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Abstract

This paper argues that interactive knowledge ac-
quisition tools would benefit from a tighter and
more thorough incorporation of tutoring and learn-
ing principles. Current systems learn from users in
a very passive and disengaged manner, and could
be designed to incorporate the proactive capabili-
ties that one expects of a good student. This pa-
per points out what tutoring and learning principles
have been used to date in the acquisition literature,
though unintentionally and implicitly. We discuss
how a more thorough and explicit representation
of these principles would help improve enormously
how computers learn from users.

Introduction

Computers have long been considered an invaluable
tool for education. Intelligent tutoring systems and
other kinds of educational software show how people
can acquire knowledge about diverse topics by inter-
acting with a computer. Given our reliance in com-
puters for the future of education, we need to realize
that an important component of the human educa-
tion revolution is the computer education revolution:
anyone should be able to teach computers on topics
that are of value, so that anyone can learn about
those topics from computers. So an important ques-
tion is: how will computers acquire knowledge? In
most cases knowledge is entered by hand by software
or knowledge engineers, as is often done in intelligent
tutoring systems (Forbus & Feltovich, 2001). This
limits severely the utility of the tools, as it would be
more desirable that the people with expertise in the
domain at hand would be the knowledge providers.
Knowledge can also be extracted from text (Cowie
& Lehnert, 1996), although given the error rates of
state of the art systems and the kinds of knowledge
they acquire (mostly instance-level information) it
will take many years for these techniques to be of
practical use to build an accurate body of knowl-
edge about a topic domain. Another possibility is to
use interactive knowledge acquisition tools that help
users enter knowledge. In recent years these systems
have shown that end users with no background in
computer science or knowledge representation were
able to enter sizeable amounts of knowledge (Kim &
Gil, 1999; Eriksson et al, 1995; Clark et al, 2001).

Although interactive knowledge acquisition tools
enable end users to enter knowledge, users remain
largely responsible for the acquisition process, both
the teaching side and the learning side. These tools
are quite passive in terms of formulating or pursuing
learning goals, keeping track of the flow of a lesson,
and generally assess how much they are learning and
how useful that knowledge is. At the same time,
users are not necessarily skilled teachers by nature,
so being in a position to teach a computer is al-
ready a challenge for them. Interactive acquisition
tools need to be more effective and helpful to users,
perhaps by incorporating some of the skills that are
expected of good students. And, as good students
do, they should also be able to cope with an inexpe-
rienced teacher (which their users are likely to be)
and still learn from the experience by bringing to
bear knowledge about how a good teacher typically
goes about a lesson. An interactive acquisition tool
could then be viewed as a tool to support augmented
cognition, since it would supplement the user’s lim-
itations as a teacher and knowledge engineer.

The contributions of this work are twofold. First,
we point out how existing knowledge acquisition
tools use techniques that are related to widely used
tutoring and learning principles. Second, we identify
areas that the acquisition tools developed to date
have neglected, and suggest promising areas of re-
search based on our findings. This would result in a
new generation of acquisition tools that are not only
better students but also more helpful to the teacher
(the user).

The paper begins with a short introduction and
background on interactive knowledge acquisition
tools. We then discuss several tutoring and learn-
ing principles that we have drawn from the educa-
tional literature and that seem useful to support the
interactive acquisition process. Next, we show how
some existing acquisition tools use techniques that
are related to these principles in some aspects of
their functionality. We finalize with a discussion of
promising directions that we see in designing acqui-
sition tools that incorporate tutoring and learning
principles more thoroughly.



Acquisttion Tool Highlights

CHIMAERA (McGuinness et al., 2000)

To acquire concepts, relations, and instances. Diagnoses faulty definitions.

EXPECT (Blythe et al., 2001)

To acquire problem solving knowledge. Exploits dialogue scripts,
knowledge interdependency models, and background knowledge.

INSTRUCTO-SOAR (Huffman & Laird 1995)

To acquire task models for Soar.

KSSn (Gaines & Shaw, 1993)

To acquire concepts, rules, and data. Based on personal construct psychology.

PROTOS (Porter et al., 1990)

Users specify cases, tool explains their classification.

