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Abstract

An aptitude for the detection of bilateral symmetry
is a fairly prominent aspect of the human visual sys-
tem. Knowledge of the reasons behind this facility
is not so well established, however. Some of the be-
havioral data indicates that processing of symmet-
ric and non-symmetric stimuli is undertaken in two
wholly different manners (i.e. serial versus parallel).
However, the interpretation of this as being due to
high level cognitive preferences does not exhaust the
list of possible explanations. Using a split-neural
network model, we show that instead of cognitive
preferences, gross morphological factors may play a
large role in underwriting the ability to detect sym-
metry as a special case of shape perception. The
earlier model is consistent with behavioral data, but
Occam’s razor suggests that we might prefer the
newer morphological explanation.

Introduction

Bi-lateral symmetry is ubiquitous in nature. Such
symmetry is related to biological morphology, fit-
ness, and behavior throughout the animal kingdom
(Dakin and Herbert, 1998). Thus it is not surpris-
ing that it has also been shown to be a highly salient
property of the human visual system, implicated in
many phenomena.

Symmetry is both a morphological characteristic
and a perceptual benchmark. From recognition of a
suitable mate to apprehension of a possible predator,
symmetry plays an important role, being a “non-
accidental” property. That is, it is unlikely that
symmetry inheres in an image by chance, or when
the actual image source is asymmetric. And al-
though increasingly there is the view that symme-
try detection is not only universal, but also funda-
mental, emerging from very low level simple pro-
cesses (Dakin and Herbert, 1998; Sally & Gurnsey,
2001), there is not yet consensus about the mecha-
nisms that underlie the facility. On the one hand, it
seems that symmetry detection is a bottom-up effect
of low-level filtering in early stages of the visual pro-
cess. On the other, it appears to be a top-down pref-
erence for image distillation based on its exploitabil-
ity for segmentation and part decomposition (Baylis
& Driver, 1994; Latecki & Lakamper, 1999). Its util-
ity in segmentation applications has caused some to

Figure 1: A familiar optical illusion whose interpre-
tation may depend on the part-decomposition facil-
itated by symmetry.

comment that “the link between symmetry and seg-
mentation curiously seems to be more than a coin-
cidence” (ven Tonder & Ejima, 2000).

Indeed, the benefit of symmetry detection for seg-
mentation helps promote the view that it is a worth-
while thing to be good at, for segmentation is linked
to part-decomposition, which in turn could be key
to figure ground separation, even aiding, for exam-
ple, the interchange foreground and background in
a very common visual illusion (Figure 1).

This paper deals with the specific area of contour
symmetry, and its effects on human visual process-
ing, by looking at a computational model of a spe-
cific behavioral study by Baylis and Driver (1994).
The field of behavioral studies on symmetry is large;
it often concerns not only contour symmetry, but
internal symmetry (Hicks & Monaghan, 2001) and
the effects of various filtering processes. For the pur-
poses of this paper, however, we focus on providing a
computational explanation for the differences which
arise in processing symmetric and repeated shapes,
as seen in Figure 2.

Behavioral Studies

Part-decomposition offers a motivation for the “sym-
metry is special” theory, but alone it says little
about the mechanisms involved. Baylis and Driver



Figure 2: Stimuli: symmetric (left) and repeated
(right) contours, both showing 8 discontinuities
(steps) along the sides.

performed two experiments linking the perception
of different shape types to distinctions in cognitive
processes. In particular, the experiments aimed to
elucidate the relationship between the perception of
symmetry and the class of cognitive processes that
are termed “parallel.” In this case, “parallel” would
mean that in the detection of symmetry in a two-
dimensional figure, the subject does not engage in
anything akin to a serial point-by-point comparison
along the shape’s contour. Baylis and Driver used
a selection of perfectly symmetric shapes intermin-
gled with shapes whose contours contained “errors”
which meant a deviation from the truly symmet-
ric form along 25% of the contour. Subjects made
symmetry judgements while the experimenters var-
ied the number of steps along the side of the shape,
between 4, 8 and 16. The experimenters wanted to
know whether the reaction time and error rate were
significantly dependent on this variation.

