a reasoning process, traces
are used. Reasoning traces are time-indexed sequences of
reasoning states over a time frame; for stepwise reasoning
processes the set of natural numbers as a time frame is an
appropriate choice. The set of all possible reasoning states
defines the space where the reasoning takes place.
Reasoning traces can be viewed as trajectories in this space,
for which every (reasoning) step from one reasoning state to
the next one is based on an allowed transition. If the
possible reasoning states and the allowed reasoning steps or
transitions are characterised, the set of proper reasoning
traces can be defined as the set of all possible sequences of
reasoning states consisting only of allowed transitions.

Reasoning States

A reasoning state formalises an intermediate state of a
reasoning process. The content of such a reasoning state
usually can be analysed according to different aspects or
dimensions. For example part of the state may contain a
geometric representation, another part an arithmetic
representation. Accordingly, the reasoning state is structured
as a composition of (i.e., a tuple of) a number of parts,
indexed by some set I. This index set includes different
aspects or views taken on the state, e.g., | = {geometric,
arithmeticy. The set of reasoning states RS can be characterised
as a Cartesian product Rs = [[; | RS; where RS; is the set of
all states for the aspect indicated by i. For example, RSgeometric
may denote the set of all possible geometric representations;
note, however, that is also possible to use more dimensions,
e.g., different types of geometric representations can be
formalised. This Cartesian product formalises the multi-
dimensional space where the reasoning takes place. For a
reasoning state, which is a vector S = (S);j | € RS in this
space, the s; are called its components.

Reasoning Steps: Transitions of Reasoning States

A transition from one reasoning state to another reasoning
state, i.e., an element < S, s’ > of RS x RS, formalises one
reasoning step; sometimes also denoted by s —» s. A
reasoning transition relation is a relation on RS x RS. Such a
relation can be used to specify the allowed transitions.
Transitions differ in the set of components that are involved.
The most complex transitions change all components of the
state in one step. However, within stepwise reasoning
processes, usually transitions only involve a limited number
of components of the state, e.g., only one or two. Transitions
can be classified according to which set of components is
involved. The most simple types of transition involve a
single component transition. Next come transition types
where two components are involved. In the current approach
we concentrate on these two classes of transition types.

Single component transition types

For example, when a modification in the reasoning state is
made solely within a geometric representation, only the
geometric component of the state changes (geometric

reasoning step). Or, if a calculation (arithmetic reasoning)
step is performed, only the aritmetic component is changing.
These single component transitions involve only that
component and can be defined within one component only:

geometric — geometric
arithmetic — arithmetic

It is also possible that one component of a state is changed
by information acquisition, importing information from an
external source in the reasoning process.

Transitions involving two components of a reasoning state
Other types of transitions involve more than one component.
For example, if information from a geometric representation
is translated into an arithmetic form, thereby extending the
arithmetic representation, then two components of the state
are involved: the arithmetic component and the geometric
component. Examples of transition types involving two
components are:
geometric x arithmetic — geometric
(e.g., the geometric representation is extended or modified
with results from the arithmetical representation)
arithmetic x geometric — arithmetic
(e.g., the arithmetic representation is extended or modified
with results from the geometrical representation)

Reasoning Traces

Reasoning dynamics results from successive reasoning
steps, i.e., successive transitions from one reasoning state to
another. Thus a reasoning trace is constructed: a time-
indexed sequence of reasoning states (y)wr, Where T is the
time frame used (the natural numbers). A reasoning trace
can be viewed as a trajectory in the multi-dimensional
space RS = [; | RS; of reasoning states. An example of such
a reasoning trace will be discussed in Section 3; see also
Figure 1. Reasoning traces are sequences of reasoning states
subject to the constraint that each pair of successive
reasoning states in this trace forms an allowed transition. A
trace formalises one specific line of reasoning.

