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Abstract

This paper describes a new computational model
of phonological production, Holographic Reduced
Representations for Oscillator Recall, or HORROR.
HORROR’s architecture accounts for phonological
speech error patterns by combining the hierarchical
oscillating context signal of the OSCAR serial-order
model (Vousden, Brown, and Harley 2000; Brown,
Preece, and Hulme 2000) with a holographic asso-
ciative memory (Plate 1995). The resulting model
is novel in a number of ways. Most importantly, all
of the noise needed to generate errors is intrinsic to
the system, instead of being generated by an exter-
nal process. The model features fully-distributed
hierarchical phoneme representations and a single
distributed associative memory. Using fewer pa-
rameters and a more parsimonious design than OS-
CAR, HORROR accounts for error type propor-
tions, the syllable-position constraint, and other
constraints seen in the human speech error data.

Introduction

The phonological production subsystem is the part
of the language production apparatus that sequences
the sounds in individual words and groups of words.
Phonological production is the mapping from lex-
ical units, morphemes and words, to sequences of
phonological units, phonemes. This paper presents
a new model of the phonological production system,
a model that offers a new explanation for errors and
serial order in speech.

Speech Error Effects

Numerous constraints and patterns have been ob-
served in speech error patterns, including error type
proportions (see Table 1), the syllable position con-
straint, the C-V category constraint, the distance
constraint, the phonological similarity effect, and the
phonotactic regularity effect (Fromkin 1971). Unless
otherwise specified, the numbers in the descriptions
below are from the (Vousden et al. 2000) analysis of
the (Harley and MacAndrew 1995) error corpus.

A strong constraint on movement errors (the first
three error types in Table 1) is the syllable position
constraint, or SPC. 89.5% of movement errors retain
their position in the syllable (onsets move to onsets,
vowels to vowels, etc.).

Type Rate Example

anticipations 35.1% det the dog
perseverations 26.0% pet the pog
exchanges 10.6%  det the pog
non-contextual slips  17.3%  pet the log
mixed errors 11.0% let the pog

Table 1: Error type proportions. Target utterance
is “pet the dog.” Mixed errors include any error not
in the other categories.

An even stronger constraint is the consonant-
vowel category constraint, or C-V constraint. Errors
very rarely involve the replacement of a consonant
by a vowel or vice versa. A superset of these er-
rors, those that violate language-specific rules (the
phonotactic regularity effect), occur in less than 1%
of errors (Stemberger 1983).

The distance constraint is the observation that
phonemes tend to move only short distances (one
or two syllables) in movement errors.

When movement errors occur, they are more likely
than chance to involve phonemes that share phonetic
features. For example, “pig bull” for the intended
“big pull” is a more likely exchange than “bill pug,”
since [p] and [b] are more similar than are [g] and [1].
This is the phonological similarity effect.

Language Sequencing Models

Phonological production models can be categorized
by how they generate serial order. I follow Vousden
et al. (2000) and use the terms associative chaining
model, frame-based model, and control signal model.

Associative chaining models account for serial or-
der by having each subsequent phoneme be trig-
gered by a combination of the pattern of previous
phonemes and a representation of the target utter-
ance (Dell, Juliano, and Govindjee 1993). These
models successfully account for phonotactic regular-
ity effects and the C-V constraint, but they do not
generate anticipations and exchanges well, nor do
they account for SPC effects.

Frame-based models (Dell 1986; Roelofs 1997) use
strict phonological frames to slot phonemes into pre-



specified positions, such as the onset, nucleus, and
coda positions of a syllable. These models often use
chains of sequencing nodes to activate the slots se-
quentially (Eikmeyer and Schade 1991). Although
frame-based models are influential, sequencing nodes
are often criticized as being poorly motivated.

To address this point, control signal models
(Burgess and Hitch 1992; Hartley and Houghton
1996; Vousden et al. 2000) replace discrete syllable
frames with continuous time-varying signals. Prior
to production, different parts of the word are as-
sociated with different parts of the signal. Then, as
the signal changes during production, the associated
phonemes are output sequentially. Simple control
signal models explain how phonemes could be pro-
duced in order, but don’t account for SPC effects.

The OSCAR model (Vousden et al. 2000), de-
scribed below, is a complex control signal model
that accounts for SPC effects by using a multi-
dimensional control signal with biological motiva-
tion. It contains an implicit frame in the way that
the control signal is structured, but does not require
explicit slots or sequencing nodes for production.

