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Abstract

Following up on previous work by Thagard (1989, 2000) we
have developed a connectionist constraint satisfaction model
which aims at capturing a wide variety of tasks involving
causal cognitions, including causal reasoning, learning, hy-
pothesis testing, and prediction. We will show that this model
predicts a number of recent findings, including asymmetries
of blocking, and asymmetries of sensitivity to structural im-
plications of causal models in explicit versus implicit tasks.

Introduction

Causal reasoning has been widely investigated during the
last decade, which has led to a number of interesting novel
findings (see Shanks, Holyoak, & Medin, 1996; Hagmayer
& Waldmann, 2001, for overviews). For example, it has
been shown that participants’ causal judgments are sensitive
to the contingency between the cause and the effect, and
that people’s judgments reflect the causal models underlying
the observed learning events (see Hagmayer & Waldmann,
2001; Waldmann, 1996). Moreover, causal reasoning has
been studied in the context of a number of different tasks,
such as learning, reasoning, categorization, or hypothesis
testing.

Most psychological theories and computational models
of causal learning and reasoning are rooted in two traditions.
They are either based on associationistic or on probabilistic
or Bayesian models (see Shanks et al., 1996; Thagard,
2000). Both kinds of models have been criticized. Associa-
tionistic learning networks have proven unable to capture
the fundamental semantics of causal models because they
are insensitive to the differences between learning events
that represent causes versus effects (see Waldmann, 1996).
By contrast, Bayesian networks are perfectly capable of rep-
resenting causal models with links directed from causes to
effects (see Pearl, 2000). However, although the goal of
these networks is to reduce the complexity of purely prob-
abilistic reasoning, realistic Bayesian models still require
fairly complex computations, and they presuppose compe-
tencies in reasoning with numerical probabilities which seem
unrealistic for untutored people (see Thagard, 2000, for a
detailed critique of these models).

The aim of this paper is to introduce a more qualitatively
oriented, connectionist constraint satisfaction model of
causal reasoning and learning. Our model is inspired by
Thagard’s (2000) suggestion that constraint satisfaction

models may qualitatively capture many insights underlying
normative Bayesian network models in spite of the fact that
constraint satisfaction model use computationally far sim-
pler, and therefore psychologically more realistic processes.
The model differs from standard associationist learning
models (e.g., Rescorla & Wagner, 1972) in that it is capable
of expressing basic differences between causal models. Our
model embodies a uniform mechanism of learning and rea-
soning, which assesses the fit between data and causal mod-
els. This architecture allows us to model a wide range of
different tasks within a unified model, which in the literature
have so far been treated as separate, such as learning and
hypothesis testing.

Constraint Satisfaction Models

Constraint satisfaction models (Thagard, 1989, 2000) aim at
capturing qualitative aspects of reasoning. Their basic as-
sumption is that people hold a set of interconnected beliefs.
The beliefs pose constraints on each other, they either sup-
port each other, contradict each other, or are unrelated. Co-
herence between the beliefs can be achieved by processes
which attempt to honor these constraints.

Within a constraint satisfaction model beliefs are repre-
sented as nodes which represent propositions (e.g., “A
causes B”). The nodes are connected by symmetric relations.
The numerical activation of the nodes indicates the strength
of the belief in the proposition. A belief that is highly acti-
vated is held strongly, a belief that is negatively activated is
rejected. The activation of a node depends on the activation
of all other nodes with which it is connected. More pre-
cisely, the net input to a single node j from all other nodes i
is defined as the weighted sum of the activation a of all re-
lated nodes (following Thagard, 1989, p.466, eq.5):

Netj = Zi Wijai(t) (1)
The weights w represent the strength of the connection of
the beliefs. In our simulations, they are generally pre-set to
default values which are either positive or negative and re-
main constant throughout the simulation. At the beginning of
the simulations, the activation of the nodes representing hy-
potheses are set to a low default value. However, nodes rep-
resenting empirical evidence are connected to a special acti-
vation node whose activation remains constant at 1.0. This
architecture allows us to capture the intuition that more faith
is put into empirical evidence than into theoretical hypothe-
ses (see Thagard, 1989). To update the activation in each
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cycle of the simulation, first the net input net; to each node
is computed using Equation 1. Second the activation of all
nodes is updated using the following equation (Thagard,
1989, p.446,eq4):
aj(t+1) = aj(t)(1-6)+net;(max-a;(t)) if net>0

= aj(t)(1-0)+net;(a;(t)-min) otherwise. (2)
In Equation 2, 0 is a decay parameter that decrements the
activity of each node in every cycle, min represents the
minimum activation (-1) and max the maximum activation
(+1). The activations of all nodes are updated until a stable
equilibrium is reached, which means that the activation of all
nodes do no longer substantially change. To derive quantita-
tive predictions it would be necessary to specify rules that
map the final activations to different types of responses.
This is an important goal which should be addressed in fu-
ture research. In the present article we only derive ordinal,
qualitative predictions from the model.

