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Abstract

Classical choice theories assume choice behavior is
based on value maximization computed over the entire
choice set. However, empirical evidence has revealed
violations of axioms of rational choice that cannot be
explained by value maximization. We argue that
choice behavior can be reconceptualized as value
maximization constrained by categorization processes,
and describe a neural network model developed to
account for key empirical findings. The model
simulates two important phenomena that have been
construed as irrational choice behavior, namely, the
similarity effect and the attraction effect. We argue
that there are important commonalities among choice
behavior, categorization and perception.

Introduction

Many axiomatic theories of choice behavior are
based on the assumption that decision making is
based on a process of value maximization performed
over all attributes (c. f., Tversky & Simonson, 1993).
However, empirical evidence has demonstrated that
axioms of rational decision making are often violated
in choice behavior, and value maximization alone is
unable to explain these violations. Recently, an
alternative perspective that is concerned with the
relations between similarity processes and decision
processes has been proposed to conceptualize choice
behavior and to understand violations of rational
decision making (Medin, Goldstone, & Markman,
1995). That view has been embodied in a
comprehensive computational model of choice
behavior (Roe, Busemeyer, & Townsend, 2001).

In the spirit of this alternative perspective, we have
developed a connectionist model to account for two
key wviolations of rational choice, namely, the
similarity effect and the attraction effect. Both of
these phenomena involve adding a third alternative
(decoy) to a choice set of two options, thereby
leading to inconsistency of choice. If the decoy is
similar and competitive (two alternatives are
competitive when their additive utilities are almost
identical to each other) to one of the original options,
then the addition of the decoy decreases the choice
probability of that option. This phenomenon is called

the similarity effect (Tversky, 1972). If the decoy is
similar to and dominated by one of the two original
alternatives but not the other, then the addition of the
decoy increases the choice probability of the
dominant option more than the other alternative. This
phenomenon is referred to as the attraction effect
(Huber, Payne, & Puto, 1982). Both phenomena can
potentially lead to violations of rational choice. Few
theories were able to provide an integrated
explanation of both phenomena prior to the model
proposed by Roe et al. (2001), which is a neural
network instantiation of the decision field theory
(Busemeyer & Townsend, 1993). That model
explains the two effects (in addition to several other
important choice phenomena) by taking into
consideration similarity relations among options and
the dynamic nature of decision processes. The model
described here is similar to that of Roe et al. in that it
also takes into account similarity among alternatives;
however, the manner in which similarity is
represented and processed differs between the two
models. We will briefly discuss the relationship
between the two models after we present our
proposal.

Neural network models have been one of the major
modeling tools in cognitive science (Rumelhart,
McClelland, & PDP Research Group, 1986).
However, such models have had only limited
applications to decision behavior (Holyoak & Simon,
1999; Roe et al., 2001; Thagard & Millgram, 1995).
The model we describe here, like that of Roe et al.
(2001), uses a neural network approach to provide an
account of the similarity and attraction effects.

Operation of the Model

Decision Scenario and Model Architecture

The decision scenario used here is adapted from that
used by Roe et al. (2001). The decision maker has to
choose one car from a set of two or three alternatives
by evaluating their ratings on two attributes: gas
mileage and performance (see Figure 2). A simple
neural network is constructed for this scenario.
Figure 2 shows the architecture of the model, adapted
from ECHO (Thagard, 1989), a neural network



model of how people achieve coherence in making
explanations. Two nodes represent the attributes, gas
mileage and performance, and three others represent
the three alternatives. One special node, labeled as
External Driver in Figure 2, represents the
motivational and attentional sources that drive the
decision process. The lines between nodes represent
node connections. Each attribute or alternative is thus
represented by one node in the network, with
relations among  attributes and  alternatives
represented by connection weights.

Bidirectional excitatory links (represented by dark
arrowheads in Figure 2) connect attribute nodes to
their respective alternatives. The alternative nodes
send out inhibitory influences (represented by empty
arrowheads in Figure 2) to one another. Node
activation ranges from 0.0 to 1.0. The special node,
which drives the decision-making process, always
feeds excitatory influence to the attribute nodes,
thereby initiating and maintaining activation
throughout the entire network. The special node has a
constant activation of 1.0, and the weight of its
connections to the attribute nodes is 0.05 (there are
no reciprocal connections to the special node from
the attribute nodes, as the former is intended to be the
source of activation). Because the three alternative
nodes compete via inhibitory connections with one
another, one winning node generally achieves a much
higher activation than the rest.

