Predicting Agent Spatial Information: A Comparison Between Neural Networks
and Dead Reckoning Algorithms

Amy E. Henninger (amy@soartech.com)
Soar Technology, Inc. 3361 Rouse Road Suite 240
Orlando, FL 32826

Avelino J. Gonzalez (ajg@isl.engr.ucf.edu)
School of Electrical Engineering and Comupter Science
University of Central Florida, Orlando, FL. 32816

Douglas A. Reece (reeced@saic.com)
SAIC 12479 Research Parkway
Orlando, Florida 32817

Abstract

In tune with the 24th Annual Cognitive Science
Conference’s emphasis on application, this paper presents
an empirical comparison between two methods used in
agent tracking. The need to predict an agent’s intents or
future actions has been well documented in multi-agent
system’s literature and has been motivated by both
systematically-practical and psychologically-principled
concerns. However, little effort has focused on the
comparison of predictive modeling techniques. This paper
compares the performance of two predictive models both
developed for the same, well-defined modeling task.
Specifically, this paper compares the performance of a
neural network based model and dead-reckoning model,
both used to predict an agent’s trajectory and position.
After introducing the background and motivation for the
research, this paper reviews the form of the dead-reckoning
algorithms, the architecture and training algorithms of the
neural networks, the integration of the models into a large-
scale simulation environment, and the means by which the
performance measures are generated. Quantitative
measures from our experiments indicate that, for the task
considered, the neural network based model provides
greater predictive utility, but at an increased cost in
processing time. Performance measures are presented over
increasing levels of error tolerance.

Introduction

Intelligent agents typically operate in an environment
populated by other intelligent agents. Agents may help
each other, hinder each other, get in each other’s way, or
ignore each other, often without directly communicating
their intent. In order for an agent to achieve its goals, it is
thus sometimes necessary for the agent to determine where
the other agents are, what they are doing, and what their

plans are. For example, an agent may want to infer what
plan an opponent is executing so that the agent can select
countermoves. Han and Veloso (1995), Rao (1994), Rao
and Georgeff (1995), Tambe and Rosenbloom (1995), and
Tambe (1996) have studied various forms of recognizing
an agent’s intents.

Sometimes it is necessary to infer facts that are normally
observable, such as agent location, because of sensor or
other limitations. For example, a pilot agent may need to
predict where a threat aircraft is flying after it enters a
cloud. There are many approaches to predicting agent
trajectories, including Newtonian mechanics (Lin and Ng,
1993), neural networks (Kim et al, 1999), Hidden Markov
Models (Washington, 1998) and others. This paper
addresses a particular application of trajectory prediction in
distributed simulation and compares the effectiveness of a
neural network to a commonly used Newtonian approach
for this application.

The remainder of this section defines the trajectory
estimation problem in the distributed simulation application
and describes a previous use of neural networks for
estimating agent trajectory in a visual scanning application.
The paper then describes a neural network approach for
trajectory estimation in distributed simulation and presents
results and comparisons with Newtonian dead reckoning.

Dead Reckoning in Distributed Simulation

In a Distributed Interactive Simulation (DIS) (DIS Steering
Committee, 1994), simulation software for each agent runs
independently of other agents and broadcasts the ground
truth about the state of the agent through network packets
known as protocol data units (PDUs). Each simulation in
DIS uses trajectory estimation so that the state of the agents
does not have to be broadcast frequently. Lin and Ng

(1993) explain how dead-reckoning can be used to maintain
coherence among entities' states in a DIS environment.
Each simulator uses Newtonian equations of motion such as
equation 1
2
P=po+ (v *At)"'w
v =y, +a,(Ar) (1

where p = current position
Po = initial position
v = current velocity
vy = initial velocity
ay = initial acceleration
At = elapsed time

to predict the trajectory of other agents. Each simulator
also uses the same equation to model the trajectory of its
own agent; the output of this equation can be compared to
the output of the true dynamics model for the agent to
determine when the models diverge. When, and only when,
the error between models reaches a certain threshold, the
simulator broadcasts new state information for its agent.
Figure 1 shows this process in a DIS simulation called
ModSAF (Calder et al, 1993) that we used for our
experiments.

ModSAF [ModSAF Entity |

v Entity Data
DR Model Update

. & ...