The Model

Following causal-model theory (Waldmann, 1996) we as-
sume that people typically enter causal tasks with initial as-
sumptions about the causal structure they are going to ob-
serve. Even though specific knowledge about causal rela-
tions may not always be available, people often bring to bear
knowledge about abstract features of the models, such as the
distinction between events that refer to potential causes and
events that refer to potential effects. In virtually all psycho-
logical studies this information can be gleaned from the ini-
tial instructions and the materials (see Waldmann, 1996).
Figure 1 displays an example of how the model repre-
sents a causal model. The nodes represent either causal hy-
potheses or observable events. The causal hypothesis node
at the top represents a structural causal hypothesis (H1), in
this case the hypothesis that the three events e, e,, x form a
common-effect structure with e, and e, as the two alternative
causes and x as the common effect. The two nodes on the
middle level refer to the two causal relations H2 and H3 that
are part of the common-effect model with two causes and a
single effect. The nodes on the lowest level refer to all pat-
terns of events that can be observed with three events (a dot
represents “and”). On the left side, the nodes represent pat-
terns of three events, in the middle pairs, and on the right
side single events. Not only the present but also the corre-
sponding absent events are represented within this model
(for example ~x). The links connecting the nodes represent
belief relations. Thus, they do not represent probabilities or
causal relations as in Bayesian models. There are two differ-
ent kinds of connections between the nodes. Solid lines indi-
cate excitatory links, dashed lines inhibitory links. How are
the connections defined? A connection is positive if the
propositions support each other. For example, if all three
events are present, the observation is in accordance with
both hypotheses H2 and H3. This pattern might be observed
if both el and e2 cause x. Therefore the evidence node
el.e2.x is positively connected to H2 and H3. In general, a
hypothesis is positively connected to an evidence node if the
events mentioned in the hypothesis are either all present or
all absent. If this is not the case, that is if one of the relevant
events specified in the hypothesis is absent, the link is as-

signed the negative default value. Exploratory studies have
shown, that participants share a common intuition whether a
certain pattern of events supports or contradicts a hypothesis
(Hagmayer & Waldmann, 2001). The assigned weights mir-
ror these general intuitions. The weights of the links remain
the same throughout the simulations. Figure 1 does not dis-
play the special activation node. This node was pre-set to
1.0 and attached to event nodes describing present events in
the respective experiment.

Figure 1: Constraint satisfaction model of causal learning
and reasoning. See text for further explanations.

In Figure 1, the dashed line between the hypotheses H1 and
H2, which signifies an inhibitory link, is of special interest.
The network represents a common-effect structure. This
means that there are two causes el and e2 which compete in
explaining the occurrence of effect x. Therefore the two
hypotheses referring to the individual causal relations have
to be connected by a inhibitory link (see also Thagard,
2000). However, both hypotheses H2 and H3 are positively
connected to the structural hypothesis H1. By contrast, a
common-cause structure is represented slightly differently.
In such a structure, event x would be the common cause of
the two effects el and e2 (i.e., HI: x>el.e2). A model of
this structure looks almost identical to the one for the com-
mon-effect structure in Figure 1. There is only one very im-
portant difference. Because there is no competition between
the effects of a common cause, a common-cause model has
no inhibitory link between H2 and H3. All other nodes and
links in the two models are identical.

Both the common-effect and the common-cause model
were implemented using Microsoft Excel. Default values
were adopted from the literature if not indicated otherwise
(Thagard, 1989). Initial activations were set to 0.01, inhibi-
tory links between nodes to —0.05, and excitatory links to
+0.05. The inhibitory link between H1 and H2 within the
common-effect model was pre-set to a value of —0.20. The
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special activation node was attached to all evidence nodes.
The additional activation was divided among the evidence
nodes according to the relative frequency of the evidence in
the learning input. This principle captures the intuition that
more faith is put into evidence that is observed more fre-
quently.

