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Abstract 

In tune with the 24th Annual Cognitive Science 
Conference’s emphasis on application, this paper presents 
an empirical comparison between two methods used in 
agent tracking.  The need to predict an agent’s intents or 
future actions has been well documented in multi-agent 
system’s literature and has been motivated by both 
systematically-practical and psychologically-principled 
concerns.  However, little effort has focused on the 
comparison of predictive modeling techniques.  This paper 
compares the performance of two predictive models both 
developed for the same, well-defined modeling task.  
Specifically, this paper compares the performance of a 
neural network based model and dead-reckoning model, 
both used to predict an agent’s trajectory and position.    
After introducing the background and motivation for the 
research, this paper reviews the form of the dead-reckoning 
algorithms, the architecture and training algorithms of the 
neural networks, the integration of the models into a large-
scale simulation environment, and the means by which the 
performance measures are generated.  Quantitative 
measures from our experiments indicate that, for the task 
considered, the neural network based model provides 
greater predictive utility, but at an increased cost in 
processing time.  Performance measures are presented over 
increasing levels of error tolerance. 

  

Introduction 
Intelligent agents typically operate in an environment 
populated by other intelligent agents.  Agents may help 
each other, hinder each other, get in each other’s way, or 
ignore each other, often without directly communicating 
their intent.  In order for an agent to achieve its goals, it is 
thus sometimes necessary for the agent to determine where 
the other agents are, what they are doing, and what their 

plans are.   For example, an agent may want to infer what 
plan an opponent is executing so that the agent can select 
countermoves.   Han and Veloso (1995), Rao (1994), Rao 
and Georgeff (1995), Tambe and Rosenbloom (1995), and 
Tambe (1996) have studied various forms of recognizing 
an agent’s intents. 
   Sometimes it is necessary to infer facts that are normally 
observable, such as agent location, because of sensor or 
other limitations.  For example, a pilot agent may need to 
predict where a threat aircraft is flying after it enters a 
cloud.  There are many approaches to predicting agent 
trajectories, including Newtonian mechanics (Lin and Ng, 
1993), neural networks (Kim et al, 1999), Hidden Markov 
Models (Washington, 1998) and others.  This paper  
addresses a particular application of trajectory prediction in 
distributed simulation and compares the effectiveness of a 
neural network to a commonly used Newtonian approach 
for this application. 
   The remainder of this section defines the trajectory 
estimation problem in the distributed simulation application 
and describes a previous use of neural networks for 
estimating agent trajectory in a visual scanning application.  
The paper then describes a neural network approach for 
trajectory estimation in distributed simulation and presents 
results and comparisons with Newtonian dead reckoning.  

Dead Reckoning in Distributed Simulation  
In a Distributed Interactive Simulation (DIS) (DIS Steering 
Committee, 1994), simulation software for each agent runs 
independently of other agents and broadcasts the ground 
truth about the state of the agent through network packets 
known as protocol data units (PDUs).  Each simulation in 
DIS uses trajectory estimation so that the state of the agents 
does not have to be broadcast frequently.  Lin and Ng 



 

 

(1993) explain how dead-reckoning can be used to maintain 
coherence among entities' states in a DIS environment.  
Each simulator uses Newtonian equations of motion such as 
equation 1 
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where  p   =  current position          
 p0  =  initial position 
 v   =  current velocity           
 v0  =  initial velocity       
 a0  =  initial acceleration 
 ∆t  =  elapsed time   

 

 
to predict the trajectory of other agents.  Each simulator 
also uses the same equation to model the trajectory of its 
own agent;  the output of this equation can be compared to 
the output of the true dynamics model for the agent to 
determine when the models diverge.  When, and only when, 
the error between models reaches a certain threshold,  the 
simulator broadcasts new state information for its agent.   
Figure 1 shows this process in a DIS simulation called 
ModSAF (Calder et al, 1993) that we used for our 
experiments. 

Figure 1.  Dead-Reckoning Implementation in ModSAF 

Figure 2 shows how at a series of time steps, the true 
position of an agent computed by the agent dynamics model 
(shown by the curve) deviates from a linear dead  

 
Figure 2.  DIS Dead-Reckoning Process 

reckoning model.  When the error exceeds the threshold, 
the models are brought into correspondence by the issuance 
of an entity state PDU (ESPDU).  Thus in the figure, only 3 
ESPDUs are broadcast instead of one at every time step.  
The goal of the research presented here is to reduce the 
number of ESPDUs sent in by DIS simulations below the 
number needed using Newtonian dead reckoning. 