Example Reasoning Process

An example multi-representation reasoning process is used
to illustrate the approach put forward: interaction between
arithmetical reasoning and geometrical reasoning. The
example focuses on how to determine the outcome of
multiplications such as 23 x 36. Experiences on using such
processes with children (8-9 years old) in class rooms have
been reported, e.g., by Dekker et al. (1982), see also
(Hutton, 1977). The example can also be extended to an
example for children of 13 or 14 years to support algebra by
geometric visualisations, e.g., the algebraic identity (a + b)® =
a® + 2ab + b” interpreted as the area of a partitioned square of
(a +b) x (a + b) in relation to areas of its parts: a square of a x
a, a square of b x b, and two rectangles of a x b. Also
teaching quadratic equations can be supported by such
visualisations as discussed, e.g., by Bruner (1968), pp. 59-
63.The example pattern shows two types of one component
transitions of reasoning states, and two transition types
involving two components:



* an arithmetical reasoning step: arithmetic — arithmetic

* a geometrical reasoning step: geometric — geometric

* atranslation of an arithmetical representation into a
geometrical representation: geometric x arithmetic — geometric

* atranslation of a geometrical representation into an
arithmetical representation: arithmetic x geometric — arithmetic

The idea is that only simple arithmetical steps are required.
The more complicated steps are performed via the
geometrical representation. A number of skills are assumed.
These skills can be defined in the form of transitions.

A. Assumed arithmetic skills arithmetic — arithmetic
aal. splitting a number in ‘tens’ and single digits: 28 =20 + 8
aa2. addition of a list of numbers of up to 4 digits, such as 1200 + 340 +
120 + 6
aa3. multiplication of two numbers starting with a nonzero digit, followed
by zero or more zeros, such as 20 x 8, 60 x 30.

B. Assumed geometric skills geometric — geometric

ggl. partitioning a rectangle in non-overlapping areas based on
partitionings of its sides

gg2. determining the area of a figure from the areas of a (non-
overlapping) partition

C. Assumed translation skills
geometric x arithmetic — geometric:
agl. drawing a rectangle with arithmetically given dimensions
ag2. partitioning a line segment according to a splitting of its length
ag3. determining the area of a rectangle from the multiplication of the
lengths of its sides
arithmetic x geometric — arithmetic:
gal. translating the area of a rectangle into the multiplication of the
lengths of its sides
ga2. translating the area of a combination of nonoverlapping areas into
the sum of the areas

geometric

arithmetic

Figure 1: Reasoning trace as a trajectory in a two-
dimensional reasoning state space.

The example reasoning trace, based on class room
observation (cf. Dekker et al., 1982), forms a trajectory in
the two-dimensional reasoning state space

RS = RSarithmetic X RSgeometric

This trajectory is depicted in Figure 1. Note that in this
Figure only the changing component is visualised by an
arrow, not what component affected this change. Therefore,
e.g., both a geometric reasoning step and a translation of an
arithmetic into a geometric representation are depicted by a
vertical arrow. The detailed trace is presented below.

Starting problem What is the outcome of the multiplication 23 x 36 ?

Step 1 ag1 representation translation 36
Create a rectangle of 23 x 36.

Step 2 aal arithmetic reasoning
Split the numbers into the ‘tens’ and 23
single digits: 23=20+ 3;36 =30 + 6

Step 3 ag2 representation translation

Translation of the arithmetical splitting of
the numbers into partitions of the sides 36
within the geometrical representation. 30 L 8

Step 4 gg1 geometric reasoning
Partition the area of the rectangle g 20
according to the partitioning of the sides.

Step 5 gal representation translation

For each part identify the correspond-ing 3
arithmetical expression for its area: 20 x 30, 36
20x6, 3x30,3x6 ® °

Step 6 aa3 arithmetic reasoning
Determine the outcomes of the four 20
multiplications 20 x 30 = 600; 20 x 6 =
120;3x30 = 90;3x6=18

Step 7 ag3 representation translation 3

Identify the areas of the parts of the ”
rectangle based on the outcomes of the 30 6
multiplications.

Step 8 gg2 geometric reasoning

Assert that the area of the rectangle asa 23
whole is the combination of the areas of the
parts

20 600 120

90 18

Step 9 ga2 representation translation
Identify the corresponding arithmetical relation: 600 + 120 + 90 + 18

Step 10 aa2 arithmetic reasoning
Calculate the sum: 600 + 120 + 90 + 18 = 828

Dynamic Properties

To specify properties on the dynamics of a reasoning
process, the temporal trace language TTL used by Herlea et
al. (1999), and Jonker and Treur (1998) is adopted. This is a
language in the family of languages to which also situation
calculus (Reiter, 2001), event calculus (Kowalski and
Sergot, 1986), and fluent calculus (Holldobler and Tielscher,
1990) belong. In short, in TTL it is possible to express that
in a given trace at a certain point in time the reasoning state
has a certain (state) property. Moreover, it is possible to
relate such state properties at different points in time. As an
example, the following (global) property of a reasoning
trace y is considered, which expresses that all multiplication
problems in two digits eventually will be solved.

