
Understanding Similarity in Choice Behavior: A Connectionist Model 
 

Frank Y. Guo (fyguo@ucla.edu) 
UCLA, Department of Psychology, 405 Hilgard Ave. 

Los Angeles, CA 90095-1563, USA 
 

Keith J. Holyoak (holyoak@psych.ucla.edu) 
UCLA, Department of Psychology, 405 Hilgard Ave. 

Los Angeles, CA 90095-1563, USA 
 

Abstract 

Classical choice theories assume choice behavior is 
based on value maximization computed over the entire 
choice set. However, empirical evidence has revealed 
violations of axioms of rational choice that cannot be 
explained by value maximization. We argue that 
choice behavior can be reconceptualized as value 
maximization constrained by categorization processes, 
and describe a neural network model developed to 
account for key empirical findings. The model 
simulates two important phenomena that have been 
construed as irrational choice behavior, namely, the 
similarity effect and the attraction effect. We argue 
that there are important commonalities among choice 
behavior, categorization and perception.  

Introduction 
Many axiomatic theories of choice behavior are 
based on the assumption that decision making is 
based on a process of value maximization performed 
over all attributes (c. f., Tversky & Simonson, 1993). 
However, empirical evidence has demonstrated that 
axioms of rational decision making are often violated 
in choice behavior, and value maximization alone is 
unable to explain these violations. Recently, an 
alternative perspective that is concerned with the 
relations between similarity processes and decision 
processes has been proposed to conceptualize choice 
behavior and to understand violations of rational 
decision making (Medin, Goldstone, & Markman, 
1995). That view has been embodied in a 
comprehensive computational model of choice 
behavior (Roe, Busemeyer, & Townsend, 2001). 

In the spirit of this alternative perspective, we have 
developed a connectionist model to account for two 
key violations of rational choice, namely, the 
similarity effect and the attraction effect. Both of 
these phenomena involve adding a third alternative 
(decoy) to a choice set of two options, thereby 
leading to inconsistency of choice. If the decoy is 
similar and competitive (two alternatives are 
competitive when their additive utilities are almost 
identical to each other) to one of the original options, 
then the addition of the decoy decreases the choice 
probability of that option. This phenomenon is called 

the similarity effect (Tversky, 1972). If the decoy is 
similar to and dominated by one of the two original 
alternatives but not the other, then the addition of the 
decoy increases the choice probability of the 
dominant option more than the other alternative. This 
phenomenon is referred to as the attraction effect 
(Huber, Payne, & Puto, 1982). Both phenomena can 
potentially lead to violations of rational choice. Few 
theories were able to provide an integrated 
explanation of both phenomena prior to the model 
proposed by Roe et al. (2001), which is a neural 
network instantiation of the decision field theory 
(Busemeyer & Townsend, 1993). That model 
explains the two effects (in addition to several other 
important choice phenomena) by taking into 
consideration similarity relations among options and 
the dynamic nature of decision processes. The model 
described here is similar to that of Roe et al. in that it 
also takes into account similarity among alternatives; 
however, the manner in which similarity is 
represented and processed differs between the two 
models. We will briefly discuss the relationship 
between the two models after we present our 
proposal. 

Neural network models have been one of the major 
modeling tools in cognitive science (Rumelhart, 
McClelland, & PDP Research Group, 1986). 
However, such models have had only limited 
applications to decision behavior (Holyoak & Simon, 
1999; Roe et al., 2001; Thagard & Millgram, 1995). 
The model we describe here, like that of Roe et al. 
(2001), uses a neural network approach to provide an 
account of the similarity and attraction effects.  

Operation of the Model  

Decision Scenario and Model Architecture 
The decision scenario used here is adapted from that 
used by Roe et al. (2001). The decision maker has to 
choose one car from a set of two or three alternatives 
by evaluating their ratings on two attributes: gas 
mileage and performance (see Figure 2). A simple 
neural network is constructed for this scenario. 
Figure 2 shows the architecture of the model, adapted 
from ECHO (Thagard, 1989), a neural network 



model of how people achieve coherence in making 
explanations. Two nodes represent the attributes, gas 
mileage and performance, and three others represent 
the three alternatives. One special node, labeled as 
External Driver in Figure 2, represents the 
motivational and attentional sources that drive the 
decision process. The lines between nodes represent 
node connections. Each attribute or alternative is thus 
represented by one node in the network, with 
relations among attributes and alternatives 
represented by   connection weights. 