Last H»|Dead-Reckoning Model

ESPDU
I Entity State Updates
DIS Network

Figure 1. Dead-Reckoning Implementation in ModSAF

Figure 2 shows how at a series of time steps, the true
position of an agent computed by the agent dynamics model
(shown by the curve) deviates from a linear dead

Figure 2. DIS Dead-Reckoning Process

reckoning model. When the error exceeds the threshold,
the models are brought into correspondence by the issuance
of an entity state PDU (ESPDU). Thus in the figure, only 3
ESPDUs are broadcast instead of one at every time step.
The goal of the research presented here is to reduce the
number of ESPDUs sent in by DIS simulations below the
number needed using Newtonian dead reckoning.

Neural Networks for Trajectory Estimation

Kim et al (1999) developed a system to generate short-term
predictions of an agent’s trajectory such that it can be used
to predict the agent’s position at any future instance, given
some window of time. They use this model as part of a
helicopter agent’s perceptual system to enhance the agent’s
ability to visiually track ground vehicles, and their
motivation for this model is both psychologically and
practically rooted. Psychologically, this model can be used
to simulate a helicopter pilot’s gaze shifting as he attempts
to visually track and reaquire multiple targets. Thus,
instead of operating in a state of omniscience, the agent is
required to juggle the act of determining spatial information
across multiple agents, as would be the human helicopter
pilot. The functional ramification of this approach is that
the total number of perceptual inputs to the agent is reduced
at any given instance. In other words, instead of getting
continuous perceptual information on all of the ground
entities within the helicopter agent’s field of view, by using
this predictive model, the agent only requires updated
information on entities when its attention is focused on
those entities.
The high level architecture of this system is presented in

Figure 3. The agent architecture is embedded in the

Long-term Memory
*Decision Making

Working Memory

Neural Networks

Output Commands Perceptual Analysis

DIS Network

Figure 3. Visual attention for helicopter agent

Modular Semi-automated Forces (ModSAF) simulator, a
system used by the military for training and research.
ModSAF is elaborated on in section 2, “Methodology”.
The agent’s intelligence is modeled in Soar (Rosenbloom et
al, 1993; Newell, 1990). As a model of natural intelligence,
the Soar software architecture combines the abilities to
react immediately to situations, use knowledge in
deliberative decision making, step back from the immediate
situation to perform various forms of problem solving and
planning, and learn from experience. As an indicator of the
maturity and sophistication of Soar-based agents, the
system has been used successfully as the production model
in a number of large-scale military exercises (Hill et al,
1997; Jones et al, 1999; Nielsen et al, 2000).

The inputs to the neural networks developed for this
application consist of entity data (e.g., call-sign, sim-time,
position, velocity, etc.) and abstracted terrain information
germane to both “on-roads” and “cross-country” travel and
correlated to the entity’s visual field (hill, road, lake, etc).
All together, the input vector consists of 196 fields and the
output vector consists of 15 output fields corresponding to
discretized changes in heading ranging from —35° to 35°.
The selected heading change, coupled with an assumed
constant speed and “delta” time since last prediction, can be
used to predict the entity’s expected location at some time,
t. With this prediction, the virtual helicopter pilot is able to
look away from the ground entity for up to 7 seconds,
within some error threshold.

Methodology

This paper seeks to compare the performance of a neural-
network based model with the dead-reckoning model. Like
both systems described in sections on dead-reckoning and
neural networks for trajectory estimation, this experiment is
implemented in ModSAF, a training and research system
developed by the Army’s Simulation, Training, and
Instrumentation Command (STRICOM). ModSAF
provides a set of software modules for constructing
computer-generated force behaviors at the company level
and below. Typically, ModSAF models are employed to
represent individual soldiers or vehicles and their
coordination into orderly-moving squads and platoons; but,
their tactical actions as units are planned and executed by a
human controller. The human behaviors represented in
ModSAF include move, shoot, sense, communicate, tactics,
and situation awareness. The authoritative sources of these
behaviors are subject matter experts and doctrine provided
by the Army Training and Doctrine Command (TRADOC).
ModSAF uses state transition constructs inspired by finite
state machines (FSMs) to represent the behavior and
functionality of a process for a pre-defined number of
states.

The scenario used for the comparison was a road-march
for a tank entity 45-segment route shown in Figure 4 It is

approximately 7 kilometers long and takes a tank entity
about 15 minutes of simulation time to travel at a March
Order speed of 8 m/s. From this 15 minute period, a total
of 13760 movement updates were performed, generated at a
rate of 15 HZ.