GP1
at any point in time t
if in the reasoning state in trace y at t an arithmetic representation of

a multiplication problem for numbers x and y < 100 is present,

then a time point t’>t exists such that in the reasoning state in y at t’ an
arithmetic representation of a solution z of this multiplication
problem with z = x«y is included.



The formalisation of this property in TTL is as follows.
Vit Vx, y< 100 state(y, t, arithmetic) I== multiplication_problem(x, y)
= =t I3z z=xry &
state(y, t', arithmetic) == is_solution_for_multiplication_of(z, x, y)

Note that for simplicity no maximal allowed response time
has been specified. If desired, this can be simply added by
putting a condition t=r in the consequent with r the maximal
response time.

Milestone Properties

Within the overall reasoning process a number of milestones
can be defined, and properties can be identified that express
whether the process from one milestone to another one has
been performed properly. Apart from the start and the finish,
two intermediate milestones were defined: a reasoning state
in which the problem has been represented in a geometric
representation and it has been decomposed geometrically
(after step 4 in the example trace), and a reasoning state in
which a geometric representation with numbers in the areas
occurs, i.e., in which the subproblems have been solved
(after step 7 in the example trace). Accordingly, the
following milestone properties have been formulated.

MP1
at any point in time t
if in the reasoning state in trace y at t an arithmetic representation of

a multiplication problem for numbers x and y < 100 is present,

then a time point t’=t exists such that in the reasoning state in y at t’a
geometric representation of a rectangle ABCD is included with
points P on AB and Q on AD, with IABI =x and IADI =y

and this rectangle is partitioned into four areas Ay, Az, Az1, App by

two lines PP7//AD and QQ7/AB with P’ on CD and Q’ on BC with
IAPI = x1, IPBI = x;, IAQI = yj, and IQDI = y;, where X1, y; is the
10-part of x, resp. y, and x5, y, is the digit part of x, resp. y.

Here, IABI is the length of AB, and // is ‘in parallel with’.

MP2
at any point in time t
if in the reasoning state in trace y at t a geometric representation of a

rectangle ABCD is included with points P on AB and Q on AD,
with IABl = x and IADI =y,
and this rectangle is partitioned into four areas Ay, Ao, Apy, Ay by

two lines PP7/AD and QQ?/AB with P’on CD and Q’on BC with
IAPI = x1, IPBI = x5, IAQI =y, and IQDI = y;, where X1, y; is the
10-part of x, resp. y, and Xy, y; is the digit part of x, resp. y,

then a time point t’=t exists such that in the reasoning state in y at t’in
each of these areas Aij a number zij is represented which equals
Xi#Yj

MP3
at any point in time t
if in the reasoning state in trace y at t a geometric representation of a
rectangle ABCD is included with IABI = x and IADI =y
and this rectangle is partitioned into four nonoverlapping rectangle
areas A] 1s A12, A21 N A22,
and in each of these areas Aj; a number zij is represented which equals
Xj*yj, Where X = X1 + Xp, and y = y1 +y2,
then a time point t’=t exists such that in the reasoning state in y at t’ an
arithmetic representation of a solution z with z = xxy of the
multiplication problem (X, y) is included.

Local Properties

In this section a number of properties are identified that
characterise the reasoning in a more local manner: each
property characterises one reasoning step. For the sake of
simplicity, for the example reasoning process persistence of
representations in reasoning states over time is assumed, so
that persistence does not need to be formulated within each
of the properties.

LP1 (arithmetic-geometric)
at any point in time t
if in the reasoning state in trace y at t an arithmetic representation of
a multiplication problem for numbers x and y < 100 is present,
then a time point t’=t exists such that in the reasoning state in y at t’ a
geometric representation of a rectangle ABCD with IABI = x and
IADI =y is included.

This dynamic property expresses that in reasoning trace v, if
an arithmetically represented multiplication problem occurs,
this eventually is translated into a geometric representation.
The formalisation of this property in TTL is as follows.