Evaluation

In order to evaluate the proposed constraint satisfaction
model different tasks and paradigms from the literature on
causal learning and reasoning were modeled. One of our
main goals was to show that the same architecture can be
used to simulate different types of tasks. However, different
tasks required different sections of the model depicted in
Figure 1. We used two principles for the construction of task
specific networks. The first principle is that we only in-
cluded the event nodes that corresponded to the event pat-
terns observed in the learning phase or that corresponded to
events that have to be evaluated or predicted in the test
phase. For example, to model a task in which only event
triples were shown, only the event nodes on the left side of
the event layer in Figure 1 would be incorporated in the
model. However, if the task following the learning phase
required the prediction of single events, the corresponding
nodes for single events would have to be added to the event
layer. The second principle is that only the hypothesis nodes
were included that represent hypotheses that are given or
suggested to participants. These two principles ensure that
for each paradigm a minimally sufficient sub-model of the
complete model is instantiated.

Test 1: Asymmetries of Blocking

Blocking belongs to the central phenomena observed in as-
sociative learning which, among other findings, have moti-
vated learning rules that embody cue competition (e.g., Res-
corla & Wagner, 1972). A typical blocking experiment con-
sists of two learning phases. In Phase 1 participants learn
that two events el and x are either both present or absent. In
Phase 2 a third event €2 is introduced. Now all three events
are either present or absent. In both phases, events el and e2
represent cues and x the outcome to be predicted. Associa-
tive theories generally predict a blocking effect which means
that participants should be reluctant about the causal status
of the redundant event e2 that has been constantly paired
with the predictive event el from Phase 1. This prediction
has come under attack by recent findings that have shown
that the blocking effect depends on the causal model learn-
ers bring to bear on the task (see Waldmann, 1996, 2000). If
participants assume that el and e2 are the causes of x (com-
mon-effect structure) a blocking effect can be seen. In con-
trast, if participants assume that el and e2 are the collateral
effects of the common cause X (common-cause structure), no
blocking of e2 is observed. In this condition, learners tend to
view both el and e2 as equally valid diagnostic cues of x.
To model blocking, we used a network that was ex-
tended after Phase 1. In Phase 1, the net consisted of a hy-
pothesis node (H2) and the nodes for patterns of two events
(el, x). After Phase 1, the final activation of the hypothesis
node was transferred to Phase 2. In Phase 2, the network

consisted of two nodes for the two causal hypotheses (H2
and H3), and nodes that represented patterns of three events,
the patterns participants observed within the learning phase.
Furthermore, the node H1 was included, which, depending
on the condition, either coded a common-cause or a com-
mon-effect hypothesis. The nodes for the event pairs from
Phase 1 were removed.

Figure 2 shows the activation of the two hypotheses re-
ferring to the causal relations in Phase 1 and 2. Figure 2A
depicts the activation for the common-cause model and Fig-
ure 2B for the common-effect model.
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Figure 2A: Simulation of a blocking paradigm (Test 1).
Activation of hypothesis nodes for a common-cause
model. The solid line represents the activation of
H2:x—e¢l, the dotted line of H3:x—¢2. Phase 2 started at
the 101% cycle.

The model shows no blocking for event e2 in the context of
the common-cause model. It quickly acquires the belief that
there is a causal connection between x and e2.
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Figure 2B: Simulation of a blocking paradigm (Test 1).
Activation of hypothesis nodes for a common-effect
structure. The upper line represents the activation of
H2:e1—x, the lower line of H3:e2—x. Phase 2 started at
the 101% cycle.

For the common-effect model the simulation shows blocking
of the second cause, that is the second hypothesis is believed
to be wrong. Thus, the simulations closely correspond to the
empirical finding that blocking interacts with the structure of
the causal model used to interpret the learning data.