Setting Connection Weights and Initial
Activations

Initially, the connection weight between an attribute
and an alternative node (called attribute-alternative
weight from now on) is set to the rating of the
alternative on the corresponding attribute. For
example, in Figure 2, the option Target is rated 8 and
2 on performance and gas mileage, respectively, so
its initial weights are set to 8.0 and 2.0 for the
performance-target and gas-mileage-target
connections, respectively.
Next, each initial weight is normalized:
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Here, w, is the weight of the connection to node i

from j. Weights are normalized according to their
range; x« and x are maximum (set to 0.8) and
minimum (set to 0.2) values for that range,
respectively. Accordingly, the normalized weight

Figure 1. A summary of the phenomena
simulated. The letters S and A stand for
where the decoy is positioned: Decoy S
yields the similarity effect; decoy A yields
the attraction effect. The numbers in
parentheses are the attribute ratings of the
nearby alternative: The first number is the
rating of that alternative on gas mileage and
the second number 1is its rating on
performance.
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Figure 2: The architecture of the model.
Choice 1, Choice 2 and Choice 3 are the
alternatives, and Gas Mileage and
Performance are the attributes. External
Driver represents the motivational and
attentional sources that drive the decision
process.

should always be within the range of 0.2 to 0.8. The
choice of this range is arbitrary, but it reflects the



assumption that the perception of an attribute value
should never actually reach 0, which can be viewed
as reflecting no value at all, nor should it reach 1,
which can be viewed as reflecting sublime
satisfaction. The range of actual attribute value is
computed by max(w) - min(w), where max(w) and
min(w) are the largest and smallest attribute values
obtained for all attributes.

The attribute-alternative weights as defined in
Equation 1 are linearly related to the actual attribute
ratings. In choice behavior, we are concerned with a
subjective measure of utility in which the impact of a
given increase in rating declines with the absolute
magnitude of the rating. Accordingly, attribute-
alternative weights are transformed:
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Here, both / and 4 are constants. After exploration of
the parameter space, / was set to 1.4 and 1 was set to
0.5 to achieve good simulation results. Equation 2
describes a basic psychophysical function in which
sensitivity to an increase of stimulus strength declines
as the stimulus strength increases. Finally, weights
undergo a linear transformation specified by

w; = wijT/I0.0. 3)

Here, 7 (set to 4.0) is a parameter intended to
amplify the attribute-alternative weights so that the
same difference between attribute values now has a
larger impact on node activations (see Equations 4
and 5). Finally, these weights are divided by 10.0 so
that they are kept reasonably small in relation to node
activations. Although the model has several
parameters, and specific values for them were
selected after extensive search of parameter space,
the choices of parameter values do not affect the
underlying conceptual framework of the model.
Moreover, it is very likely that other sets of
parameter values exist that would allow the model to
exhibit desired behavior.

The inhibitory connections among the alternative
nodes are all set to -0.60. The initial activations are
set to 1.0 for the special node and 0.5 for all other
nodes (0.5 is the middle point of the activation range,
0.0 - 1.0). To increase psychological realism, some
randomness is introduced: The initial activation of an
alternative node is a random number within the range
of 0.5 + 0.01. The generation of random numbers
conforms to a uniform distribution. There is no
randomness for the activations of the special node
and the attribute nodes.

Running the Model

The model runs in an iterative fashion. In each
iteration the activation of a node is updated by a
commonly-used activation function,

a(t+1)= (%)
{ i (MAX = () +(001-0) if input, >0
input,(a;(t)—MIN)y +a,(t)(1-8) otherwise

a;(t+1) is the activation of node i at iteration ¢ + 1; it
is a function of a,(?), the activation of the same node
at the previous iteration. MAX and MIN are the upper
(1.0) and lower (0.0) limits of node activation. & (set
to 0.015) is a decay parameter specifying how much
the activation decays in each iteration, and y (set to
0.12) is a growth rate specifying the increment of
activation as a function of the input. The parameter
input; is the total influence received by node i from
other nodes connected to it, specified by

input,(t) = Zw[jaj (). (5)
j

The model runs iteratively according to Equations
4 and 5 until the activation of each node no longer
changes from the previous iteration by more than a
settling criterion (set to 0.001 here). According to
Equation 4, a major determinant of node activation is
the total input a node receives from other nodes; and
according to Equation 5, this input depends on the
attribute-alternative weights. It follows that an
alternative with a high additive attribute rating tends
to have a higher node activation than those with low
additive attribute ratings; this is an instantiation of
the value maximization principle, which implies that
the winning choice should have the highest additive
utility summed across all attributes.