Bidirectional excitatory links (represented by dark 
arrowheads in Figure 2) connect attribute nodes to 
their respective alternatives. The alternative nodes 
send out inhibitory influences (represented by empty 
arrowheads in Figure 2) to one another. Node 
activation ranges from 0.0 to 1.0. The special node, 
which drives the decision-making process, always 
feeds excitatory influence to the attribute nodes, 
thereby initiating and maintaining activation 
throughout the entire network. The special node has a 
constant activation of 1.0, and the weight of its 
connections to the attribute nodes is 0.05 (there are 
no reciprocal connections to the special node from 
the attribute nodes, as the former is intended to be the 
source of activation).  Because the three alternative 
nodes compete via inhibitory connections with one 
another, one winning node generally achieves a much 
higher activation than the rest. 

Setting Connection Weights and Initial 
Activations 
Initially, the connection weight between an attribute 
and an alternative node (called attribute-alternative 
weight from now on) is set to the rating of the 
alternative on the corresponding attribute. For 
example, in Figure 2, the option Target is rated 8 and 
2 on performance and gas mileage, respectively, so 
its initial weights are set to 8.0 and 2.0 for the 
performance-target and gas-mileage-target 
connections, respectively.  

Next, each initial weight is normalized: 
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Here, ijw  is the weight of the connection to node i 
from j. Weights are normalized according to their 
range; κ and η are maximum (set to 0.8) and 
minimum (set to 0.2) values for that range, 
respectively. Accordingly, the normalized weight  

 
Figure 1. A summary of the phenomena 
simulated. The letters S and A stand for 
where the decoy is positioned: Decoy S 
yields the similarity effect; decoy A yields 
the attraction effect. The numbers in 
parentheses are the attribute ratings of the 
nearby alternative: The first number is the 
rating of that alternative on gas mileage and 
the second number is its rating on 
performance. 

 
 

Figure 2: The architecture of the model. 
Choice 1, Choice 2 and Choice 3 are the 
alternatives, and Gas Mileage and 
Performance are the attributes. External 
Driver represents the motivational and 
attentional sources that drive the decision 
process. 
 

should always be within the range of 0.2 to 0.8. The 
choice of this range is arbitrary, but it reflects the 



assumption that the perception of an attribute value 
should never actually reach 0, which can be viewed 
as reflecting no value at all, nor should it reach 1, 
which can be viewed as reflecting sublime 
satisfaction. The range of actual attribute value is 
computed by max(w) - min(w), where max(w) and 
min(w) are the largest and smallest attribute values 
obtained for all attributes. 

The attribute-alternative weights as defined in 
Equation 1 are linearly related to the actual attribute 
ratings. In choice behavior, we are concerned with a 
subjective measure of utility in which the impact of a 
given increase in rating declines with the absolute 
magnitude of the rating. Accordingly, attribute-
alternative weights are transformed: 
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Here, both l and λ are constants. After exploration of 
the parameter space, l was set to 1.4 and λ was set to 
0.5 to achieve good simulation results.  Equation 2 
describes a basic psychophysical function in which 
sensitivity to an increase of stimulus strength declines 
as the stimulus strength increases. Finally, weights 
undergo a linear transformation specified by 
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Here, τ (set to 4.0) is a parameter intended to 
amplify the attribute-alternative weights so that the 
same difference between attribute values now has a 
larger impact on node activations (see Equations 4 
and 5). Finally, these weights are divided by 10.0 so 
that they are kept reasonably small in relation to node 
activations. Although the model has several 
parameters, and specific values for them were 
selected after extensive search of parameter space, 
the choices of parameter values do not affect the 
underlying conceptual framework of the model. 
Moreover, it is very likely that other sets of 
parameter values exist that would allow the model to 
exhibit desired behavior.  

The inhibitory connections among the alternative 
nodes are all set to -0.60. The initial activations are 
set to 1.0 for the special node and 0.5 for all other 
nodes (0.5 is the middle point of the activation range, 
0.0 - 1.0). To increase psychological realism, some 
randomness is introduced: The initial activation of an 
alternative node is a random number within the range 
of 0.5 + 0.01.  The generation of random numbers 
conforms to a uniform distribution. There is no 
randomness for the activations of the special node 
and the attribute nodes. 

Running the Model 
The model runs in an iterative fashion. In each 
iteration the activation of a node is updated by a 
commonly-used activation function, 
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ai(t+1) is the activation of node i at iteration t + 1; it 
is a function of ai(t), the activation of the same node 
at the previous iteration. MAX and MIN are the upper 
(1.0) and lower (0.0) limits of node activation. θ (set 
to 0.015) is a decay parameter specifying how much 
the activation decays in each iteration, and γ (set to 
0.12) is a growth rate specifying the increment of 
activation as a function of the input. The parameter 
inputi is the total influence received by node i from 
other nodes connected to it, specified by 
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The model runs iteratively according to Equations 
4 and 5 until the activation of each node no longer 
changes from the previous iteration by more than a 
settling criterion (set to 0.001 here). According to 
Equation 4, a major determinant of node activation is 
the total input a node receives from other nodes; and 
according to Equation 5, this input depends on the 
attribute-alternative weights. It follows that an 
alternative with a high additive attribute rating tends 
to have a higher node activation than those with low 
additive attribute ratings; this is an instantiation of 
the value maximization principle, which implies that 
the winning choice should have the highest additive 
utility summed across all attributes.  

