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Abstract

Semantic networks produced from human data have
statistical properties that cannot be easily captured
by spatial representations. We explore a probabilis-
tic approach to semantic representation that explic-
itly models the probability with which words occur
in different contexts, and hence captures the proba-
bilistic relationships between words. We show that
this representation has statistical properties consis-
tent with the large-scale structure of semantic net-
works constructed by humans, and trace the origins
of these properties.

Contemporary accounts of semantic representa-
tion suggest that we should consider words to be
either points in a high-dimensional space (eg. Lan-
dauer & Dumais, 1997), or interconnected nodes in a
semantic network (eg. Collins & Loftus, 1975). Both
of these ways of representing semantic information
provide important insights, but also have shortcom-
ings. Spatial approaches illustrate the importance
of dimensionality reduction and employ simple al-
gorithms, but are limited by Euclidean geometry.
Semantic networks are less constrained, but their
graphical structure lacks a clear interpretation.

In this paper, we view the function of associa-
tive semantic memory to be efficient prediction of
the concepts likely to occur in a given context. We
take a probabilistic approach to this problem, mod-
eling documents as expressing information related
to a small number of topics (cf. Blei, Ng, & Jordan,
2002). The topics of a language can then be learned
from the words that occur in different documents.
We illustrate that the large-scale structure of this
representation has statistical properties that corre-
spond well with those of semantic networks produced
by humans, and trace this to the fidelity with which
it reproduces the natural statistics of language.

Approaches to semantic representation
Spatial approaches Latent Semantic Analysis
(LSA; Landauer & Dumais, 1997) is a procedure
for finding a high-dimensional spatial representation
for words. LSA uses singular value decomposition
to factorize a word-document co-occurrence matrix.
An approximation to the original matrix can be ob-
tained by choosing to use less singular values than

its rank. One component of this approximation is a
matrix that gives each word a location in a high di-
mensional space. Distances in this space are predic-
tive in many tasks that require the use of semantic
information. Performance is best for approximations
that used less singular values than the rank of the
matrix, illustrating that reducing the dimensional-
ity of the representation can reduce the effects of
statistical noise and increase efficiency.

While the methods behind LSA were novel in scale
and subject, the suggestion that similarity relates to
distance in psychological space has a long history
(Shepard, 1957). Critics have argued that human
similarity judgments do not satisfy the properties of
Euclidean distances, such as symmetry or the tri-
angle inequality. Tversky and Hutchinson (1986)
pointed out that Euclidean geometry places strong
constraints on the number of points to which a par-
ticular point can be the nearest neighbor, and that
many sets of stimuli violate these constraints. The
number of nearest neighbors in similarity judgments
has an analogue in semantic representation. Nelson,
McEvoy and Schreiber (1999) had people perform a
word association task in which they named an as-
sociated word in response to a set of target words.
Steyvers and Tenenbaum (submitted) noted that the
number of unique words produced for each target fol-
lows a power law distribution: if k is the number of
words, P (k) ∝ kγ . For reasons similar to those of
Tversky and Hutchinson, it is difficult to produce a
power law distribution by thresholding cosine or dis-
tance in Euclidean space. This is shown in Figure 1.
Power law distributions appear linear in log-log co-
ordinates. LSA produces curved log-log plots, more
consistent with an exponential distribution.

Semantic networks Semantic networks were pro-
posed by Collins and Quillian (1969) as a means
of storing semantic knowledge. The original net-
works were inheritance hierarchies, but Collins and
Loftus (1975) generalized the notion to cover arbi-
trary graphical structures. The interpretation of this
graphical structure is vague, being based on connect-
ing nodes that “activate” one another. Steyvers and
Tenenbaum (submitted) constructed a semantic net-
work from the word association norms of Nelson et
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Figure 1: The left panel shows the distribution of the
number of associates named for each target in a word
association task. The right shows the distribution
of the number of words above a cosine threshold for
each target in LSA spaces of dimension d, where the
threshold was chosen to match the empirical mean.

al. (1999), connecting words that were produced as
responses to one another. In such a semantic net-
work, the number of associates of a word becomes
the number of edges of a node, termed its “degree”.
Steyvers and Tenenbaum found that the resulting
graph had the statistical properties of “small world”
graphs, of which a power law degree distribution is
a feature (Barabasi & Albert, 1999).