It was found that symmetry was generally more
quickly identified than asymmetry. This indicated
directly that subjects were not involved in point-by-
point search, which would always terminate earlier
with erroneous examples of symmetry. Furthermore,
effects of step number on subject performance were
slight, and remained well within the accepted lim-
its that define a process to be parallel.! Thus, the
hypothesis that detection of symmetry is governed
by a process impervious to increases in complexity
brought about by a greater number of steps seems
supported.

But what if the effects of the symmetric shapes
were merely an effect of their potentially constrained
nature? It might not be symmetry specifically, but
redundancy in general that accounts for this sem-
blance of parallel processing. By conducting an anal-
ogous experiment, using repetitive shapes (Fig. 2,
right side), it should be possible to confirm or dis-
miss this confound. After all, repetitive shapes are
as redundant as their symmetric counterparts, while
exhibiting that redundancy via translation instead
of reflection.

!The exception to this was when the shapes were ori-
ented horizontally, where there was a slight effect of step
number for symmetric shapes. We touch on this briefly
in the discussion of our own model.

This second experiment found a significant effect
for number of steps, consistent with the hypothesis
that whatever process is used to judge repetition,
it is effected by step count, as though it were a se-
rial process. This suggests that the main difference
between the two types of shapes is that in the pro-
cessing of symmetry the number of discontinuities
along the contour is not a significant factor, while
for repeated shapes it certainly is.

Given that repetition and symmetry are equally
redundant, it is clear that there must be a quali-
tative difference between them. The step number
effect indicates a point-by-point comparison—a se-
rial search— in the detection of repetition, which is
absent from symmetry detection. But a new ques-
tion arises: what is it that promotes this fast-track
route for the detection of symmetry? Beneath the
"higher-level” concepts of parallel and serial process-
ing, is there a more fundamental explanation for the
fact that symmetry appears to render insignificant
the relative complexity of a shape?

Modeling

This paper aims to show that this may be the case
and, furthermore, that this could just as equally be
the result of gross morphological aspects of anatomy
as of high-level cognitive preferences. More pre-
cisely, the original assessment of the behavioral data
says little about the hypothesis that what is parallel
about symmetry perception is actually the 'ready-
state’ of the human processor to accommodate ver-
tical symmetry.

To show this we employ a split neural network,
which has previously been used as a rough correlate
of the split in human visual processing, modeling
reading (Shillcock & Monaghan, 2001) as well as the
apprehension of the effects of symmetry in word-
based stimuli (Hicks & Monaghan, 2001).

Variations in the typical architecture of neural
nets often involve adding one or a number of hidden
layers, vertically (Elman, 1993), or the insertion of
recurrent connections. Our model employs a specific
manipulation of network architecture that is not so
common. Instead of devoting the entire hidden layer
to the whole task upon which the network is being
trained, the hidden layer can be split laterally, with
each resulting half being privy to only half of the
input (Shillcock et al, 2001). This split affects net-
work performance, as shown in other modeling work.
Here we apply it to the detection of symmetry in
pseudo-random-block shapes.

Materials and Methods

A series of simulated neural networks, employing a
back-propagation learning algorithm, were trained
using sets of two-dimensional pseudo-random block
shapes represented by patterns of activation. The
shapes were presented to the networks through a
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Figure 3: The split architecture network reproduces
the form presented at the input, which may appear
anywhere across the two visual hemi-fields.

shift invariant identity mapping (SIIM) task, main-
taining the predetermined 2D block-shape of the
stimuli, while moving it sequentially along the input
window (Figure 3). Input nodes that fall outside
the location of the block have activation zero. The
vertical split in the input reflects that of the fovea
and thus, as a block is repeatedly presented to the
network from all possible positions across the input,
it crosses from one “visual hemifield” to the other,
activation being redirected to the associated hidden
layer accordingly. The network is trained to recog-
nize (represent) the shape it is being trained on.

Each stimulus set contained 60 pseudo-random
block shapes, of one shape-type either all symmet-
ric or all repetitive. For each shape type, there were
three stimulus sets, with shapes having 4, 8 or 16 dis-
continuities along the contour (shapes with 8 discon-
tinuities are shown in figure 2). A third class of stim-
ulus, consisting of mixed sets, where the number of
discontinuities was homogeneous, but both symmet-
ric and repetitive shapes were represented equally,
was also used in training. Due to the presentation
of each pattern in all visual input positions, each
stimulus accounts for 17 events in the total train-
ing set, for a total of 1020 presentation-recognition
events per epoch.