T R T e e e T \r‘*m

e;EJ b

BEEEEBEEErDRE
GEES XL DR OB S
—»x§

.

215 .

oy = a ===

Figure 4. Route Used for Experiment

For this application, a feed-forward architecture
developed with back-propagation training was used to
develop the neural networks. One of these networks
predicts the change in an entity’s speed and the second
network predicts the change in the entity’s heading. Each
network used a sigmoid function at the hidden nodes and a
linear transformation at the output nodes. The
configuration of the networks in each of the models may be
seen in Table 1

Table 1. Neural Network Architecture

Model Arch
Speed 8-20-5-1

Predictors Resp

Ra, ,Rb,_.Re,_\.Rp,), AS,
Rs,_,,HRab,_,,HRbc,_,Hz,_,

Heading | 7-20-5-1 | Ra, ,,Rb, ,,Rc, ,,Rp,,, A®,

Rs,_;,HRab,_,,HRbc,_,

where the inputs were normalized according to equations 2
— 19 below. Fundamentally, the inputs for each of the
networks were a function of the entity’s state at the last
simulation clock and how this state related to the road
characteristics (width, heading, length of segment, etc) and
March Order parameters (speed, end-point, etc). The
specific predictors are expressed in 4 — 10, and the
parameters making up those inputs are explained in 11 — 19.

S, =8, +AS, (2)
where AS, = f(Ra,_,Rb,_,Rc,_|,Rp,_;,
Rs,_,HRab,_;,HRbc,_,,Hz,_;)

6, =6, , +A6, (3)
where A6, = f(Ra,_,Rb,_,Rc,_,,Rp,_,,
Rs,_,HRab,_,,HRbc,_,)

Ra, =S, /(Da, + M) @)
Rb, =S,/(Db, + M) &)
Re, =S, /(Dc, + M) 6)
Rp, =S,F,[M (7
Rs,=S,/M (®)
HRab, = Hab, X Hxy,)
HRbc, = Hbe, X Hxy, (10)
S, = entity speed at t (11)
Da, = distance to previous waypoint (]2)
Db, = distance to current waypoint (13)
Dc, = distanceto next waypoint (14)
M =march order speed (15)
P, = perpindicular distance to road (16)
Hab, = direction of road segment ab a7
Hbc, = direction of road segment bc (18)
Hxy, = entity orientation (19)

Of these, 860 examples were used for training the speed
network, 860 examples for training the heading network,
and 859 examples were used for validating the training of
both of these networks. The training rate was selected as
0.01 and the initial momentum parameter was .9. The
momentum parameter was periodically adjusted to speed
the rate of descent along the error surface. The training and
validation results for each of the networks may be seen in
Table 2.

Table 2. Training and Validation Errors

Delta Speed Delta Heading
AS AB
Error(m/s) Error(rads)
Training 0.259977+2.04558 | 0.004578+0.00781
Validation | 0.206374+0.82532 | 0.014221+0.06766

Experimental Results

The neural network models were implemented in such a
way that their performance for predicting entity location
could be compared with the dead-reckoning model. This
implementation is presented in Figure 5.

There are two ways of generating an error in our system.
The first is according to the enity’s location. This error is
measured in terms of comparing the entity’s dead-reckoned
XYZ with the entity’s true XYZ and is proportioned
according to the width of the entity along its X, Y, and Z
axes. For example, an M1A2 tank is 3.56m in width
(defined along X-axis of tank), 7.34m in length (defined
along Y-axis of tank), and 2.33m in height (defined along

Z-axis of tank). A typical threshold for dead-reckoning
error tolerance in DIS is 10% of the vehicle’s dimensions.
In this case then, the error tolerance for this entity’s
location would translate into .356m along the X-axis,
.734m along the Y-axis of the tank, and .233m along the Z-
axis of the tank.

ModSAF I ModSAF Entity |

Entity

Y Dua NN Weights

NN Model Update
NN | |state Data

Last Model NN Engine
ESPDU x Inputs/Outputs

I Inputs
| ModSAF Environmental Variables
IEmity State Updates
DIS Network

Figure 5. Neural Network Implementation used for
Experiments in ModSAF

The second way of determining an update threshold is with
respect to the orientation of the vehicle. In this case, the
components of the dead-reckoned euler angles are
compared with the components of the entity’s true
orientation. For tracked ground entities in ModSAF, this
measure is defaulted at 3°. That is, if the dead-reckoned
prediction is more than 3° off about X-axis, Y-axis, or Z-
axis, an error is generated. Overall, at these error
tolerances, the number of updates (ESPDUs) required by
the dead-reckoning model was 351. Using these same error
thresholds, the neural network models required 263
updates. Thus, the neural networks required 25% fewer
updates than the dead-reckoning models. This information
is presented in Figure 6 according to type of update. In the
DR case, a small number of the required updates occurred
simultaneously between location and rotation.