Vit Vx, y< 100 state(y, t, arithmetic) I== multiplication_problem(x, y)
= 3Jt=t3A,B,C,D
state(y, t', geometric) |== rectangle(A, B, C, D) & IABl = x & IADI =y

Further local properties are the following (not in any
particular order).

LP2 (arithmetic-arithmetic)

at any point in time t

if in the reasoning state in trace y at t an arithmetic representation of
a multiplication problem for numbers x and y < 100 is present,

then a time point t’=t exists such that in the reasoning state in y at t’ an
arithmetic representation of a splitting of the numbers x and y in
‘tens’ and digits occurs, i.e., X = X| + X3,y =y + y2 With x, y;
multiples of 10 and x5, y <10.

LP3 (arithmetic-arithmetic)

at any point in time t

if the reasoning state in trace y at t contains an arithmetic
representation of a multiplication problem for (x, y), with X, y
multiple of 10 or less than 10,

then a time point t'=t exists such that in the reasoning state in y at t' an
arithmetic representation of a solution z with z = xs«y for this
multiplication problem for (x, y) is included.

LP4 (arithmetic-arithmetic)
at any point in time t
if in the reasoning state in trace y at t an arithmetic representation of
an addition problem for a finite list z; ,..., z, of numbers of up to 4
digits is included,
then a time point t'=t exists such that in the reasoning state in y at t' a
solution z = 2| j <  z; of the addition problem is included.

LP5 (arithmetic-geometric)

at any point in time t

if in the reasoning state in trace y at t an arithmetic representation of
a splitting of the numbers x and y occurs, i.e.,
X=X1+X2,Yy=Y1+Y2,

then a time point t'=t exists such that in the reasoning state in y at t' a
geometric representation of a rectangle ABCD with IABI = x and
IADI =y is included with points P on AB and Q on AD such that
IAPI = x{, IPBI = x5, IAQl =y, and IQDI = y,.



LP6 (geometric-geometric)
at any point in time t
if in the reasoning state in trace y at t a geometric representation of a
rectangle ABCD is included with points P on AB and Q on AD,
then a time point t>t exists such that in the reasoning state in vy at t’ the
rectangle ABCD is partitioned into four areas Ay, A2, Aaq, A2
by two lines PP7/AD and QQ?/AB with P’on CD and Q’on BC.

LP7 (geometric-geometric)

at any point in time t

if in the reasoning state in trace y at t a geometric representation of a
rectangle ABCD is included that is partioned into a number of
nonoverlapping areas Ay, ..., Ay,

then a time point t'=t exists such that in the reasoning state in y at t' it is
asserted that the area of ABCD is the combination of the areas
Ay, .. Ap.

LP8 (geometric-arithmetic)

at any point in time t

if in the reasoning state in trace y at t a geometric representation of a
rectangle ABCD with IABI = x and IADI = y is included with
points P on AB and Q on AD such that IAPI = x;, IPBI = x5,
IAQI =y, and IQDI = y»,

and this rectangle is partioned into four areas Ajy, Aj2, A2y, A by

two lines PP'//AD and QQ'//AB with P' on CD and Q' on BC,

then a time point t'=t exists such that in the reasoning state in y at t'
arithmetic representations of multiplication problems for (xy, y1),
(X1,Y¥2), (X2, y1), and (X2, yp) are included.

LP9 (geometric&arithmetic-geometric)

at any point in time t
if in the reasoning state in trace y at t a geometric representation of a
rectangle ABCD is included with points P on AB and Q on AD,
and this rectangle is partioned into four areas Ay, Ajp, Azy, Apy by
two lines PP'//AD and QQ'//AB with P' on CD and Q' on BC,
and arithmetic representations of solutions ziy, z13, z21, zp2 for the
multiplication problems for (IAPI, IAQI), (IAPI, IQDI), (IPBI, IAQI),
and (IPBI, IQDI) are included.
then a time point t'=t exists such that in the reasoning state in y at t'
within the geometric representation in each area Ajj, the number z;;
is represented.