SALT (Marcus, 1988)

To acquire constraints and fixes for its underlying engine for configuration design.

SEEK2 (Ginsberg, 1985)

To acquire rules. Uses verification and validation techniques.

SHAKEN (Clark et al., 2001)

To acquire process models. Loosely based on concept maps.

TAQL (Yost, 1993)

To acquire SOAR rules. Based on Problem Space Computational Model.

TEIREISIAS (Davis, 1979)

To acquire rules. Exploits context, derived rule models, and heuristics.

Table 1: Some Interactive Knowledge Acquisition Tools.
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Figure 1: A Modular View of Interactive Knowledge
Acquisition Tools.

Interactive Knowledge Acquisition
Tools

The interactive knowledge acquisition tools summa-
rized in Table 1 illustrate different approaches that
researchers have undertaken over the years and are
representative of the literature. A brief description
of the tools are in Gil and Kim (2002). The tech-
niques used range from cognitive theories of exper-
tise and learning, case-based reasoning and analogy,
non-monotonic theory revision, induction and ma-
chine learning, knowledge engineering approaches,
analysis of knowledge interdependencies and buggy
knowledge, and agent-based interaction.

Figure 1 shows a diagrammatic view of typical
components used in various tools. The functionality
of an interactive knowledge acquisition tool can be
described along five dimensions, which we will use
for reference later in our analysis:

e Assimilate instruction: Given a user’s instruc-
tion, the system makes the necessary additions
or changes to the knowledge base and updates
any other internal structures. Instruction may be
given as an example (PROTOS, SEEK?2), a natu-
ral language statement (INSTRUCTO-SOAR), a
descriptive piece of knowledge (CHIMAERA, EX-
PECT, SALT, TAQL), or a graphical rendering
(KSSn, SHAKEN).

e Trigger goals: The system analyzes its knowl-
edge and generates learning goals of what knowl-
edge it still needs to acquire. Many tools focus on
detecting inconsistencies or gaps in the knowledge
base, which generate the goals to fix them or seek
the information missing (CHIMAERA, EXPECT,
SEEK2, TAQL, TEIREISIAS).

e Propose strategies: The tool can generate
possible strategies that the user could follow in
achieving the learning goals. It can also generate
predictions of what strategy the user is more likely
to pursue, or what answers the user is more likely
to give to the user’s questions (TEIREISIAS).
This is often done by analyzing existing knowl-
edge. Planning strategies are often used to make
suggestions to the user in terms of what to do to
achieve the active learning goals, which will make
the acquisition process more efficient (EXPECT).

e Prioritize goals and strategies: An acquisition
tool can help users further if it is able to organize
and prioritize the active learning goals and candi-
date strategies, so that it can make more focused
suggestions to the user. Sometimes these are or-
ganized by the type of knowledge sought (SALT),
or by the type of goal being pursued or error being
fixed (EXPECT).

e Design presentation: The tool can make de-
cisions about what to bring to the attention of
the user at each point in time to help him or
her decide what to do next. There are many
possibilities, and the tool can take into account
the user’s situation (user modeling), the stage of
the process (initial stage versus final testing), and
the content of the current knowledge base. The
tool may present the user with a single question
(INSTRUCTO-SOAR) or give the user a choice in
the form of an agenda containing multiple items
(CHIMAERA, EXPECT, SALT). The tool can
suggest a specific strategy, anticipate the user’s
answer and ask for confirmation, or simply present
the user with multiple possible strategies and sug-
gestions (EXPECT). Other tools leave it up to
the user to figure out what to do and simply
make all possible options available to them (KSSn,




SHAKEN) The tool may simply ask the user to
review an explanation (PROTOS), check some as-
pect of the knowledge (KSSn), or confirm a hy-
pothesis (TEIREISIAS).