400

350 1

300

250

200

150

100

"o~ 00T C

50 +

04

Loc Rot Total
mDR 205 154 351
BNN 112 151 263

Figure 6: Number of Updates Required by DR Model
versus NN Model

Although the neural network based model was able to
predict the entity’s path with more accuracy, as evidenced
in Table 3, this increase in predictive utility comes at a cost
in processing time.

Table 3. Execution Time Using Neural Networks and
Dead-Reckoning Equations

Processing Time (in 10 seconds)

NN NN Total DR
Speed Heading NN
Min 6.89029 6.19888 | 13.08981 2.2888
Mean 7.77692 7.47008 | 15.24700 2.7974
Max 20.5993 29.7999 50.3992 | 6.35981

Using the UNIX “gettimeofday” function, the processing
speed was calculated on a Pentium III, 500 Mhz machine,
running RedHat Linux 6.2. As shown in Table 3, the neural
network based model required, on average, about 6 times
more processing time than did the dead-reckoning based
model. As stated in Section 2, the simulation time was
approximately 15 minutes. On average then, the dead
reckoning model produced about 23 updates per minute or
rather, 1 update every 2.5 seconds (at a threshold of .356m
in the X direction and .734m in the Y direction).
Alternatively, the neural network based model required
about 17 updates per minute, or approximately 1 update
every 3.5 seconds (at the same thresholds). Coupling this
information with the information on processing time
tradeoffs, it becomes clear that for applications where
processing time is at a premium, the use of dead reckoning-
models may be preferred, in spite of their poorer predictive
performance.

To further examine the relationship between the
predictive power of the dead-reckoning models and this set
of neural network models, we conducted experiments over a
range of error tolerances. So, whereas the initial results,
reported in Figure 6, were measured according to DIS
default values for a tank entity (i.e., .356m, .734m, and 3°),
follow-on tests incremented these error thresholds by those
exact amounts. Results are presented in Table 4 and
reported only by total number of required updates.

Table 4. Updates Required Over Increasing Error

Thresholds
5 Error Threshold Updates Required
o | X-axis | Y-axis All-
9 (m) (m) axes NN DR
u (deg)
1 .356 .734 3 263 351
2 712 1.468 6 193 237
3 1.068 2.202 9 157 188
4 1.424 2.936 12 138 156

5 1.78 3.67 15 119 137
7 2.492 5.138 21 98 109
9 3.204 6.606 27 88 92
11 3.916 8.074 33 70 79
13 4.628 9.542 39 69 75
15 5.34 11.01 45 62 73
20 7.12 14.68 60 51 60
25 8.9 18.35 75 48 55
30 10.68 22.02 90 44 48

As evidenced in Table 4, as the error tolerance increases,
the predictive advantage that neural networks have over
dead- reckoning models becomes less significant for this
modeling task.

Summary and Conclusions

As one might expect, the choice of tool must be driven by
the modeling constraints. The results reported above
suggest heuristics for when to apply which modeling
technique. For example, in an application where processing
time is not the primary constraint e.g., multi-agent systems
communicating over a wireless network, then the increased
processing costs incurred from using a neural network may
be defendable. Alternatively, in an application where
processing time is a limiting factor, then dead-reckoning
models may be the more prudent approach. It is interesting
to note, also, that the differences in predictive utility of the
two modeling approaches becomes less prominent as the
error threshold is increased. This speaks to the power of
dead-reckoning models to generalize and scale.