CogSci02

Test 2: Testing Complex Causal Hypotheses

The first test of the model used a phenomenon from the lit-
erature on causal learning. We now want to turn to a com-
pletely different paradigm, hypothesis testing. In experi-
ments on causal learning participants are typically instructed
about a causal structure, and the task is to learn about the
causal relations within the structure. They are not asked
whether they believe that the structure is supported by the
learning data or not. In recent experiments (Hagmayer,
2001; Hagmayer & Waldmann, 2001) we gave participants
the task to test a complex causal model hypothesis. For ex-
ample, we asked them whether three observed events sup-
port a common-cause hypothesis or not. Normatively this
task should be solved by testing the implications of the given
structural hypothesis. For example, a common-cause model
implies a (spurious) correlation of the effects of the single
common cause. In contrast, a common-effect structure does
not imply a correlation of the different causes of the joint
effect. Unless there is an additional hidden event that causes
a correlation among the causes, they should be uncorrelated.
In the experiment, participants were given data which either
displayed a correlation between all three events (data set 1)
or correlations between el-x and e2-x only, that is el and e2
were marginally independent in this data (data set 2). Data
set 1 was consistent with a common-cause hypothesis which
implies correlations between all three events. In contrast,
data set 2 favors the common-effect hypothesis with x as the
effect and el and e2 as independent causes. However, in a
series of experiments we found that participants were not
aware of these differential structural implications when test-
ing the two hypotheses. Instead they checked whether the
individual causal relations within the complex structures
held (e.g., e1-x). Thus, participants dismissed a hypothesis if
one of the assumed causal links was missing. However, they
proved unable to distinguish between the common-cause and
the common-effect structure when both structures specified
causal connections between the same events (regardless of
the direction).

To model this task we used the model without the nodes
for event pairs and individual events. The special activation
node was connected to the patterns of three events. As be-
fore the activation of the individual event patterns was pro-
portional to the frequency of the respective pattern in the
data. To test the model, we used three sets of data. Either all
three events were correlated (data set 1), el and x, and e2
and x were correlated and el and e2 were marginally inde-
pendent (data set 2), or el and x, and el and e2 were corre-
lated, and e2 and x were uncorrelated (data set 3). As com-
peting hypotheses we either used a common-cause model
with x as the common cause, or a common-effect model with
x as the common effect. Figure 3 shows the activation of the
node H1 which represents the hypothesis that the respective
causal model underlies the observed data.

Figure 3A shows the results for the common-cause hy-
pothesis, Figure 3B for the common-effect hypothesis. The
results clearly mirror the judgments of our participants.
Whenever the two assumed causal relations within either
causal model were represented in the data, the structural
hypothesis was accepted (solid lines), if one link was miss-
ing the hypothesis was rejected (dotted line).

One slight deviation from our empirical findings was ob-
served. In early cycles there seems to be an effect favoring
the common-effect hypothesis with data consistent with this
hypothesis. However, the difference between the hypotheses
is relatively small and further decreases after 100 updating
cycles. Thus, the results are consistent with participants’
insensitivity to structural implications of causal models in
hypothesis testing tasks.
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Figure 3A: Activation of hypothesis node H1 for a com-
mon-cause model (Test 2). The solid lines represent the
activations for data set 1 and 2, the dotted line the activa-
tions for data set 3.
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Figure 3B: Activation of hypothesis node H1 for a com-
mon-effect model (Test 2). The solid lines represent the
activations for data set 1 and 2, the dashed line at the
bottom the activations for data set 3

Why does the model not differentiate between the two
causal structures? The reason is that it is assumed that com-
plex structural hypotheses are not directly linked to empiri-
cal evidence. In our model empirical evidence is connected
to the hypotheses that represent individual causal links
which in turn are linked to more complex model-related
hypotheses. This architecture allows it to model learning
and hypothesis testing within the same model. It also seems
to capture the empirical finding that participants can easily
decide whether a certain pattern of events supports a simple
causal hypothesis, but have a hard time to relate event pat-
terns to complex causal hypotheses.
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Test 3: Causal Inferences

In the previous section we have mentioned studies showing
insensitivity to spurious relations implied by causal models.
A last test for our model is a task in which participants have
to predict other events under the assumption that a certain
causal model holds. Interestingly we have empirically dem-
onstrated sensitivity to structural implications of causal
models in this more implicit task (Hagmayer & Waldmann,
2000). In this task participants do not have to evaluate the
validity of a causal model in light of observed evidence but
rather are instructed to use causal models when predicting
individual events. In our experiments we presented partici-
pants with two learning phases in which they learned about
two causal relations one at a time. Thus, in each phase par-
ticipants only received information about the presence and
absence of two events (x and el, or x and e2). They never
saw patterns of all three events during the experiment. The
initial instructions described the two causal relations, which
were identically presented across conditions, either as parts
of a common-cause model with x as the cause or as part of a
common-effect model with x as the effect. After participants
had learned about the two causal relations we asked them to
predict whether el and e2 were present given that x was
present. We found that participants were more likely to pre-
dict that both el and e2 would co-occur when x was viewed
as the common cause than when it was seen as a common
effect. Thus, in this more implicit task the predictions ex-
pressed knowledge about structural implications of causal
models. In particular, the patterns the participants predicted
embodied a spurious correlation among the effects of a com-
mon cause, whereas the causes of a common effect tended to
be marginally uncorrelated in the predicted patterns. By
contrast, in a more direct task which required explicit
judgments about correlations, no such sensitivity was
observed, which is consistent with the results reported in the
previous section.