The fact that semantic networks can display these
properties reflects their flexibility, but there is no in-
dication that the same properties would emerge if
such a representation were learned rather than con-
structed by hand. In the remainder of the paper, we
present a probabilistic method for learning a rep-
resentation from word-document co-occurences that
reproduces some of the large-scale statistical prop-
erties of semantic networks constructed by humans.

A probabilistic approach
Anderson’s (1990) rational analysis of memory and
categorization takes prediction as the goal of the
learner. Analogously, we can view the function of
associative semantic memory to be the prediction
of which words are likely to arise in a given con-
text, ensuring that relevant semantic information is
available when needed. Simply tracking how often
words occur in different contexts is insufficient for
this task, as it gives no grounds for generalization.
If we assume that the words that occur in different
contexts are drawn from T topics, and each topic
can be characterized by a probability distribution
over words, then we can model the distribution over
words in any one context as a mixture of those top-
ics

P (wi) =

T∑

j=1

P (wi|zi = j)P (zi = j)

where zi is a latent variable indicating the topic
from which the ith word was drawn and P (wi|zi = j)
is the probability of the ith word under the jth topic.
The words likely to be used in a new context can
be determined by estimating the distribution over
topics for that context, corresponding to P (zi).

Intuitively, P (w|z = j) indicates which words are
important to a topic, while P (z) is the prevalence
of those topics within a document. For example,
imagine a world where the only topics of conversa-
tion are love and research. In such a world we could
capture the probability distribution over words with
two topics, one relating to love and the other to re-
search. The difference between the topics would be
reflected in P (w|z = j): the love topic would give
high probability to words like joy, pleasure, or heart,
while the research topic would give high probability
to words like science, mathematics, or experiment.
Whether a particular conversation concerns love, re-
search, or the love of research would depend upon
the distribution over topics, P (z), for that particu-
lar context.

Formally, our data consist of words w =
{w1, . . . , wn}, where each wi belongs to some doc-
ument di, as in a word-document co-occurrence ma-
trix. For each document we have a multinomial dis-
tribution over the T topics, with parameters θ(di),
so for a word in document di, P (zi = j) = θ(di)

j .
The jth topic is represented by a multinomial dis-
tribution over the W words in the vocabulary, with
parameters φ(j), so P (wi|zi = j) = φ(j)

wi . To make
predictions about new documents, we need to as-
sume a prior distribution on the parameters θ(di).
The Dirichlet distribution is conjugate to the multi-
nomial, so we take a Dirichlet prior on θ(di).

This probability model is a generative model: it
gives a procedure by which documents can be gen-
erated. First we pick a distribution over topics from
the prior on θ, which determines P (zi) for words
in that document. Each time we want to add a
word to the document, we pick a topic according
to this distribution, and then pick a word from that
topic according to P (wi|zi = j), which is determined
by φ(j). This generative model was introduced by
Blei et al. (2002), improving upon Hofmann’s (1999)
probabilistic Latent Semantic Indexing (pLSI). Us-
ing few topics to represent the probability distribu-
tions over words in many documents is a form of
dimensionality reduction, and has an elegant geo-
metric interpretation (see Hofmann, 1999).

This approach models the frequencies in a word-
document co-occurrence matrix as arising from a
simple statistical process, and explores the parame-
ters of this process. The result is not an explicit rep-
resentation of words, but a representation that cap-
tures the probabilistic relationships among words.
This representation is exactly what is required for
predicting when words are likely to be used. Be-
cause we treat the entries in a word-document co-
occurrence matrix as frequencies, the representation
developed from this information is sensitive to the
natural statistics of language. Using a generative
model, in which we articulate the assumptions about
how the data were generated, ensures that we are



able to form predictions about which words might
be seen in a new document.