LP10 (geometric-arithmetic)

at any point in time t

if in the reasoning state in trace y at t a geometric representation of a
rectangle ABCD is included which is partioned into a number of
areas Aj, ..., Ay,

and within each of these areas A;j a number z; is represented,

then a time point t'=t exists such that in the reasoning state in y at t' an
arithmetic representation of an addition problem for z;,
included.
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LP11 (geometric& arithmetic-arithmetic)
at any point in time t
if in the reasoning state in trace y at t a geometric representation of a
rectangle ABCD is included with IABI = x and |ADI = y that is
partitioned into a number of nonoverlapping areas Ay, ..., Ay,
and within each of these areas A; the number zi is represented,
and an arithmetic representation of a solution z of the addition problem
for zy, ..., z, is included,
then a time point t'=t exists such that in the reasoning state in y at t' an
arithmetic representation of a solution z with z = xxy of the
multiplication problem (X, y) is included.

Relationships Between the Dynamic Properties

A number of logical relationships have been established
between the properties above. First of all, the three
milestone properties together imply the global property:

MP1 & MP2 & MP3 = GP1 0)

Next, each of these milestone properties is implied by a
number of local properties:

LP1 & LP2 & LP5 & LP6 = MP1 @
LP3 & LPS & LP9 = MP2 2)
LP4 & LP7 & LP10 & LP11 = MP3 A3)

These logical relationships, which can be depicted as an
AND-tree, are helpful in the analysis of errors within a
given reasoning trace. First it can be checked whether GP1
holds. If this global property does not hold, the three
properties MP1, MP2, MP3 can be checked. Given the logical
relationship (0), at least one of them will be found not to
hold. This pinpoints the cause of the error in part of the
process, say MP3. Next, (only) the local properties relating
to MP3 are checked, i.e, LP4, LP7, LP10, LP11. Again, due to
(3) one of them will be found not to hold. This localises the
error.

The Dynamic Analysis Method

The analysis method for the dynamics of reasoning
processes as presented here is summarised as follows.

1. Identify the different dimensions or components of
reasoning states.

2. Determine the different types of transitions.

3. Identify relevant dynamic properties for the reasoning

a. for the process as a whole (global properties)
b. for milestones within the process
c. for reasoning steps (local properties)

4. Determine logical relationships between the different
dynamic properties, in an AND-tree form; e.g.,
a. local properties imply a milestone property, and
b. milestone properties imply a global property.

5. For a given reasoning trace, check which of the dynamic
properties hold and which do not hold. This can take the
form of a diagnosis following the tree structure of the
relationships between the dynamic properties. A
software environment is available to support this
checking process.

The dynamic properties identified can be of different types.
Some may be assumed to hold for all proper reasoning
traces, others may be used to distinguish different types of
reasoning traces or reasoners.

Discussion

The analysis method for the dynamics of reasoning
processes put forward and illustrated in this paper was
validated on the basis of reports from experiments with 8-9
year old children in classrooms in the Netherlands (Dekker
et al., 1982); a similar report has been made by Hutton



(1977). This paper shows how an analysis of these dynamics
can be made using traces consisting of sequences of
reasoning states over time to describe reasoning processes. It
is shown for the example reasoning pattern, how
characterising dynamic properties can be identified.

The language used to express dynamic allows for precise
specification of these dynamic properties, covering both
qualitative and quantitative aspects of states and their
temporal relations. Moreover, software tools have been
developed to (1) support specification of dynamic
properties, and (2) automatically check specified dynamic
properties against example traces to find out whether the
properties hold for the traces. This provides a useful
supporting software environment to evaluate empirical data
on the dynamics of reasoning processes.

The same analytic method and software tools can also be
applied to reasoning traces produced by software simulation
models. This applicability supports the comparison of
human reasoning with simulated reasoning.

Further experiments will be conducted, in which also a
focus is on the control of the reasoning. For example, at
what point in time a translation to a geometric representation
is made, and why at that point in time? In the analysis the
notion of reasoning strategy will be addressed. Due to the
compositional structure of reasoning state a reasoning state
can be extended with a component for control information.

Future research will also address the analysis of the
dynamics of other types of practical reasoning, both from
the syntactical and semantical stream, or their combination;
e.g., (Johnson-Laird, 1983; Yang and Johnson-Laird, 1999;
Yang and Bringsjord, 2001); see also (Stenning and
Lambalgen, 2001). One component of the reasoning state
may contain a syntactic formula structure, and another
component a mental model or set of mental models. For
example, a single component transition can be defined
within a syntactic component including A and A — B, for
the derivation of B (and hence adding it to the component)
based on the inference rule modus ponens. Yet another
example, within a semantic component is a transition of a
set of mental models, thus providing a formalisation of the
dynamics of reasoning based on mental models.
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