Neural Networks for Trajectory Estimation 
Kim et al (1999) developed a system to generate short-term 
predictions of an agent’s trajectory such that it can be used 
to predict the agent’s position at any future instance, given 
some window of time.  They use this model as part of a 
helicopter agent’s perceptual system to enhance the agent’s 
ability to visiually track ground vehicles, and their 
motivation for this model is both psychologically and 
practically rooted.  Psychologically, this model can be used 
to simulate a helicopter pilot’s gaze shifting as he attempts 
to visually track and reaquire multiple targets.  Thus, 
instead of operating in a state of  omniscience, the agent is 
required to juggle the act of determining spatial information 
across multiple agents, as would be the human helicopter 
pilot.   The functional ramification of this approach is that 
the total number of perceptual inputs to the agent is reduced 
at any given instance.  In other words, instead of getting 
continuous perceptual information on all of the ground 
entities within the helicopter agent’s field of view, by using 
this predictive model, the agent only requires updated 
information on entities when its attention is focused on 
those entities.     
   The high level architecture of this system is presented in 
Figure 3.  The agent architecture is embedded in the  

 
Figure 3.  Visual attention for helicopter agent 
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Modular Semi-automated Forces (ModSAF) simulator, a 
system used by the military for training and research.  
ModSAF is elaborated on in section 2, “Methodology”.  
The agent’s intelligence is modeled in Soar (Rosenbloom et 
al, 1993; Newell, 1990).  As a model of natural intelligence, 
the Soar software architecture combines the abilities to 
react immediately to situations, use knowledge in 
deliberative decision making, step back from the immediate 
situation to perform various forms of problem solving and 
planning, and learn from experience.  As an indicator of the 
maturity and sophistication of Soar-based agents, the 
system has been used successfully as the production model 
in a number of large-scale military exercises (Hill et al, 
1997; Jones et al, 1999; Nielsen et al, 2000). 
   The inputs to the neural networks developed for this 
application consist of entity data (e.g., call-sign, sim-time, 
position, velocity, etc.) and abstracted terrain information 
germane to both “on-roads” and “cross-country” travel and 
correlated to the entity’s visual field (hill, road, lake, etc).    
All together, the input vector consists of 196 fields and the 
output vector consists of 15 output fields corresponding to 
discretized changes in heading ranging from –35° to 35°.  
The selected heading change, coupled with an assumed 
constant speed and “delta” time since last prediction, can be 
used to predict the entity’s expected location at some time, 
t.  With this prediction, the virtual helicopter pilot is able to 
look away from the ground entity for up to 7 seconds, 
within some error threshold. 

Methodology 
This paper seeks to compare the performance of a neural-
network based model with the dead-reckoning model.  Like 
both systems described in sections on dead-reckoning and 
neural networks for trajectory estimation, this experiment is 
implemented in ModSAF, a training and research system 
developed by the Army’s Simulation, Training, and 
Instrumentation Command (STRICOM).  ModSAF 
provides a set of software modules for constructing 
computer-generated force behaviors at the company level 
and below.  Typically, ModSAF models are employed to 
represent individual soldiers or vehicles and their 
coordination into orderly-moving squads and platoons; but, 
their tactical actions as units are planned and executed by a 
human controller.  The human behaviors represented in 
ModSAF include move, shoot, sense, communicate, tactics, 
and situation awareness.  The authoritative sources of these 
behaviors are subject matter experts and doctrine provided 
by the Army Training and Doctrine Command (TRADOC).  
ModSAF uses state transition constructs inspired by finite 
state machines (FSMs) to represent the behavior and 
functionality of a process for a pre-defined number of 
states. 
   The scenario used for the comparison was a road-march 
for a tank entity 45-segment route shown in Figure 4  It is 

approximately 7 kilometers long and takes a tank entity 
about 15 minutes of simulation time to travel at a March 
Order speed of 8 m/s.  From this 15 minute period, a total 
of 13760 movement updates were performed, generated at a 
rate of 15 HZ. 
 