To model this experiment we eventually used the com-
plete network depicted in Figure 1 which was successively
augmented according to our two principles. In Phase 1, the
learning phase, patterns of two events were connected to the
hypotheses H2 and H3. Depending on the learning condi-
tion, these two hypotheses were either linked to a common-
cause or a common-effect hypothesis (H1). The activations
of the hypothesis nodes at the end of Phase 1 were used as
initial activation values in Phase 2. In Phase 2 the model
consisted of the three hypothesis nodes, the nodes for pat-
terns of three events and the nodes representing single
events. The single event nodes were included because the
task required the prediction of individual events. The special
activation node was now attached to event x. The model
then predicted the other two individual events and patterns
of all three events.

The model quickly learned the causal relations during
Phase 1 of the experiment. Figure 4 depicts the results of
Phase 2. Figure 4A shows the predictions of the model for
the condition in which participants assumed a common-
cause model, Figure 4B shows the results for the common-
effect condition. The results of the simulations are consistent
with the behavior we have observed in our participants.
When the model assumes a common-cause model the pres-

ence of x leads to a high positive activation of the two ef-
fects el and e2. This means that the model tends to prefer
the prediction that the two effects of a common cause co-
occur. In contrast, for the common-effect structure the
model does not show such a preference. In this condition,
both causes or either one of them equally qualify as possible
explanations of the observed effect. This means that our
model, similar to the one Thagard (2000) has proposed,
tends to “explain away” the second cause when one of the
competing causes is present. This is a consequence of the
competition between the two causal hypothesis H2 and H3.
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Figure 4A: Implicit causal inferences (Test 3). Activa-
tion of single event nodes for the common-cause model:
Event x (top), events el and e2 (bottom)
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Figure 4B: Implicit causal inferences (Test 3). Activa-
tion of single event nodes for the common-effect model:
Event x (top), event el (middle), event e2 (bottom)

Discussion

A constraint satisfaction model of causal learning and rea-
soning was presented in this paper that extends the architec-
ture and scope of the model proposed by Thagard (2000).
Thagard’s model focuses upon causal explanations of singu-
lar events and belief updating. Our aim was to create a
model that allows it to model both learning and reasoning
within causal models. The model was successfully applied to
three different tasks. It modeled people’s sensitivity to struc-
tural implications of causal models in tasks involving learn-
ing and predictions whereas the same model also predicted
that people would fail in tasks which required explicit
knowledge of the statistical implications of causal models.
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One question that might be raised is whether the pro-
posed model really captures learning or just models causal
judgment. In our view, the concept of learning does not nec-
essarily imply incremental updating of associative weights
Our model embodies a hypothesis testing approach to learn-
ing which assumes that learners modify the strength of belief
in deterministic causal hypotheses based on probabilistic
learning input. This view also underlies recent Bayesian
models of causality (Pearl, 2000). In the model the activa-
tion (i.e., degree of belief) of the hypothesis nodes is modi-
fied based on the learning input. This way the model is ca-
pable of modeling trial-by-trial learning as well as learning
based on summary data within the same architecture.

Thus far we have pre-set the weights connecting evi-
dence and hypotheses. In our view, the assigned values re-
flect everyday qualitative intuitions about whether an event
pattern supports or contradicts a hypothesized causal hy-
pothesis. These weights remained constant throughout the
simulations. Despite this restriction the model successfully
predicted empirical phenomena in learning and reasoning.
However, pre-setting these weights is not a necessary feature
of the model. It is possible to add a learning component that
acquires knowledge about the relation between event pat-
terns and hypotheses based on feedback in a prior learning
phase (see Wang et al., 1998, for a model adding associative
learning to Echo).

In summary, our constraint satisfaction model seems to
offer a promising new way to model causal learning and
reasoning. It is capable of modeling phenomena in a wide
range of different tasks, which thus far have been treated as
separate in the literature. Relative to normative Bayesian
models, our connectionist model allows it to simulate a large
number of different tasks and different phenomena while
using fairly simple computational routines. It proved capable
of capturing a number of recent phenomena that have pre-
sented problems to extant models of causal cognition. More
tests of the model clearly seem warranted.
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