The choice probability of an alternative depends on 
the activation of the corresponding node. Luce’s 
(1959) choice model is used to convert the activation 
into choice probability for alternative i: 
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Simulations and Results 
The two phenomena simulated are schematized in 
Figure 1. For each phenomenon, 100 simulations 
were run and the results were averaged for each 
attribute and alternative. The averaged results are 
presented both as node activations, which are the 
final activation values of the nodes (see Table 1), and 



choice probabilities, which are converted from 
activations using Equation 6 (see Table 2). 

  
 

Figure 3: Decision process of binary choice. 
The activation of alternative nodes is plotted 
as a function of number of iterations. 

Binary Choice 
The original choice set contains two alternatives, one 
of which is arbitrarily selected as the target, and the 
other the competitor (see Figure 1). Both cars receive 
ratings on a 10-point (1 - 10) scale for gas mileage 
and     performance. To simplify the choice scenario, 
the two options are made equal in terms of additive 
attribute rating: The competitor is rated 8 on gas 
mileage and 2 on performance, whereas the target is 
rated 2 on gas mileage and 8 on performance. It is a 
trivial prediction that (assuming the two attributes are 
equally important) the two alternatives should be 
equally likely to be chosen. The model makes this 
prediction: when these two alternatives are equally 
attractive, both have a 50% chance of being chosen 
(see Table 2). 

Similarity Effect  
If the decoy is similar and competitive compared to 
one of the two original choices, the target, the 
introduction of the decoy reduces the probability of 

the target being chosen relative to that of the other 
choice in the original set, the competitor. This 
similarity effect (Tversky, 1972) can lead to a 
violation of an axiom of rational choice, 
independence of irrelevant alternatives, which 
implies that adding an alternative to a choice set will 
not alter the rank order of the original options. To 
produce a similarity effect, the decoy should be 
roughly as good as the target in terms of additive 
attribute rating. In the simulation, the decoy is chosen 
to have attribute values of 2.5 and 6.5 for gas mileage 
and performance, respectively (see Figure 1).  

 To model the similarity effect, we first run the 
model on a choice set that includes only the target 
and the decoy. After the network settles for that 
comparison, we run it on the entire set of three 
alternatives. The psychological rationale is that 
because the target and the decoy are similar to each 
other, they are grouped together in a manner similar 
to a perceptual grouping (e.g., in visual perception, 
when two shapes are close to each other, they are 
perceived as belonging to the same cluster). Our 
assumption is that the two similar alternatives are 
perceived as belonging to the same category, and 
therefore are compared to each other before all three 
alternatives are compared. 

The simulation was thus divided into two stages: a 
binary comparison in which only the target and the 
decoy were compared, and a trinary comparison in 
which all three alternatives were compared. The 
activations are carried over from the first to the 
second stage; accordingly, any activation differences 
from the first stage will have an effect on the second 
stage. At the end of the binary-comparison stage, the 
target has an activation lower than 0.5, the baseline 
activation, due to its competition with the decoy. This 
low activation is carried over to the trinary-
comparison stage, where the competitor joins the 
comparison with the default initial activation of 0.5. 
Thus in the trinary-comparison stage the target starts 
with a lower activation as compared to the 
competitor; as a result, the target attains a lower 
activation and choice probability as compared to the 

 Table 1: Simulation results as node activations. 
  
Choice scenarios       average node activations 
   gas mileage  performance  competitor  target   decoy 
Binary choice  0.647 0.647 0.398 0.398  ----- 
Similarity effect 0.695 0.729 0.424 0.343  0.317 
Attraction effect 0.708 0.741 0.465 0.627  0.019 
Note. Each node activation displayed here is the average of activations for the corresponding node  
calculated over 100 simulation runs. 

 



competitor at the end of simulation. The dynamic 
process of the two-stage comparison is shown in 
Figure 4, where the sudden change in activation 
indicates the transition from the first to the second 
stage. The final choice probabilities of the target and 
the competitor are 0.317 and 0.391 respectively (see 
Table 2), indicating that the competitor ranks higher 
in terms of preference. Since in the binary choice the 
choice probabilities of the two alternatives are equal, 
the altered rank order is a violation of the principle of 
independence of irrelevant alternatives. 