After training to a predetermined number of net-
work epochs, each net was tested with novel stimuli.
The test set we focus on for the purposes of this
paper contained novel blocks that were neither sym-
metric, nor repetitive. We were interested in see-
ing how the networks tended towards reproducing
the type of shape they were trained on when being
presented with these “random” stimuli. The metric
used for gauging network performance on these test
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Figure 4: The compared “form” produced by trained
networks, as a function of step number, under the
random stimulus.

sets is discussed in the next section.

For all simulations the PDP++ Neural Nets soft-
ware from CMU was used, running on an Ultra 5
workstation.

Results

In examining network performance on the two di-
mensional stimuli, we want a way of gauging the
degree to which the activation at the network’s out-
put tends generally toward a given type of shape.
Fortunately, the stimuli were strictly formal, in the
sense that they can be defined in terms of a simple
additive exemplar based function. A measure for
symmetry measure is based on cancellation around
the proposed axis of symmetry, while that for repe-
tition measure but requires that activation add to a
constant along arrays orthogonal to the axis of rep-
etition (the bars that constitute the repetitive pat-
terns are of constant length). We adopt a method
of summing activations at the output so that the
closer we get to the ideals, the smaller this quantity
is (i.e. perfect symmetry, like perfect repetition, in
the output has a form measure of zero).

Measuring form at the output

A form measure is thus available for each test shape
presented to the network. Le., for the net trained on
symmetry and the test set of random (neither sym-
metric nor repetitive) shapes, there were 20 different
weight sets for the trained net, and 20 shapes to test,
giving 400 shape-weight combinations. For each we
can measure both the symmetry and the repetition
of the shape generated by the net’s output. Note
that we are not concerned with the actual error in-
volved, but with these measures that are based on
the activation levels at the output.

Thus the “on-form” measure for a net shows the
tendency of its output to resemble the general shape



type with which it was trained,? with smaller quan-
tities indicating greater affinity for that shape type.
“Off-form” measures are also available (symmetry in
the net trained on repetition, repetition in the net
trained on symmetry) and were surprisingly impor-
tant.

“On-Form” Measure

The general effect obtained in the model is strik-
ing. For the analysis described above, we find a
significant interaction between shape type and step
count when looking at the networks with respect to
the type of stimulus used for training. This interac-
tion can easily be perceived in the graphs through
the much higher variance in the case of networks
trained on repeated shapes (filled bars). Figure 4
shows the “on-form” analysis for the random test
stimuli, comparing the degree of symmetry present
in the symmetric nets, with the degree of repetition
in the repetitive net. The interaction is highly sig-
nificant: F(2, 114) = 52.253, p < .001).

This significant interaction between shape type
and number of steps when we are using the mea-
sure appropriate for each network tells us one of
two things. Either the networks, otherwise identi-
cal, have been differentially sensitized to step num-
ber by virtue of the type of shape they were trained
on, or the manner in which activation is mea-
sured dictates that the quantity “tendency-toward-
repetition” present in the output of the net will
vary more than the the quantity “tendency-toward-
symmetry,” under the regime chosen to gauge it.

“Off-Form” Measure

We can clarify which of these is correct by examining
the “off-form” measures. By looking at the output of
the symmetrically trained net with “repetition gog-
gles” and repetitively trained net with “symmetry
goggles, ” hopefully we can rule out the confound of
this being a measurement effect.

In figure 5 a significant effect does obtain for
the “off-form” measures of the random test stim-
uli (F(2,114) = 9.417,p < .001). However, once
more this is in the direction of repetitive nets show-
ing more variance (by a factor of 2, upon examina-
tion of means). If the variance was due to the mea-
surement of “tendency-to-repetition, ” thus leading
to a Type I error, we would now expect to see that
variance in the symmetric when we are measuring
it for its “tendency-to-repetition. ” For the net
trained on repetition, the “off-form” measure shows
how symmetric its output is. The sustained effect in
the net suggests a general sensitivity to step number,

’Le. symmetric for the network trained on symme-
try and repetition for the network trained on repeated
shapes
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Figure 5: The compared “off-form” measures pro-
duced by trained networks, as a function of step
number, under the random stimulus.

present even when we are examining how symmetric
its output is.