Another useful view of interactive acquisition
tools is in terms of the kinds of knowledge and meta-
knowledge that they bring to bear in order to sup-
port the user, also illustrated in Figurel. This in-
cludes:

e General problem solving and task knowledge: Gen-
eral inference structures are used to determine the
role that domain-specific knowledge plays in prob-
lem solving, as is done in role-limiting approaches
to knowledge acquisition (Marcus & McDermott,
1989) (e.g., SALT, TAQL).

o Prior domain knowledge: The initial knowledge
base may contain terms that are specific to the do-
main at hand and that can be used to define new
terms and tasks (e.g., EXPECT, INSTRUCTO-
SOAR).

o General background knowledge: The initial knowl-
edge base may include high level theories and on-
tologies that capture general knowledge, such as
time, physical objects, etc. (e.g., SHAKEN).

e Ezample cases: Sample situations, test cases, and
problem solving episodes can help ground abstract
knowledge (e.g., INSTRUCTO-SOAR, PROTOS,
SEEK2, SHAKEN, TEIREISIAS).

o Underlying knowledge representation: Models of
the underlying knowledge representation will de-
termine how users need to formulate new knowl-
edge (e.g., CHIMAERA, KSSn, SEEK2, TAQL,
TEIREISIAS).

e Diagnosis and debugging knowledge: Typical di-
agnosis skills are useful in order to detect errors
and potential problems in the knowledge base. Ef-
fective debugging strategies can be incorporated
to make suggestions to the user about how to fix
the errors and problems found (e.g., CHIMAERA,
EXPECT, TEIREISIAS).

One source of meta-knowledge that has not re-
ceived attention is effective tutoring and learning
techniques. By exploiting meta-knowledge about
how to learn and how to teach, acquisition tools will
become more proactive learners and will be able to
help users teach them more effectively. Current tools
are often too passive, and place on the user the ma-
jority of the burden of the acquisition process. Our
goal is to understand whether and how knowledge
acquisition tools can exploit knowledge about tutor-
ing and learning.

Tutoring and Learning Principles in
Existing Interactive Acquisition Tools

We analyzed the tutoring and educational literature
to compile tutoring and learning principles that hu-
mans and computers exploit to make teaching and
learning more effective. We compiled fifteen prin-
ciples that could be of immediate use in our work,
and that are described in detail in (Kim & Gil, 2002)
including detailed references to the tutoring litera-
ture that are omitted in this paper because of space
limitations.

We noticed that many of these principles could
be related to the techniques used in existing acqui-
sition tools. Yet, the tutoring literature is seldom
mentioned in knowledge acquisition work. In this
section, we describe our views on how acquisition
techniques can be expressed in terms of these tutor-
ing and learning principles. Table 2 summarizes our
analysis, indicating the particular functionality (as
outlined in Figure 1) where the principle was applied
in specific acquisition tools.

Introduce lesson topics and goals

Teachers often start off by introducing the topics
and goals of the lesson. There is no notion in ac-
quisition tools that there is a lesson being started or
ended, since at any point users can choose to enter
knowledge about any topic. EXPECT allows users
to specify the top-level tasks that the system should
be able to solve with the new knowledge, which can
be viewed as a statement of the goals for that acqui-
sition session. SEEK2 has a suite of test cases that
the system should be able to solve after the lesson,
and that could be viewed as a statement of the goals
of the lesson.

Use topics of the lesson as a guide

It is useful for students and tutors to ensure that
what is being learned has some connection or rel-
evance to the topics of the lesson. EXPECT uses
the specified top-level tasks to check that any new
knowledge specified solves some of their subtask, and
if not it notifies the user and suggests how it could
play a role in solving the tasks. SEEK2 uses the suite
of test cases to detect errors, which then drive the di-
alogue with the user towards fixing them. SALT can
be viewed as having an implicit (and very high level)
topic for all sessions, namely to acquire knowledge
for configuration design problems. SALT’s interface
asked users to specify only three kinds of knowledge
(parameters, constraints, and fixes) that are relevant
to those types of problems.