The choice probability of an alternative depends on
the activation of the corresponding node. Luce’s
(1959) choice model is used to convert the activation
into choice probability for alternative i:

activation (i) 6)
Z activation ( j)

J

probabilit y(i) =

Simulations and Results

The two phenomena simulated are schematized in
Figure 1. For each phenomenon, 100 simulations
were run and the results were averaged for each
attribute and alternative. The averaged results are
presented both as node activations, which are the
final activation values of the nodes (see Table 1), and



choice probabilities, which are converted from
activations using Equation 6 (see Table 2).

Figure 3: Decision process of binary choice.
The activation of alternative nodes is plotted
as a function of number of iterations.

Binary Choice

The original choice set contains two alternatives, one
of which is arbitrarily selected as the target, and the
other the competitor (see Figure 1). Both cars receive
ratings on a 10-point (1 - 10) scale for gas mileage
and  performance. To simplify the choice scenario,
the two options are made equal in terms of additive
attribute rating: The competitor is rated 8 on gas
mileage and 2 on performance, whereas the target is
rated 2 on gas mileage and 8 on performance. It is a
trivial prediction that (assuming the two attributes are
equally important) the two alternatives should be
equally likely to be chosen. The model makes this
prediction: when these two alternatives are equally
attractive, both have a 50% chance of being chosen
(see Table 2).

Similarity Effect

If the decoy is similar and competitive compared to
one of the two original choices, the target, the
introduction of the decoy reduces the probability of

the target being chosen relative to that of the other
choice in the original set, the competitor. This
similarity effect (Tversky, 1972) can lead to a
violation of an axiom of rational choice,
independence of irrelevant alternatives, which
implies that adding an alternative to a choice set will
not alter the rank order of the original options. To
produce a similarity effect, the decoy should be
roughly as good as the target in terms of additive
attribute rating. In the simulation, the decoy is chosen
to have attribute values of 2.5 and 6.5 for gas mileage
and performance, respectively (see Figure 1).

To model the similarity effect, we first run the
model on a choice set that includes only the target
and the decoy. After the network settles for that
comparison, we run it on the entire set of three
alternatives. The psychological rationale is that
because the target and the decoy are similar to each
other, they are grouped together in a manner similar
to a perceptual grouping (e.g., in visual perception,
when two shapes are close to each other, they are
perceived as belonging to the same cluster). Our
assumption is that the two similar alternatives are
perceived as belonging to the same category, and
therefore are compared to each other before all three
alternatives are compared.

The simulation was thus divided into two stages: a
binary comparison in which only the target and the
decoy were compared, and a trinary comparison in
which all three alternatives were compared. The
activations are carried over from the first to the
second stage; accordingly, any activation differences
from the first stage will have an effect on the second
stage. At the end of the binary-comparison stage, the
target has an activation lower than 0.5, the baseline
activation, due to its competition with the decoy. This
low activation is carried over to the trinary-
comparison stage, where the competitor joins the
comparison with the default initial activation of 0.5.
Thus in the trinary-comparison stage the target starts
with a lower activation as compared to the
competitor; as a result, the target attains a lower
activation and choice probability as compared to the

Table 1: Simulation results as node activations.

Choice scenarios

average node activations

gas mileage performance competitor target decoy
Binary choice 0.647 0.647 0.398 039% -
Similarity effect 0.695 0.729 0.424 0.343 0.317
Attraction effect 0.708 0.741 0.465 0.627 0.019

Note. Each node activation displayed here is the average of activations for the corresponding node

calculated over 100 simulation runs.



competitor at the end of simulation. The dynamic
process of the two-stage comparison is shown in
Figure 4, where the sudden change in activation
indicates the transition from the first to the second
stage. The final choice probabilities of the target and
the competitor are 0.317 and 0.391 respectively (see
Table 2), indicating that the competitor ranks higher
in terms of preference. Since in the binary choice the
choice probabilities of the two alternatives are equal,
the altered rank order is a violation of the principle of
independence of irrelevant alternatives.