Blei et al. (2002) gave an algorithm for finding
estimates of φ(j) and the hyperparameters of the
prior on θ(di) that correspond to local maxima of
the likelihood, terming this procedure Latent Dirich-
let Allocation (LDA). Here, we use a symmetric
Dirichlet(α) prior on θ(di) for all documents, a sym-
metric Dirichlet(β) prior on φ(j) for all topics, and
Markov chain Monte Carlo for inference. An advan-
tage of this approach is that we do not need to ex-
plicitly represent the model parameters: we can in-
tegrate out θ and φ, defining model simply in terms
of the assignments of words to topics indicated by
the zi. 1

Markov chain Monte Carlo is a procedure for ob-
taining samples from complicated probability distri-
butions, allowing a Markov chain to converge to the
target distribution and then drawing samples from
the Markov chain (see Gilks, Richardson & Spiegel-
halter, 1996). Each state of the chain is an assign-
ment of values to the variables being sampled, and
transitions between states follow a simple rule. We
use Gibbs sampling, where the next state is reached
by sequentially sampling all variables from their dis-
tribution when conditioned on the current values of
all other variables and the data. We will sample only
the assignments of words to topics, zi. The condi-
tional posterior distribution for zi is given by

P (zi = j|z−i,w) ∝
n(wi)
−i,j + β

n(·)
−i,j + Wβ

n(di)
−i,j + α

n(di)
−i,· + Tα

(1)

where z−i is the assignment of all zk such that k ̸= i,
and n(wi)

−i,j is the number of words assigned to topic
j that are the same as wi, n(·)

−i,j is the total number
of words assigned to topic j, n(di)

−i,j is the number
of words from document di assigned to topic j, and
n(di)
−i,· is the total number of words in document di, all

not counting the assignment of the current word wi.
α,β are free parameters that determine how heavily
these empirical distributions are smoothed.

The Monte Carlo algorithm is then straightfor-
ward. The zi are initialized to values between 1 and
T , determining the initial state of the Markov chain.
The chain is then run for a number of iterations,
each time finding a new state by sampling each zi

from the distribution specified by Equation 1. Af-
ter enough iterations for the chain to approach the
target distribution, the current values of the zi are
recorded. Subsequent samples are taken after an ap-
propriate lag, to ensure that their autocorrelation is
low. Gibbs sampling is used in each of the following
simulations in order to explore the consequences of
this probabilistic approach.

1A detailed derivation of the conditional probabilities
used here is given in a technical report available at
http://www-psych.stanford.edu/∼gruffydd/cogsci02/lda.ps

Simulation 1:
Learning topics with Gibbs sampling

The aim of this simulation was to establish the sta-
tistical properties of the sampling procedure and to
qualitatively assess its results, as well as to demon-
strate that complexities of language like polysemy
and behavioral asymmetries are naturally captured
by our approach. We took a subset of the TASA
corpus (Landauer, Foltz, & Laham, 1998), using the
4544 words that occurred both in the word associa-
tion norm data and at least 10 times in the complete
corpus, together with a random set of 5000 docu-
ments. The total number of words occurring in this
subset of the corpus, and hence the number of zi to
be sampled, was n = 395853. We set the parame-
ters of the model so that 150 topics would be found
(T = 150), with α = 0.1, β = 0.01.

The initial state of the Markov chain was estab-
lished with an online learning procedure. Initially,
none of the wi were assigned to topics. The zi were
then sequentially drawn according to Equation 1
where each of the frequencies involved, as well as W ,
reflected only the words that had already been as-
signed to topics.2 This initialization procedure was
used because it was hoped that it would start the
chain at a point close to the true posterior distribu-
tion, speeding convergence.