Discussion

The findings of the behavioral experiment were three
fold, viz.

e the processing of shapes by the human observer
varies qualitatively in accordance with the char-
acteristics of shape’s contours.

e the processing of symmetric shapes is carried
out in parallel, while the processing of repetitive
shapes remains a serial task, with point by point
comparisons

e this is ecologically consistent with a cognitive fa-
cility that maximized correct figure ground segre-
gation in a two dimensional image

The second of these points was behind the suscep-
tibility to changes in step number on the contours
of repetitive shapes only. Their data was consis-
tent with the hypothesis, that processing of repeti-
tive shapes is affected by the cognitive costs associ-
ated with serial processing, unlike the processing of
symmetric shapes.

In our model, there is a similar distinction in the
way the network handles these two classes of stimuli.
In particular, when considering the degree to which
the specific regularity of shape-type is learned in the
network, we find generally better performance on
symmetries, in contrast with repeated shapes. In ad-
dition, the performance of the nets trained on repeti-
tive stimuli shows that they are affected by the num-
ber of discontinuities along the side of the pseudo-
random block shapes. This is true for novel stimuli
of the same type as well as for non-symmetric, non-
repetitive block stimuli.



Interpretations: Step Number

The main effect that we would like to address here
is the differential processing of symmetry and repe-
tition by both human subjects and the split archi-
tecture.® The central finding was that there was a
strong interaction between shape type and step num-
ber, with the repetitive shapes taking the brunt of
the effect, far outstripping the variance induced by
step number in their symmetric counterparts.

It certainly seems plausible that that difference is
based on fixed anatomical features; looking for the
the features held in common by both the model and
the human subjects, the general split in the archi-
tecture of the processor is the obvious front-runner.
This anatomical consideration in particular suggests
how the differentiation of symmetry and repetition
may be linked to the distinction between parallel
and serial processing through the very structure of
the processor.

The formalization of what constitutes repetition
and symmetry in the block-shapes, activation across
the vertical access summing to a constant in the
former and having a net difference of zero in the
latter, was crucial to the analysis presented here.
But it goes further: it implies that for a split pro-
cessor, symmetry is as simple as cross-checking (or
cross-generating, in the case of this task) the output
from each hidden layer. Repetition, on the other
hand, involves a cumbersome re-calibration, for ev-
ery segment of the repeated pattern, because the
cross-image portion of the output is not a simple
reflection.

Now if this difference is that symmetrical shapes
can be checked by a parallel system, then it is con-
ceivable that that system is rooted in the recognized
image being split centrally along its axis of symme-
try and each half being presented to each visual cor-
tex, which in turn provides a massively parallel “can-
cellation” style verification of the image. Were we
to assume homotopic and inhibitory commissures,
symmetry would be exactly the reciprocal cancel-
lation of activity across the two sides of the visual
cortex, an idea that finds little favor in some circles
(Dakin, 1998), but which a simple model such as the
one here might help to refine.

But how does this explanation differ from that
drawn in the original experiment? Baylis and Driver
identified an aspect of shape processing in which
symmetry was distinguished from repetition by ren-
dering null the processing costs of increased shape
complexity. This was elaborated as being a case of
parallel versus serial processing, in which complex-
ity, which is directly proportional to step number
along the contour, only retarded the serial process,

3Though beyond the limits of this paper, it is worth
noting that an effect of orientation found in the behav-
ioral study, marked generally by poorer performance (RT
and error), also falls out of the split-network model.

leaving the parallel process (the detection of symme-
try) unhindered. Thus, the process of recognition is
essentially one that involves the comparison of the
segment end-points that make up the shape, and in
the case of symmetry these comparisons take place
simultaneously.