Table 2 Simulation results as choice probabilities.

Choice scenarios average choice probabilities

competitor  target decoy
Binary
choice 0.500 0.500 -
Similarity effect 0.391 0.317 0.292
Attraction effect 0.419 0.564 0.017

Note. Each choice probability displayed here is the
average of choice probabilities for the corresponding
node calculated over 100 simulation runs.

Attraction Effect

Huber et al. (1982) showed that when the additional
alternative (a dominated decoy) is similar to and
obviously inferior to one of the alternatives (the
target) of the original choice set, the introduction of
this decoy will increase the probability of the target
being chosen more than that of the competitor. This
effect can potentially increase the probability that the
target is chosen, thereby leading to violation of an
axiom of rational choice, the regularity principle,
which states that adding additional alternatives into
the choice set would not increase the choice
probabilities of options in the original choice set (cf.
Huber et al., 1982). The violation of the regularity
principle is a stronger form of preference reversal
than the violation of independence of irrelevant
alternatives.

The same two-stage comparison is employed to
model the attraction effect, because the target and the
decoy are similar to each other and therefore form a
natural grouping. At the end of the binary
comparison, the target has an activation higher than
0.5, the baseline activation, due to its superiority as
compared to the decoy. This advantage in activation
is carried over to the trinary comparison, and as a
result the target has a relatively high activation and
choice probability at the end of the simulation run.
The dynamic process of the two-stage comparison is
shown in Figure 5, where the sudden change in

activation indicates the transition between the two
stages of comparison. The final choice probability of
the target is 0.564 (see Table 2). In the original
binary choice set, the target has a choice probability
of 0.5 (see Table 2); thus adding the decoy leads to a
violation of regularity principle.

Figure 4: Decision process of similarity
effect. Axes are the same as Figure 3. The
vertical dashed line indicates the transition
from binary comparison to trinary
comparison.

Figure 5: Decision process of attraction
effect. Axes are the same as Figure 3. The
vertical dashed line indicates the transition
from binary comparison to trinary
comparison.

In simulating both effects, the model still computes
a form of value maximization, however, the
computation is carried out in a local instead of global
manner during the first stage of comparison, due to
the categorization process in which two similar
alternatives are grouped and processed together
independently of the third alternative.



Conclusions

The connectionist model presented here explains two
perplexing empirical findings in choice behavior
using a straightforward neural network algorithm and
simple psychological principles. It has been argued
that the principle of value maximization underlying
rational choice is in conflict with some apparently
irrational choice behaviors (Simonson & Tversky,
1992). However, the present model shows that choice
behavior can be viewed as value maximization
constrained by categorization processes.

Roe et al. (2001) also used similarity relations to
account for the similarity and attraction effects. In
their neural network model, lateral inhibition among
alternatives is set in such a way that the more similar
two options are, the stronger is the lateral inhibition
between them. This differential inhibition provides a
foundation for modeling similarity-related findings.
In contrast, in the present model similarity is assumed
to lead to a grouping effect, which in turn leads to the
two-stage comparison process. Thus while both
models emphasize the role of similarity in choice
behavior, Roe et al.’s algorithm models the impact of
similarity by variations in a continuous parameter for
inhibition; whereas the present algorithm hold
inhibition constant and instead assumes that
similarity alters the grouping of options, leading to a
multi-stage comparison process. Further empirical
investigations will be required to distinguish between
these two possible mechanisms by which similarity
may modulate choice behavior.

The present model has several limitations that will
need to be addressed in future work. For example, the
choice scenario is constructed in a highly schematic
way, and more complex and realistic choice scenarios
need to be used in future studies. Also, the way the
connection weights are set by explicit equations is
rather artificial; future efforts need to address how
the weights may be acquired using a connectionist
learning mechanism. Perhaps most importantly, the
critical assumption that similar choices are grouped
together and therefore processed together in choice
behavior requires further empirical investigation.

The present model may have implications for
applied work. Expert systems based on the current
model can be developed to analyze and predict
choice behavior. In contrast to more traditional
axiom-based systems, such systems may make it
possible to analyze apparently irrational choice and
decision processes, thereby leading to more accurate
predictions of human decisions.
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