It is important to recognize, of course, that the modeling
task in this research is limited in scope. Also, a different
neural network could have yielded different results. We
can not claim that this is the best network architecture or
configuration for this specific modeling task. We can only
claim that it was one of the more promising configurations
with which we experimented. Other configurations may be
better. One approach Henninger et al (1999) found
particularly effective in improving the neural network based
model’s performance was to work with modularized
models. This approach has been advocated in the control
literature (Murray-Smith and Johansen, 1997; Narendra et
al, 1995) and robotics literature (Brooks, 1986), and we
have started exploring this approach. One of the benefits of
adopting this approach is the ability to mix different
modeling techniques as they best apply to the problem
locally. For example, combinations of architectures and/or
algorithms that can be applied to individual sub-problems,
make it possible to exploit specialist capabilities. In the
problem discussed in this paper, one interesting test would
be to use dead-reckoning algorithms in straight parts of the
road data base and then use neural networks to guide the
turn, as this appears to be where the majority of updates are
required.

Acknowledgements

This work was sponsored by the U.S. Army Simulation,
Training, and Instrumentation Command, contract N61339-
98-K-0001. That support is gratefully acknowledged.

References

Brooks, R.A. 1986. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation,
RA-2, 14-23.

Calder, R.B., Smith, J. E., Courtemanche, A.J., Mar, J.M.,
and Ceranowicz, A. (1993). ModSAF Behavior Simulation
and Control. In Proceedings of the 3™ Conference on
Computer Generated Forces and Behavioral Representation
(Orlando FL), 347-356.

DIS Steering Committee 1994. “The DIS Vision: A Map to
the Future of Distributed Simulation”, Technical Report,
IST-ST-94-01. Institute for Simulation and Training,
University of Central Florida.

Han, K. and Veloso, M. 1995. Automated robot behavior
recognition applied to robot soccer. Sixteenth International
Joint Conference on Artificial Intelligence. Workshop on
Team Behaviour and Plan Recognition, 53-64.

Henninger, A., Gonzalez, A., and Georgiopoulos, M. 1999.
Modeling Semi-automated forces with neural networks:
Performance improvement through a modular approach.
Proceedings 9™ Conference on Computer Generated Forces
and Behavioral Representation, (Orlando FL), 261-268.

Hill, R. W., Chen, J., Gratch, J., Rosenbloom, P., and
Tambe, M. 1997. Intelligent agents for the synthetic
battlefield: A company of rotary-wing aircraft. In
Proceedings of the Ninth Conference on Innovative
Applications of Artificial Intelligence, 1006-1012. Menlo
Park, CA: AAAI Press.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P., and Koss, F. V. 1999. Automated intelligent
pilots for combat flight simulation. Al Magazine, 20(1):
27-41.

Kim,Y., Hill, R., and Gratch, J. 1999. How long can an
agent look away from a target? Proceedings 9™ Conference

on Computer Generated Forces and Behavioral

Representation, (Orlando FL), 35-38.

Lin, K., and Ng, H. 1993. Coordinate transformations in
distributed interactive simulation (DIS). Simulation, vol.
61(5):326-331.

Murray-Smith, R., and Johansen, T.A. 1997. Multiple
Model Approaches to Modelling and Control. Taylor and
Francis, UK.

Narendra, K. S., Balakrishnan, J., and Ciliz, K. 1995.
Adaptation and learning using multiple models, switching
and tuning. IEEE Control Systems Magazine June, 37-51.

Nielsen, P., Smoot, D., Martinez, R., and Dennison, J.
2000. Participation of TacAir-Soar in Road Runner and
Coyote exercises at Air Force Research Lab, Mesa, AZ.
Proceedings of the 9™ Conference on Computer Generated
Forces and Behavioral Representation, (Orlando FL), 173-
180.

Newell, A. 1990. Unified Theories of Cognition. Harvard
University Press, Cambridge, MA.

Rao, A. 1994. Means-end plan recognition. In Proceedings
of KR-94, the Fourth Internatioanl Conference on
Principles of Knowledge Representation and Reasoning .

Rao, A. and Georgeff, M. 1995. BDI agents: From theory
to practice, In Proceedings of the First International
Conference on Multi-Agent Systems, (San Francisco CA).

Rosenbloom, P., Laird, J., and Newell, A. 1993. The Soar
Papers: Research on Integrated Intelligence. MIT Press,
Cambridge, MA.

Tambe, M. and Rosenbloom, P. 1995. RESC: An
approach for real-time, dynamic agent tracking. In
Proceedings of IJICAIL.95.

Tambe, M. 1996. Tracking dynamic team activity.
Proceedings of AAAI-96.

Washington, R. 1998. Markov tracking for agent
coordination. In Proceedings of the Second International
Conference on Autonomous Agents (Minneapolis/St. Paul
MN.