In some sense, the model is not incompatible with
the take on the behavioral data. Indeed, the hu-
man study leaves open the question of what the fa-
cilitating mechanism is for the parallel treatment of
symmetry, and the model provides one such possibil-
ity. Nevertheless, there is an important contrast. As
discussed below, the notion of what constitutes com-
plexity is not fixed. For Baylis and Driver, complex-
ity increased with step number, and parallel process-
ing was where such an increase was insignificant. For
the model however, it would be quite an assumption
to simply associate increased step number with in-
creased complexity, for point-by-point comparisons
of the stimuli have little meaning in a model lacking
a temporal dimension. However, the difference be-
tween the symmetric and repetitive shapes is just as
marked. In the absence of any sequential process-
ing, this indicates that symmetry is special not in
avoiding the narrow view of complexity-as-quantity,
but in generally “playing-down” any dependence on
contour variations. Since parallelism and seriality
have no temporal meaning in the model there must
be a more fundamental retreat from complexity that
symmetry offers.

Complexity

Above, we alluded to the unfixed nature of complex-
ity. A potential shortcoming in the modeling result
is that the effect of step number seems to mani-
fest in the reverse direction. That is, an increase
in the number of steps in the stimuli presented to
nets trained on repetitive shapes meant an increase
in how well that nets output stayed to form (form
in this case being repetitive). We would expect this
“accuracy” to decrease, given that more steps pre-
sumably means greater complexity and therefore a
harder task (and one for which, in the original exper-
iment, the authors saw a need for more “counting”
time). If anything, the results of the model disturb
the clear relation obtaining between the original in-
terpretation of serial versus parallel and how each
accommodates effective increases in complexity.

Of course, there is no claim that the model at-
tempts to perform either serial, or parallel process-
ing, in the sense that Baylis and Driver use those
terms. And it is hoped that the previous section
went some way to reducing the high-level cogni-
tive connotations of these terms to more concrete,
anatomically based concerns. The networks learn to
perform an identification task, and in doing so they
pick up the general trends elicited by the stimuli sets
used for training. It is in this sense then that pro-
cessing of shape type differs: it will depend on how



the task was learned in the first place.

In this context let us ask what complexity is. For
though an increase in complexity can be equated
with an increase in step number; for our model it
won’t be. Again, complexity in terms of the number
of sequential operations performed (i.e. counting the
steps) has no meaning in the context of the network.
So how could a contour with 16 steps appear easier
to process, or be in general more likely to encourage
good “on-form” output, than one with only 8 or 4
discontinuities?

The answer to this involves reviewing the nature
of the task, from the network’s perspective: to repro-
duce accurately a contour of maximal discontinuity,
which, in the case of this model, is one with 16 steps,
the net at least has the advantage of avoiding any
cross-row constraints. That is, given that the grain
of the image and the grain of the shape in question
match, no additional provisos are required in order
for the net to attempt reproduction of the input at
the output. Thus the task is relatively unencum-
bered, and the result is a more stable version of the
form learned during training. But reduce the num-
ber of steps along the contour and the complexity
of the task the net has to solve is actually increased
by virtue of the added constraints of aligning rows
of “pixels” at the output.

It isn’t that this in itself disrupts the measure of
form at the output, for that is always measured at
the grain of the model, but that such additional con-
straints divert the resources that the net has devoted
to producing well-formed images. The result is a
drop in the form at the output, but, and this is the
key point, this whole story, in which complexity for
the network is revealed to be the opposite of what
one would expect, only effects repetitive shapes.

Summary

The described model presents interesting analogues
to some of the main effects uncovered in behavioral
studies. In particular we have the preference for the
processing of symmetric shapes, which is much less
susceptible to variations along the contour than is
the processing of repetitive shapes.

As already noted, symmetry may initially seem
more complex a phenomenon, in terms of the op-
erations required to generate symmetric contours
(translation and reflection). However, from an
anatomical perspective it may fact be simpler, es-
pecially around the vertical axis. This relates to
the view that homotopicality between the visual
cortices promotes the recognition of vertically ori-
ented symmetry—because information, instead of
being quantized and stored, can be “mirrored and
checked” directly.

Baylis and Driver present a plausible argument, for
symmetry preferences in terms of parallel and serial
processing, in the cognitive sense. However, more
parsimonious explanations may be available. Using

a split architecture neural net, we have suggested
that the symmetry preference may arise from gross
anatomical aspects of the processor. If this is so,
then the application of Occam’s Razor suggests that
there is a simpler story on symmetry.
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