Building Blocks

The HORROR model combines elements of two pre-
viously existing models: the OSCillator-based Asso-
ciative Recall (OSCAR) model of serial-order and
phonological production (Brown et al. 2000; Vous-
den et al. 2000), and the Holographic Reduced Rep-
resentations (HRR) model of hierarchical associative
memory (Plate 1995). Prior to describing HOR-
ROR, I review its two ancestral models.

OSCAR

OSCAR works by associating item vectors (phoneme
representations) and phonological context vectors
(PCVs) in a Hebbian associative memory. The
PCVs are inspired by oscillating signals in the brain,
and have an important hierarchical self-similarity
pattern, described below. As the PCVs are itera-
tively presented to the associative memory, the orig-
inal item vectors are recalled and become available
for production. The self-similarity pattern gener-
ated by the oscillators, when combined with noise,
generates patterns of errors that previously required
the use of syllable frames.

In OSCAR, there are 30 oscillators in two groups
of 15. In the non-repeating group, the oscillators
generate sinusoidal values at frequencies ranging
from very slow to very fast. Initial phases and fre-
quencies are generated with sufficient randomness
that the non-repeating group’s state does not re-
peat for many steps. In the repeating group, the
initial phases of the oscillators are random, but the
frequencies are identical. The state of this group re-
peats precisely every three time steps, representing
the period of a three-segment CVC syllable.
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Figure 1: HORROR’s PCV self-similarity function.

The PCV itself is generated by multiplying to-
gether selected oscillator signals to form a 32-
element vector. Each element is a product of four
oscillator signals, all of which are selected from the
same group (repeating or non-repeating). The pat-
tern of multiplications results in an automatically
normalized PCV, allowing easy comparisons for sim-
ilarity.

A key feature of OSCAR is that the PCV is self-
similar in a hierarchical manner. Each state of the
PCV is most similar to states that are multiples of
three time-steps away, but nearby states are also
somewhat similar (see Figure 1).

The process for producing a “word” (a randomly
generated 18-segment sequence of six CVC syllables)
is as follows. A PCV is initialized, and starts to
change with time. At each time step, the PCV is
associated with a phoneme feature vector in a Heb-
bian weight matrix. Each time step uses a separate
weight matrix. This entire process is performed nine
times (in parallel), to create a total of 81 weight ma-
trices, nine replications of nine time steps. To pro-
duce the sequence, the PCV is re-instated to its ini-
tial state, then sequentially re-produces each step’s
state. The PCV is usually associated with the cor-
rect weight matrices to generate an approximation
of the phoneme feature vector. In addition, a proba-
bilistic process is used to generate errors. 70% of the
time, segments which are associated with PCVs that
are similar to the current PCV are combined with
the output from the correct weight matrix. The re-
sult is an output vector, a potentially noisy approxi-
mation to the correct phoneme. Also, a post-output
suppression mechanism is used to reduce excessive
perseveration and facilitate exchange errors. The
generated output vectors for each of the nine repli-
cations are compared to an item memory containing
each phoneme, such that each phoneme is activated
to an extent proportional to the similarity with the
nine output vectors. The most active phoneme is
then produced in a winner-take-all process.



OSCAR’s Pros and Cons In many ways, OS-
CAR is important work in the literature of phono-
logical production and speech error modeling, but
it has significant problems that may limit its ap-
plicability. Its contributions include making good
use of an independently-motivated context signal to
create serial order, accounting for SPC effects with-
out position-specific phonemes, and using an im-
plicit rather than explicit syllable frame. Overall,
it accounts for various error patterns better than do
chaining models.

However, several limitations lead me to question
the extent of the model’s successes. Most impor-
tantly, the noise-addition procedure is unprincipled.
As well, the artificial words did not include repeated
phonemes, the associations between the context and
phonemes are stored separately, and there are a con-
cerning number of parameters.

Consider the noise-addition procedure. Cognitive
models should use reasonable sources of noise to gen-
erate error phenomena. Many models add Gaus-
sian noise, while others use intrinsic noise from dis-
tributed representations and imprecise network com-
putation. Although OSCAR uses well-motivated
oscillator signals to provide serial-order effects, its
noise-generation procedures are much more weakly
motivated. As described above and in Appendix C
of Vousden et al. (2000), phonemes associated with
states of the PCV that are selected by their similar-
ity to the correct PCV are recalled in parallel and
used to corrupt the winner-take-all process.