Ten runs of the Markov chain were conducted,
each lasting for 2000 iterations. On each iteration
we computed the average number of topics to which
a word was assigned, ⟨k⟩, which was used to evaluate
the sampling procedure for large scale properties of
the representation. Specifically, we were concerned
about convergence and the autocorrelation between
samples. The rate of convergence was assessed using
the Gelman-Rubin statistic R̂, which remained be-
low 1.2 after 25 iterations. The autocorrelation was
less than 0.1 after a lag of 50 iterations.

A single sample was drawn from the first run of the
Markov chain after 2000 iterations. A subset of the
150 topics found by the model are displayed in Table
1, with words in each column corresponding to one
topic, and ordered by the frequency with which they
were assigned to that topic. The topics displayed are
not necessarily the most interpretable found by the
model, having been selected only to highlight the
way in which polysemy is naturally dealt with by
this representation. More than 90 of the 150 topics
appeared to have coherent interpretations.3

The word association data of Nelson et al. (1999)
contain a number of asymmetries – cases where peo-
ple were more likely to produce one word in response
to the other. Such asymmetries are hard to ac-

2Random numbers used in all simulations were gener-
ated with the Mersenne Twister, which has an extremely
deep period (Matsumoto & Nishimura, 1998).

3The 20 most frequent words in these topics are listed
at http://www-psych.stanford.edu/∼gruffydd/cogsci02/topics.txt



COLD TREES COLOR FIELD GAME ART BODY KING LAW
WINTER TREE BLUE CURRENT PLAY MUSIC BLOOD GREAT RIGHTS

WEATHER FOREST RED ELECTRIC BALL PLAY HEART SON COURT
WARM LEAVES GREEN ELECTRICITY TEAM PART MUSCLE LORDS LAWS

SUMMER GROUND LIKE TWO PLAYING SING FOOD QUEEN ACT
SUN PINE WHITE FLOW GAMES LIKE OTHER EMPEROR LEGAL

WIND GRASS BROWN WIRE FOOTBALL POETRY BONE OWN STATE
SNOW LONG BLACK SWITCH BASEBALL BAND MADE PALACE PERSON
HOT LEAF YELLOW TURN FIELD WORLD SKIN DAY CASE

CLIMATE CUT LIGHT BULB SPORTS RHYTHM TISSUE PRINCE DECISION
YEAR WALK BRIGHT BATTERY PLAYER POEM MOVE LADY CRIME
RAIN SHORT DARK PATH COACH SONG STOMACH CASTLE IMPORTANT
DAY OAK GRAY CAN LIKE LITERATURE PART ROYAL JUSTICE

SPRING FALL MADE LOAD HIT SAY OXYGEN MAN FREEDOM
LONG GREEN LITTLE LIGHT TENNIS CHARACTER THIN MAGIC ACTION
FALL FEET TURN RADIO SPORT AUDIENCE SYSTEM COURT OWN
HEAT TALL WIDE MOVE BASKETBALL THEATER CHEST HEART SET
ICE GROW SUN LOOP LEAGUE OWN TINY GOLDEN LAWYER
FEW WOODS PURPLE DEVICE FUN KNOWN FORM KNIGHT YEARS

GREAT WOOD PINK DIAGRAM BAT TRAGEDY BEAT GRACE FREE

Table 1: Nine topics from the single sample in Simulation 1. Each column shows 20 words from one topic,
ordered by the number of times that word was assigned to the topic. Adjacent columns share at least one
word. Shared words are shown in boldface, providing some clear examples of polysemy

count for in spatial representations because distance
is symmetric. The generative structure of our model
allows us to calculate P (w2|w1), the probability that
the next word seen in a novel context will be w2,
given that the first word was w1. Since this is a
conditional probability, it is inherently asymmetric.
The asymmetries in P (w2|w1) predict 77.47% of the
asymmetries in the word association norms of Nel-
son et al. (1999), restricted to the 4544 words used
in the simulation. These results are driven by word
frequency: P (w2) should be close to P (w2|w1), and
77.32% of the asymmetries could be predicted by the
frequency of words in this subset of the TASA cor-
pus. The slight improvement in performance came
from cases where word frequencies were very similar
or polysemy made overall frequency a poor indicator
of the frequency of a particular sense of a word.