 
 

Figure 4.  Route Used for Experiment 

   For this application, a feed-forward architecture 
developed  with back-propagation training was used to 
develop the neural networks.  One of these networks 
predicts the change in an entity’s speed and the second 
network predicts the change in the entity’s heading.  Each 
network used a sigmoid function at the hidden nodes and a 
linear transformation at the output nodes.  The 
configuration of the networks in each of the models may be 
seen in Table 1  
 

Table 1.  Neural Network Architecture 
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where the inputs were normalized according to equations 2 
– 19 below.  Fundamentally, the inputs for each of the 
networks were a function of the entity’s state at the last 
simulation clock and how this state related to the road 
characteristics (width, heading, length of segment, etc) and 
March Order parameters (speed, end-point, etc).  The 
specific predictors are expressed in 4 – 10, and the 
parameters making up those inputs are explained in 11 – 19. 
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(3) 

)( MDaSRa ttt +=  (4) 
)( MDbSRb ttt +=  (5) 
)( MDcSRc ttt +=  (6) 

MPSRp ttt =  (7) 
MSRs tt /=  (8) 

trt HxyHabHRab ×=  (9) 
trt HxyHbcHRbc ×=  (10) 
tatspeedentitySt =  (11) 

waypointprevioustodistanceDat =  (12) 
waypointcurrenttodistanceDbt =  (13) 
waypointnexttodistanceDct =  (14) 

speedordermarchM =  (15) 
roadtodistancelarperpindicuPt =  (16) 

absegmentroadofdirectionHabt =  (17) 
bcsegmentroadofdirectionHbct =  (18) 

norientatioentityHxyt =  (19) 
Of these, 860 examples were used for training the speed 
network, 860 examples for training the heading network, 
and 859 examples were used for validating the training of 
both of these networks.  The training rate was selected as 
0.01 and the initial momentum parameter was .9.  The 
momentum parameter was periodically adjusted to speed 
the rate of descent along the error surface.  The training and 
validation results for each of the networks may be seen in 
Table 2. 

Table 2.  Training and Validation Errors 

 Delta Speed 
S∆  

Error(m/s) 

Delta Heading 
θ∆  

Error(rads) 
Training 0.259977±2.04558 0.004578±0.00781 
Validation 0.206374±0.82532 0.014221±0.06766 

  
Experimental Results 

The neural network models were implemented in such a 
way that their performance for predicting entity location 
could be compared with the dead-reckoning model.  This 
implementation is presented in Figure 5. 
   There are two ways of generating an error in our system.  
The first is according to the enity’s location.  This error is 
measured in terms of comparing the entity’s dead-reckoned 
XYZ with the entity’s true XYZ and is proportioned 
according to the width of  the entity along its X, Y, and Z 
axes.  For example, an M1A2 tank is 3.56m in width 
(defined along X-axis of tank), 7.34m in length (defined 
along Y-axis of tank), and 2.33m in height (defined along 

Z-axis of tank).  A typical threshold for dead-reckoning 
error tolerance in DIS is 10% of the vehicle’s dimensions.  
In this case then, the error tolerance for this entity’s 
location would translate into .356m along the  X-axis, 
.734m along the Y-axis of the tank, and .233m along the Z-
axis of the tank. 
 

Figure 5.  Neural Network Implementation used for 
Experiments in ModSAF 

The second way of determining an update threshold is with 
respect to the orientation of the vehicle.  In this case, the 
components of the  dead-reckoned euler angles are 
compared with the components of the entity’s true 
orientation.   For tracked ground entities in ModSAF, this 
measure is defaulted at 3°.  That is, if the dead-reckoned 
prediction is more than 3° off about X-axis, Y-axis, or Z-
axis, an error is generated.  Overall, at these error 
tolerances, the number of updates (ESPDUs) required by 
the dead-reckoning model was 351.  Using these same error 
thresholds, the neural network models required 263 
updates.  Thus, the neural networks required 25% fewer 
updates than the dead-reckoning models.  This information 
is presented in Figure 6 according to type of update.  In the 
DR case, a small number of the required updates occurred 
simultaneously between location and rotation. 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 6:  Number of Updates Required by DR Model 
versus NN Model 
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Although the neural network based model was able to 
predict the entity’s path with more accuracy, as evidenced 
in Table 3, this increase in predictive utility comes at a cost 
in processing time. 