That this procedure generates impressive error re-
sults is not surprising. The noise in OSCAR is gener-
ated only by interference from particular phonemes
in the current sequence, not by any sort of random
numerical noise or other natural interference. OS-
CAR claims to explain why most errors are move-
ment errors — in their model, it’s because the gener-
ated noise is movement noise.

A related concern with OSCAR is that the as-
sociations between the PCV and phoneme vectors
are stored separately. Although it is reasonable to
use Hebbian learning to associate a PCV signal with
phoneme representations, it is difficult to explain
why each segment need be stored in entirely sep-
arate sets of weights. A more parsimonious solution
would use a single set of weights and would treat the
resulting noise as an asset, not a weakness.

HORROR adopts the oscillating PCV system
from OSCAR, but replaces the movement-based
noise-creation system with the noise inherent in an
associative memory system with overlaid weights. It
also uses a more parsimonious unified memory sys-
tem, allows repeated phonemes within a sequence,
and requires fewer free parameters?!.

In addition to the five listed in Table 7 of Vousden
et al. (2000), there are these four: the ratio of correct-
to-incorrect activation, 0.6; the number of redundant
associations, 9; the similarity threshold for allowing a
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Figure 2: Holographic Associative Memory. a —h
are item vectors; T; are memory vectors. *,#, and
+ symbolize circular convolution (encoding), corre-
lation (decoding), and addition (composition).

Distributed Associative Memories

For several decades, mathematical psychologists
have looked at distributed representations for mod-
els of memory (Murdock 1982; Eich 1982), and
have accounted for many recognition and recall ef-
fects. Compared to localist connectionist models,
where representations consist of features and micro-
features, distributed representations use long quasi-
random vectors. These vectors are generated and
manipulated such that similarity between two rep-
resentations is defined by the dot product or cosine.
Distributed representations can be combined in var-
ious ways. Two symbols may be associated by op-
erations such as convolution or the outer product,
resulting in another large vector. Retrieval from
memory vectors is performed by inverting the asso-
ciation operation, correlation. Distributed memories
can store a number of associations at once, simply by
adding the vectors together. As vectors are overlaid,
the amount of noise increases. This intrinsic noise
is part of the model, and resulting simulations can
account for list-length and item-similarity effects.

A limitation in much of the work on distributed
memories is that the operations that generate asso-
ciations greatly expand the size of the vector, with
the result that hierarchies of associations are imprac-
tical. HORROR utilizes one of several approaches
that overcome this problem, the Holographic Re-
duced Representations (HRRs) of Plate (1995).

With HRRs, the representations and associations
are always fixed-length vectors. A circular version of
convolution is used to associate vectors. The result-
ing memory vectors are the same length as the input
vectors, at the cost of increased noise. The greatest
benefit is that hierarchies of associations can be eas-
ily generated and stored. See Figure 2 for simple
examples and notation. An auto-associative item
memory (a Hopfield network or a nearest-neighbor
search through a list) is necessary to identify the
result of each correlation.

phoneme to be added as noise, 0.5; and the similarity
exponentiation factor in the item memory, 3.4.



HORROR

HOlographic Reduced Representations for Oscillator
Recall (HORROR) is a model of serial-order process-
ing that combines the self-similar context vectors of
OSCAR with the hierarchical representations and
memory of HRRs. The result is a fully-distributed
phonological production model that accounts for er-
rors in the serial-order part of the system by using
the intrinsic noise from the associative-memory part
of the system.

OSCAR and HRRs fundamentally both represent
similarity by distance between vector representa-
tions. In OSCAR, the extent to which pairs of con-
text vectors which are near in time are also near in
space determines retrieval accuracy and error pat-
terns. With HRRs, capacity and noise levels are de-
termined by the extent to which composed vectors
are near (not orthogonal) to each other. In OSCAR
these similarity metrics can be complex and hier-
archical, determined by the oscillator patterns, and
in HRRs, the similarity metrics can also be hierar-
chical, by the process of overlaying associations. In
both models, item memories are used to clean up
and to select a single item.