Bipartite semantic networks

The standard conception of a semantic network is
a graph with edges between word nodes. Such a
graph is unipartite: there is only one type of node,
and those nodes can be interconnected freely. In
contrast, bipartite graphs consist of nodes of two
types, and only nodes of different types can be con-
nected. We can form a bipartite semantic network
by introducing a second class of nodes that medi-
ate the connections between words. One example of
such a network is a thesaurus: words are organized
topically, and a bipartite graph can be formed by
connecting words to the topics in which they occur,
as illustrated in the left panel of Figure 2.

Steyvers and Tenenbaum (submitted) discovered
that bipartite semantic networks constructed by hu-
mans, such as that corresponding to Roget’s (1911)
Thesaurus, share the statistical properties of unipar-
tite semantic networks. In particular, the number of
topics in which a word occurs, or the degree of that
word in the graph, follows a power law distribution
as shown in the right panel of Figure 2. This result
is reminiscent of Zipf’s (1965) “law of meaning”: the

number of meanings of a word follows a power law
distribution. Zipf’s law was established by analyz-
ing dictionary entries, but appears to describe the
same property of language.

word word word word word

topic topic topic
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k
P(

k)

γ = −3.65
<k> = 1.69

Figure 2: The left panel shows a bipartite semantic
network. The right shows the degree distribution a
network constructed from Roget’s Thesaurus.

Our probabilistic approach specifies a probability
distribution over the allocation of words to topics. If
we form a bipartite graph by connecting words to the
topics in which they occur, we obtain a probability
distribution over such graphs. The existence of an
edge between a word and a topic indicates that the
word has some significant probability of occurring in
that topic. In the following simulations, we explore
whether the distribution over bipartite graphs re-
sulting from our approach is consistent with the sta-
tistical properties of Roget’s Thesaurus and Zipf’s
law of meaning. In particular, we examine whether
we obtain structures that have a power law degree
distribution.

Simulation 2:
Power law degree distributions

We used Gibbs sampling to obtain samples from
the posterior distribution of the zi for two word-
document co-occurrence matrices: the matrix with
the 4544 words from the word association norms
used in Simulation 1, and a second matrix using
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Figure 3: Degree distributions for networks constructed in Simulations 2 and 3. All are on the same axes.

4544 words drawn at random from those occurring
at least 10 times in the TASA corpus (n = 164401).
Both matrices used the same 5000 random docu-
ments. For each matrix, 100 samples were taken
with T = 50, 100, 150, 200 and 250. Since the re-
sults seemed unaffected by the number of topics, we
will focus on T = 50, 150, 250. Ten samples were
obtained in each of 10 separate runs with a burn-in
of 1000 iterations in which no samples were drawn,
and a between-sample lag of 100 iterations.

For each sample, a bipartite semantic network was
constructed by connecting words to the topics to
which they were assigned. For each network, the
degree of each word node was averaged over the 100
samples.4 The resulting distributions were clearly
power-law, as shown in Figure 3. The γ coefficients
remained within a small range and were all close
to γ = −3.65 for Roget’s Thesaurus. As is to be
expected, the average degree increased as more top-
ics were made available, and was generally higher
than Roget’s. Semantic networks in which edges are
added for each assignment tend to be quite densely
connected. Sparser networks can be produced by
setting a more conservative threshold for the inclu-
sion of an edge, such as multiple assignments of a
word to a topic, or exceeding some baseline proba-
bility in the distribution represented by that topic.

Our probabilistic approach produces power law
degree distributions, in this case indicating that the
number of topics to which a word is assigned follows
a power law. This result is very similar to the prop-
erties of Roget’s Thesaurus and Zipf’s observations
about dictionary definitions. This provides an op-

4Since power law distributions can be produced by av-
eraging exponentials, we also inspected individual sam-
ples to confirm that they had the same characteristics.

portunity to establish the origin of this distribution,
to see whether it is a consequence of the modeling
approach or a basic property of language.