Attraction Effect 
Huber et al. (1982) showed that when the additional 
alternative (a dominated decoy) is similar to and 
obviously inferior to one of the alternatives (the 
target) of the original choice set, the introduction of 
this decoy will increase the probability of the target 
being chosen more than that of the competitor. This 
effect can potentially increase the probability that the 
target is chosen, thereby leading to violation of an 
axiom of rational choice, the regularity principle, 
which states that adding additional alternatives into 
the choice set would not increase the choice 
probabilities of options in the original choice set (cf. 
Huber et al., 1982). The violation of the regularity 
principle is a stronger form of preference reversal 
than the violation of independence of irrelevant 
alternatives. 

The same two-stage comparison is employed to 
model the attraction effect, because the target and the 
decoy are similar to each other and therefore form a 
natural grouping. At the end of the binary 
comparison, the target has an activation higher than 
0.5, the baseline activation, due to its superiority as 
compared to the decoy. This advantage in activation 
is carried over to the trinary comparison, and as a 
result the target has a relatively high activation and 
choice probability at the end of the simulation run. 
The dynamic process of the two-stage comparison is 
shown in Figure 5, where the sudden change in 

activation indicates the transition between the two 
stages of comparison. The final choice probability of 
the target is 0.564 (see Table 2). In the original 
binary choice set, the target has a choice probability 
of 0.5 (see Table 2); thus adding the  decoy leads to a 
violation of regularity principle. 

 

 
 
Figure 4: Decision process of similarity 
effect. Axes are the same as Figure 3. The 
vertical dashed line indicates the transition 
from binary comparison to trinary 
comparison. 
 

  
 
Figure 5: Decision process of attraction 
effect. Axes are the same as Figure 3. The 
vertical dashed line indicates the transition 
from binary comparison to trinary 
comparison. 

 
In simulating both effects, the model still computes 

a form of value maximization; however, the 
computation is carried out in a local instead of global 
manner during the first stage of comparison, due to 
the categorization process in which two similar 
alternatives are grouped and processed together 
independently of the third alternative.  

Table 2  Simulation results as choice probabilities. 
   
Choice scenarios         average choice probabilities
    competitor   target  decoy 
Binary 
choice   0.500  0.500 ----- 
Similarity effect  0.391  0.317 0.292 
Attraction effect  0.419  0.564 0.017 
Note. Each choice probability displayed here is the 
average of choice probabilities for the corresponding 
node calculated over 100 simulation runs. 

 



Conclusions 
The connectionist model presented here explains two 
perplexing empirical findings in choice behavior 
using a straightforward neural network algorithm and 
simple psychological principles. It has been argued 
that the principle of value maximization underlying 
rational choice is in conflict with some apparently 
irrational choice behaviors (Simonson & Tversky, 
1992). However, the present model shows that choice 
behavior can be viewed as value maximization 
constrained by categorization processes.  

 Roe et al. (2001) also used similarity relations to 
account for the similarity and attraction effects. In 
their neural network model, lateral inhibition among 
alternatives is set in such a way that the more similar 
two options are, the stronger is the lateral inhibition 
between them. This differential inhibition provides a 
foundation for modeling similarity-related findings. 
In contrast, in the present model similarity is assumed 
to lead to a grouping effect, which in turn leads to the 
two-stage comparison process. Thus while both 
models emphasize the role of similarity in choice 
behavior, Roe et al.’s algorithm models the impact of 
similarity by variations in a continuous parameter for 
inhibition; whereas the present algorithm hold 
inhibition constant and instead assumes that 
similarity alters the grouping of options, leading to a 
multi-stage comparison process. Further empirical 
investigations will be required to distinguish between 
these two possible mechanisms by which similarity 
may modulate choice behavior. 

 The present model has several limitations that will 
need to be addressed in future work. For example, the 
choice scenario is constructed in a highly schematic 
way, and more complex and realistic choice scenarios 
need to be used in future studies. Also, the way the 
connection weights are set by explicit equations is 
rather artificial; future efforts need to address how 
the weights may be  acquired using a connectionist 
learning mechanism. Perhaps most importantly, the 
critical assumption that similar choices are grouped 
together and therefore processed together in choice 
behavior requires further empirical investigation. 

The present model may have implications for 
applied work. Expert systems based on the current 
model can be developed to analyze and predict 
choice behavior. In contrast to more traditional 
axiom-based systems, such systems may make it 
possible to analyze apparently irrational choice and 
decision processes, thereby leading to more accurate 
predictions of human decisions. 
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