Subsumption to existing cognitive
structure

Learning about a new topic involves relating the new
knowledge to what is already known, for example by



Tutoring/Learning principle Assimilate Trigger Propose Prioritize Design

Instruction Goals Strategies Goals and | Presentation
Strategies

Introduce lesson topics and goals EXPECT, SEEK?2

Use topics of the lesson as a guide SALT SEEK?2 EXPECT SALT

Subsumption to existing PROTOS TEIREISTAS PROTOS, SALT

cognitive structure

Immediate feedback PROTOS INSTRUCTO-SOAR | TEIREISTAS EXPECT

Generate educated guesses TETREISTAS EXPECT

Keep on track

Indicate Tack of understanding INSTRUCTO- INSTRUCTO-
SOAR SOAR

Detect and fix “buggy” knowledge TAQL EXPECT PROTOS, SEEK2

CHIMAERA TEIREISIAS

Learn deep models

Learn domain language

Keep track of correct answers SEEK?2

Prioritize learning tasks EXPECT

Summarize what was learned

Assess learned knowledge KSSn

Table 2: Tutoring and learning principles used in acquisition tools.

checking inconsistencies, drawing analogies, or de-
riving generalizations. PROTOS took a new exam-
ple case provided by the user, and indexes it into one
of several classes (or categories) of examples. It also
presented the user with an explanation of the clas-
sification of the new example to show how the new
knowledge was incorporated into the existing struc-
tures. TEIREISTAS created generalized rule mod-
els from its rule base, and used them to propose to
the user additional conditions to newly defined rules.
The interface and presentation of SALT was always
based on the kinds of knowledge needed for config-
uration design.

Immediate feedback

Educational systems often provide immediate feed-
back, as studies show that it is more effective than
feedback received after a delay. PROTOS provided
immediate feedback as a new case was assimilated
by showing the user an explanation of its classifi-
cation in the knowledge base. INSTRUCTO-SOAR
generated clarification and follow-up questions for
the user immediately after an instruction was given.
TEIREISTAS proposed amendments to rules as soon
as the user defined them. EXPECT analyzes the
knowledge base after each user action and shows im-
mediately an agenda of errors to resolve and tasks
to do.

Generate educated guesses

Students often show their understanding by finishing
a tutor’s utterance, and tutors often invite students
to guess as a way to assess and correct the student’s
knowledge. TEIREISIAS maps newly entered rules
to rule models and proposes corrections based on
how it expects a rule to follow the patterns of other
rules in that model. EXPECT generates suggestions
to a user about how to fix specific problems by mak-
ing educated guesses about the context of the prob-
lem (related domain knowledge, past problem solv-
ing states, etc.)

Keep on track

Tutors need to keep track of the lesson and bring
back issues that had to be dropped while engaging
in clarifications or other side dialogues. Acquisition
tools do not keep track of the history and status of
the dialogue. Users have free range on what aspects
of the knowledge base to extend, what parts of the
tool to invoke, and what They can move freely from
topic to topic and back and forth, or discontinue
teaching about a topic at any point without noti-
fying termination. Current acquisition tools would
never even notice that the user is deviating from a
topic in any of these situations.

Indicate lack of understanding

Students often volunteer an indication of their lack
of understanding, but tutors also will point out the
specific aspects introduced in a lesson that the stu-
dent needs to understand. INSTRUCTO-SOAR de-
tects missing aspects of a task description speci-
fied by a user and generates follow up questions.
EXPECT and CHIMAERA detect undefined terms
that will be used to guide future dialogue with the
user to define them.

Detect and fix “buggy” knowledge

Many tutoring systems are aimed to diagnose and fix
student’s "buggy” knowledge, often by asking ques-
tions and checking the student’s answers. TAQL
analyzes the knowledge specified by the user and
points out errors based on static analysis. CHI-
MAERA and EXPECT detect errors in the knowl-
edge entered that need to be fixed by the user. PRO-
TOS, SEEK2, and TEIREISTAS show explanations
or traces to users so they can detect errors in the
system’s reasoning.

Learn deep models

Students should learn deep conceptual models in-
stead of superficial ones. Knowledge acquisition
tools do not have any basis to evaluate or pursue
depth in their knowledge base, though this is a long



recognized shortcoming of knowledge-based systems.
To date, these systems are at the mercy of the user’s
intention and of their implementation of any depth
in the models.