Simulation 3:
Origins of the power law

To investigate the origins of the power law, we first
established that our initialization procedure was not
responsible for our results. Using T = 150 and the
matrix with random words, we obtained 100 samples
of the degree distribution immediately following ini-
tialization. As can be seen in Figure 3, this produced
a curved log-log plot and higher values of γ and ⟨k⟩
than in Simulation 2.

The remaining analyses employed variants of this
co-occurrence matrix, and their results are also pre-
sented in Figure 3. The first variant kept word fre-
quency constant, but assigned instances of words to
documents at random, disrupting the co-occurrence
structure. Interestingly, this appeared to have only
a weak effect on the results, although the curva-
ture of the resulting plot did increase. The second
variant forced the frequencies of all words to be as
close as possible to the median frequency. This was
done by dividing all entries in the matrix by the
frequency of that word, multiplying by the median
frequency, and rounding to the nearest integer. The
total number of instances in the resulting matrix was
n = 156891. This manipulation reduced the aver-
age density in the resulting graph considerably, but
the distribution still appeared to follow a power law.
The third variant held the number of documents in
which a word participated constant. Word frequen-
cies were only weakly affected by this manipulation,
which spread the instances of each word uniformly
over the top five documents in which it occurred



and then rounded up to the nearest integer, giving
n = 174615. Five was the median number of docu-
ments in which words occurred, and documents were
chosen at random for words below the median. This
manipulation had a strong effect on the degree dis-
tribution, which was no longer power law, or even
monotonically decreasing.

The distribution of the number of topics in which
a word participates was strongly affected by the dis-
tribution of the number of documents in which a
word occurs. Examination of the latter distribution
in the TASA corpus revealed that it follows a power
law. Our approach produces a power law degree dis-
tribution because it accurately captures the natural
statistics of these data, even as it constructs a lower-
dimensional representation.

General Discussion
We have taken a probabilistic approach to the prob-
lem of semantic representation, motivated by con-
sidering the function of associative semantic mem-
ory. We assume a generative model where the words
that occur in each context are chosen from a small
number of topics. This approach produces a lower-
dimensional representation of a word-document co-
occurrence matrix, and explicitly models the fre-
quencies in that matrix as probability distributions.
Simulation 1 showed that our approach could ex-
tract coherent topics, and naturally deal with issues
like polysemy and asymmetries that are hard to ac-
count for in spatial representations. In Simulation 2,
we showed that this probabilistic approach was also
capable of producing representations with a large-
scale structure consistent with semantic networks
constructed from human data. In particular, the
number of topics to which a word was assigned fol-
lowed a power law distribution, as in Roget’s (1911)
Thesaurus and Zipf’s (1965) law of meaning. In Sim-
ulation 3, we discovered that the only manipulation
that would remove the power law was altering the
number of documents in which words participate,
which follows a power law distribution itself.

Steyvers and Tenenbaum (submitted) suggested
that power law distributions in language might be
traced to some kind of growth process. Our results
indicate that this growth process need not be a part
of the learning algorithm, if the algorithm is faith-
ful to the statistics of the data. While we were able
to establish the origins of the power law distribu-
tion in our model, the growth processes described by
Steyvers and Tenenbaum might contribute to under-
standing the origins of the power law distribution in
dictionary meanings, thesaurus topics, and the num-
ber of documents in which words participate.

The representation learned by our probabilistic
approach is not explicitly a representation of words,
in which each word might be described by some set of
features. Instead, it is a representation of the prob-
abilistic relationships between words, as expressed

by their probabilities of arising in different contexts.
We can easily compute important statistical quan-
tities from this representation, such as P (w2|w1),
the probability of w2 arising in a particular context
given that w1 was observed, and more complicated
conditional probabilities. One advantage of an ex-
plicitly probabilistic representation is that we gain
the opportunity to incorporate this representation
into other probabilistic models. In particular, we
see great potential for using this kind of represen-
tation in understanding the broader phenomena of
human memory.
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