HORROR is a new model based on the general
framework of OSCAR. It takes a variation of the
PCV from OSCAR, and combines it with an HRR
associative memory, replacing the simple associative
memory used by OSCAR. In addition, the feature-
vector phonological representations used in OSCAR
are replaced with fully-distributed hierarchical rep-
resentations in HORROR. A critical aspect of HOR-
ROR is that all of the phoneme-context pairs that
make up a sequence are stored together in a single
large vector, rather than in OSCAR’s many separate
weight matrices. The noise in this memory vector,
combined with representational similarity and the
PCV structure, provide sufficient opportunities for
appropriately distributed error patterns to arise.

Experiments

A major goal of this work is to account for the same
human speech error data as does OSCAR, using
a simpler structure, more parsimonious procedures,
and fewer parameters.

As with OSCAR, PCVs are generated sequentially
and convolved with phoneme representations to form
memory traces. Unlike OSCAR, these traces are
summed to form a single vector representing the en-
tire sequence. To produce the sequence, the vector
is correlated with the PCVs in order, resulting in
noisy versions of the phonemes. The phonemes are
cleaned up in an item memory, and the results are
analyzed for various types of errors.

The oscillators used to generate the PCV were
the same as used by OSCAR. HORROR addition-
ally includes a parameter, nrep, that specifies the
proportion of repeating versus non-repeating oscil-

Param. Value Description

nrep 17 # of non-repeating oscillators
VW 2048  Representation vector width
cc 3 Repeating oscillator inv. freq.
D 4 Speech-rate (larger = slower)
Inhib 121 Post-activation inhibition level
InDec .5 Inhib. decay (lower = faster)
ds 3 Phoneme dis-similarity factor

Table 2: Free parameters in HORROR

lators. The procedure of generating the PCV from
the oscillators in HORROR is very similar to the
procedure used in OSCAR, but since HORROR’s
PCV is very wide (2048 elements), the process was
repeated with different random initial phases and
frequencies in order to fill up the vector, which was
then normalized. See Table 2 for the list of PCV and
other parameters used in the experiments described
below.

Vousden et al. (2000) use an articulatory-feature
representation of phonemes. Each phoneme is 17 el-
ements long, with binary features representing place
and manner of articulation, nasality, voicing, and
vowel position and tenseness. We converted these lo-
calist features into distributed features for the fully-
distributed representations used in HORROR.

Phonological representations were built in a fully-
distributed manner by generating random Gaussian
vectors (of width vw) for each feature, then summing
the appropriate features together and normalizing.
Each vector thus has an intrinsic similarity metric,
defined by the number of shared features. In or-
der to partially “drown out” the similarity between
otherwise very-similar phonemes, additional random
vectors (ds) were added to each phoneme vector.

Decoding consists of sequentially correlating each
time-step of the PCV with the single stored memory
vector. The result is a series of approximations to
the target phonemes, corrupted by the noise intrinsic
to a holographic memory. Each recalled vector is
compared to an item memory containing possible
phonemes. The phoneme that is most similar to the
recalled vector is then produced.

The item memory has three features that help it
best account for the error patterns. First, each item
in the item memory has a persistent activation level,
a. Activation is added to similarity to determine
which phoneme is selected. At each step, each item’s
a is increased by the item’s distance from the recalled
vector, weighted by the Inhib parameter. Second,
after a phoneme is selected, it is suppressed by set-
ting a to be the negation of Inhib. Post-output sup-
pression is a common feature of this type of model
(Vousden et al. 2000; Dell 1986). Finally, at every
time step, activation decays toward zero according
to the decay constant InDec.
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Figure 3: HORROR’s error type proportions.

Experimental Results

2000 6-syllable “words” were generated, associated,
and output. Errors were determined by an auto-
matic categorization process. Error type propor-
tions, SPC violations, distance constraint statistics,
and phonetic similarity constraint statistics were
counted.

Error proportions 1538 errors occurred during
production of 36,000 segments, resulting in an over-
all error rate of 4.3%. Figure 3 shows the proportions
of error types. The results compare fairly well with
the human data reported in Vousden et al. (2000).
Exchanges, however, were under-represented in the
model, raising the question of whether HORROR’s
exchanges are true exchanges or merely the joint
event of independent anticipations and persevera-
tions. Other speech error models (Dell et al. 1993;
Roelofs 1997) are unable to produce true exchanges,
and are therefore seen as incomplete.