Table 3.  Execution Time Using Neural Networks and 
Dead-Reckoning Equations 

Processing Time (in 10-5 seconds )  

NN  
Speed 

NN 
Heading 

Total       
NN 

DR 

Min 6.89029 6.19888 13.08981 2.2888 

Mean 7.77692 7.47008 15.24700 2.7974 

Max 20.5993 29.7999 50.3992 6.35981 
 
Using the UNIX “gettimeofday” function, the processing 
speed was calculated on a Pentium III, 500 Mhz machine, 
running RedHat Linux 6.2.  As shown in Table 3, the neural 
network based model required, on average, about 6 times 
more processing time than did the dead-reckoning based 
model.  As stated in Section 2, the simulation time was 
approximately 15 minutes.  On average then, the dead 
reckoning model produced about 23 updates per minute or 
rather, 1 update every 2.5 seconds (at a threshold of .356m 
in the X direction and .734m in the Y direction).  
Alternatively, the neural network based model required 
about 17 updates per minute, or approximately 1 update 
every 3.5 seconds (at the same thresholds).  Coupling this 
information with the information on processing time 
tradeoffs, it becomes clear that for applications where 
processing time is at a premium,  the use of dead reckoning-
models may be preferred, in spite of their poorer predictive 
performance. 
   To further examine the relationship between the 
predictive power of the dead-reckoning models and this set 
of neural network models, we conducted experiments over a 
range of error tolerances.  So, whereas the initial results, 
reported in Figure 6, were measured according to DIS 
default values for a tank entity (i.e., .356m, .734m, and 3°), 
follow-on tests incremented these error thresholds by those 
exact amounts.  Results are presented in  Table 4 and 
reported only by total number of required updates. 

Table 4.  Updates Required Over Increasing Error 
Thresholds 

Error Threshold Updates Required 

Fa
ct

or
 o

f 

X-axis 
(m) 

Y-axis 
(m) 

All-
axes 
(deg) 

 
NN 

 
DR 

1 .356 .734 3 263 351 
2 .712 1.468 6 193 237 
3 1.068 2.202 9 157 188 
4 1.424 2.936 12 138 156 

5 1.78 3.67 15 119 137 
7 2.492 5.138 21 98 109 
9 3.204 6.606 27 88 92 

11 3.916 8.074 33 70 79 
13 4.628 9.542 39 69 75 
15 5.34 11.01 45 62 73 
20 7.12 14.68 60 51 60 
25 8.9 18.35 75 48 55 
30 10.68 22.02 90 44 48 

 
   As evidenced in Table 4, as the error tolerance increases, 
the predictive advantage that neural networks have over 
dead- reckoning models becomes less significant for this 
modeling task.     

Summary and Conclusions 
As one might expect, the choice of tool must be driven by 
the modeling constraints.  The results reported above 
suggest heuristics for when to apply which modeling 
technique.  For example, in an application where processing 
time is not the primary constraint e.g., multi-agent systems 
communicating over a wireless network, then the increased 
processing costs incurred from using a neural network may 
be defendable.  Alternatively, in an application where 
processing time is a limiting factor, then dead-reckoning 
models may be the more prudent approach.  It is interesting 
to note, also, that the differences in predictive utility of the 
two modeling approaches becomes less prominent as the 
error threshold is increased.  This speaks to the power of 
dead-reckoning models to generalize and scale. 
   It is important to recognize, of course, that the modeling 
task in this research is limited in scope.  Also, a different 
neural network could have yielded different results.  We 
can not claim that this is the best network architecture or 
configuration for this specific modeling task.  We can only 
claim that it was one of the more promising configurations 
with which we experimented.  Other configurations may be 
better.  One approach Henninger et al (1999) found 
particularly effective in improving the neural network based 
model’s performance was to work with modularized 
models.   This approach has been advocated in the control 
literature (Murray-Smith and Johansen, 1997; Narendra et 
al, 1995) and robotics literature (Brooks, 1986), and we 
have started exploring this approach.  One of the benefits of 
adopting this approach is the ability to mix different 
modeling techniques as they best apply to the problem 
locally.  For example, combinations of architectures and/or 
algorithms that can be applied to individual sub-problems, 
make it possible to exploit specialist capabilities.  In the 
problem discussed in this paper, one interesting test would 
be to use dead-reckoning algorithms in straight parts of the 
road data base and then use neural networks to guide the 
turn, as this appears to be where the majority of updates are 
required. 
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