Learn domain language

Students are expected to be describe their knowledge
in terms that are suitable for the domain at hand.
Acquisition tools do not help users specify how to
describe knowledge in domain terms and how the
terminology used depends on the context of the sce-
nario at hand. Knowledge bases are annotated with
some lexical information, but acquiring this kind of
knowledge has not been a focus of knowledge base
development.

Keep track of correct answers

Instructional tools keep track of the questions that
the student is able to answer correctly as well as
those answered incorrectly, which drives further in-
teractions with the student. SEEK2 keeps track of
whether the test cases are answered correctly, and
alerts the user when a change to a rule causes a case
to be solved incorrectly.

Prioritize learning tasks

Tutoring systems often handle multiple sub-tasks us-
ing priority rules that look at the duration and type
of task, for example focusing on fixing errors before
turning to omissions. EXPECT organizes errors and
other problems in the knowledge base based on their
type and the amount of help it can provide (e.g., if
it has narrowed down the options that the user can
take to resolve them).

Limit the nesting of sub-lessons

Tutoring dialogue is sometimes controlled by lim-
iting the amount of subdialogues, which helps the
student keep track of the lesson topics.

Summarize what was learned

Many educational systems will summarize to the
student the main highlights at the end of the les-
son, especially if the student was given hints during
the lesson. Acquisition tools do not summarize what
they have learned.

Assess learned knowledge

Some instructional tools isolate weaknesses in the
student’s knowledge and propose further lessons on
those areas, some students also volunteer their as-
sessment of how well they understand certain topics.
KSSn uses clustering techniques to suggest aspects
of the model that users could detail further. Other
acquisition tools do not perform this kind of analysis.
Users often have to put the knowledge base through
a performance system that exercises it in order to
be able to assess if the knowledge was learned ap-
propriately.

Discussion

Acquisition tools have used techniques that can be
cast in terms of tutoring and learning principles
found in educational software research. These prin-
ciples are implicit in the design of the tool, and they
influence their interaction with the user to the de-
gree that they are implemented in the underlying
code. Having these principles represented explicitly
and declaratively would enable acquisition tools to
reason in terms of the teaching and learning pro-
cess, and their interaction with the user would be dy-
namically generated given the situation at hand. A
declarative representation of meta-knowledge about
their learning state, goals, and possible strategies
could turn interactive acquisition tools into more
proficient and proactive learners.

The principles have only been used in some as-
pects of the functionality of acquisition tools, and
are exhibited by some but not all the tools. The
sparseness of the matrix in Table 2 points to many
opportunities for future work in incorporating these
principles. By having declarative representations of
their learning state, goals, and possible strategies,
interactive acquisition tools could more easily incor-
porate these principles throughout the acquisition
process and the five functions shown in the table.

Acquisition interfaces should be able to structure
the dialogue with the user in tutoring terms. The
should organize the dialogue based on lesson topics
and sub-topics, be aware of the start and the end of
each and generally keep the user on track and de-
laying termination until the goals of the lesson are
satisfied. Acquisition tools should exploit the topics
of the lesson throughout the acquisition process, for
example to narrow down the prior knowledge that is
relevant to that portion of the dialogue and conse-
quently narrowing down the proposed strategies and
customizing the presentation of information back to
the user. By keeping track of the interactions with
the user, the topic of the dialogue at each point in
time, and the termination of sub-topics, acquisition
tools would be able to manage their participation in
the dialogue better and relieve the users from hav-
ing to remember and keep track of what is going on.
They could exploit this information in generating
goals by detecting areas where a topic is still un-
finished, plan and prioritize more relevant strategies
that exploit the context of the currently open topics,
and help users view progress and termination.

Acquisition tools should be able to expose and
assess the knowledge acquired so far, allowing the
user to understand what the system has assimilated
and showing the user as well what areas the sys-
tem thinks need to be further improved. Currently,
knowledge-based systems will answer any question
they are asked, regardless of the quality of the knowl-
edge used to answer it. It would be very useful for
these systems to convey whether they are confident
on the answer. This would also help users identify



further areas of improvement for future acquisition
sessions.

We are pursuing these ideas in our current work,
implementing a front-end dialogue management sys-
tem that represents and uses tutoring and learning
principles to guide knowledge acquisition.
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