To address this, I calculated the expected num-
ber of exchanges, assuming that they are coinciden-
tal. This number, 0.33 per 2000 sequences, was
more than sixty times smaller than the number of
exchanges actually observed (22), demonstrating a
true tendency for exchanges. FExchanges in HOR-
ROR occur because post-activation inhibition helps
to prevent an erroneously anticipated phoneme from
then appearing in its correct location. Instead, the
earlier, replaced phoneme may be triggered via the
PCV, turning an anticipation into an exchange.

Distance constraint The model’s movement gra-
dients parallel the distance constraints seen in hu-
man data, with disproportionately small separa-
tions. Exchange errors shifted least, an average
0.95 syllables, followed by anticipations, averaging
1.4 syllables, and perseverations, averaging 2.9 syl-
lables. Figure 4 shows a comparison on anticipa-
tions between HORROR and human data. The
shorter movements made by exchanges, compared
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Figure 4: Distance gradients of the anticipation er-
rors produced by HORROR, compared with the hu-
man data and chance baseline of Vousden et al.
(2000). Adjacent syllables have a distance of 1.
Same-syllable errors (separation 0) are not shown.

Error type n  Mean shared features
Movements 895 2.4
Exchanges 22 3.1
Non-contextual 306 3.1
Chance 1.9

Table 3: Average similarity for consonant errors.
Movements are anticipations and perseverations.

to other error types, has been observed in human
error data (Nooteboom 1973).

Phonetic similarity constraint Vousden et al.
(2000) concentrate their analysis of the phonetic
similarity constraint on consonant exchanges. HOR-
ROR produced only 22 consonant exchanges, 20 of
which shared 75% or more of their phonetic features.
Table 3 compares the categories of consonant errors
to chance. Chance was determined by randomly se-
lecting 1000 pairs of consonants, and counting the
number of shared phonemes for each pair. The pho-
netic similarity constraint is clearly present in these
results. Note that exchange errors were significantly
more similar than were other movement errors. This
is true for human exchanges, and also lends further
support to the observed exchanges being real.

Syllable-position constraint 29.0% of the
model’s errors violated the SPC, compared to
10.5% of errors in human data (Vousden et al.
2000). To confirm that this number still reflects
a constraint, and is not just the chance rate of
violations, it’s necessary to look at the probabilities
of errors being in each syllable position. In this
set of data, 50.7% of errors were in the onset,
8.6% in the vowel, and 40.8% in the coda. To



calculate the expected rate of SPC violations,
assume that the consonant-vowel constraint is
never violated, and that consonant errors have a
50% chance of movement from onsets and codas.
Therefore, the expected SPC violation rate is
1 — (.086 + .507 .5 + .408 x .5) = 45.7%. Although
the SPC is violated more often by the model than
it is in human data, it is still a real effect.

Consonant-vowel constraint Only 2.3% of the
errors violated the C-V constraint, showing that the
model is generally respecting the consonant-vowel
categorical distinction seen in natural errors.

Repeated phonemes In order to investigate the
role of repeated phonemes in the model, the same
experiment was re-run with repeated phonemes dis-
abled. Since repeated items are known to strongly
affect performance in distributed memories, it was
expected that the effects on HORROR would be sig-
nificant as well. The error rate without repeated
items was reduced to 1.3%, and the proportion of
non-contextual errors was greatly reduced (see Fig-
ure 3). HORROR is more error prone when rep-
etitions occur, as in human data (Dell 1986). Re-
peated phonemes appear to be an important trigger
for speech errors, including non-contextual errors.

Discussion

The HORROR model combines the best features
of OSCAR, a serial-order phonological model with
a hierarchical context signal, and HRRs, a holo-
graphic associative memory using hierarchical rep-
resentations. Its aim is to account for speech error
patterns using more parsimonious mechanisms than
previous related models.

HORROR succeeds in a number of ways. It al-
lows repeated phonemes in the sequences, it com-
bines associative memory traces into a single dis-
tributed association vector, and its error mechanism
relies entirely on the intrinsic noise from the asso-
ciative memory with no generated noise at all. It
uses fewer parameters than does OSCAR, and ac-
counts for a number of error patterns in human
data. Specifically, the model’s error type propor-
tions, distance constraint, phonological similarity
constraint, and C-V category constraint results were
largely similar to human data. The SPC results
were real, if modeled less accurately. HORROR ac-
counts for these major speech error patterns by us-
ing fully-distributed hierarchical representations, a
single intrinsically-noisy associative memory, and an
oscillating phonological context signal.
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