
A Connectionist Model of Planning via Back-chaining Search

Max Garagnani
Department of Computing

The Open University
Milton Keynes, MK7 6AA - UK

M.Garagnani@Open.ac.uk

Lokendra Shastri and Carter Wendelken
The International Computer Science Institute

Berkeley, CA 94704 USA
Shastri@ICSI.Berkeley.EDU

CarterW@ICSI.Berkeley.EDU

Abstract

A connectionist model for emergent planning behavior is
proposed. The model demonstrates that a simple plan-
ning schema, acting in concert with two general purpose
cognitive functionalities, namely, episodic memory and
perception, can solve a restricted class of planning prob-
lems by backchaining from the goal to the current state.
In spite of its simple structure, the schema can search for
and execute plans involving multiple steps. We discuss
how this simple model can be extended into a more pow-
erful and expressive planning system by incorporating ad-
ditional control and memory structures.

Introduction
Consider a classical planning problem, specified by an
initial state, a goal state and a set of operators. A direct
approach to solving this problem consists of searching
the state space to find a ‘path’ between the initial and fi-
nal states. Several symbolic planning systems adopting
this approach in conjunction with the use of heuristics
(Hoffman & Nebel, 2001; Haslum & Geffner, 2000; Bac-
chus & Teh, 1998) have recently shown notable improve-
ments in efficiency on various benchmark problems.

Although a state space search algorithm is conceptu-
ally simple, it is not obvious how the data structures and
control mechanisms required for the specification and
execution of such an algorithm can be realized in a neu-
rally plausible manner. In this paper we propose a con-
nectionist model that exhibits a state-space search behav-
ior. The model uses only a few simple control structures
in conjunction with essential cognitive faculties, such as
episodic memory, semantic memory, and perception.

Episodic memory (Tulving, 1995) refers to our abil-
ity to remember specific events and situations in our
daily lives. The use of memory and experience in plan-
ning and reasoning has been investigated by several re-
searchers (see (Waltz, 1995; Spalazzi, 2001) for useful
accounts). Neurological and psychological data strongly
suggests that episodic memory is distinct both in its
functional characteristics and neural basis from other
forms of memories such as semantic memory, memory
for common sense knowledge, and procedural knowl-
edge. It has been argued that events and situations in
episodic memory are best viewed as relational instances
that specify a set of bindings between the roles of a rela-
tional schema and objects that fill these roles in a given

event or situation (Shastri, 2001b; 2002). We assume that
a planning agent is capable of remembering past events
such as “performing action under conditions lead to
consequences ”. Each episodic memory trace of this
type can be represented as a triple of the form Precon-
ditions, Action, Consequences, and we will refer to such
triples as PAC memories (or events)1.

Finally, we assume that the planning agent is capable
of observing the current world state through perception.
By this we mean that the agent can determine whether or
not certain perceptually salient and directly observable
relations hold in the world. For example, in the context
of the classical blocks world scenario, this assumes that
the agent can look at the table and determine whether or
not a specific block is ‘clear.’

A memory-based planning schema
Figure 1 shows the abstract structure of the proposed
planning schema. In order to explain its behavior, let us
describe the functionality of each of its components and
their interactions using a simple example.

subgoal

Success/FailureGoal

OMPARE

G
C

OAL
URRENT

C

i

fail

match?

i+1subgoal
R

subgoali+1

 World state
ObservableEpisodic

Memory

ECALL

Figure 1: A block diagram showing the basic compo-
nents of the planning mechanism.

Consider a planning problem with only two blocks
(‘A’ and ‘B’) where the agent’s goal is to achieve
On(A,B) (i.e. block A on block B) and the current
world state is On(B,A). Let us assume that the agent’s
episodic memory contains the two PAC events E and E :

1Note that preconditions and consequences may contain
multiple predicates.

E In state P = On(B,A) ,
action A = Unstack(B,A)
led to C = OnTable(A),OnTable(B) ;

E In state P = OnTable(A),OnTable(B) ,
action A = Stack(A,B)
led to C = On(A,B) .

(1) Initialize
The schema activity is initialized by conveying the goal

(On(A,B) in our example) as input to CUR-
RENT GOAL 2. In the absence of any incoming activity
from COMPARE, CURRENT GOAL simply passes con-
trol along with the goal (subgoal) to the RECALL
component. The behavior of the CURRENT GOAL com-
ponent in the presence of an input from COMPARE is dif-
ferent, and is described below.

(2) Recall
RECALL is activated when it receives the subgoal
(On(A,B), in the example) as input from CURRENT
GOAL. The function of this component is to search
episodic memory for an event wherein a specific action
(say,) performed under some specific preconditions
(say,) lead to a set of consequences (say,) in which
subgoal is true. In our example, E happens to be such
an event. When a matching event is found, action
and preconditions are recollected and become ‘active’;

becomes the current focus of the agent’s attention 3,
and control is transferred to COMPARE, along with as
the current subgoal . In the example, subgoal

OnTable(A),OnTable(B) . If there are no
events whose consequences ‘match’ the subgoal , the
schema execution halts and signals a failure.

(3) Compare
The COMPARE block compares subgoal with the cur-
rent world state, which is assumed to be observable
through perception. It returns a positive outcome iff
subgoal is true in the current state. In the example,
the response is negative, as the world is still On(B,A).
After the comparison, the outcome and the subgoal
(=) are passed to CURRENT GOAL, which takes con-
trol of the activity and reacts as explained below.

(4) Repeat
If CURRENT GOAL receives a negative result from
COMPARE, the following happens:

the original goal is no longer passed as input to RE-
CALL, and ceases driving the activity of the schema;

the set of preconditions (=subgoal) becomes the
new subgoal and is passed to RECALL by the CUR-
RENT GOAL component.
2It is assumed that this goal is represented in other networks

outside the planning schema and communicated to the schema
via controlled spreading activation.

3In order to achieve the original goal , it suffices to
achieve and execute action .

At this point, one loop is completed and the procedure
repeats from step (2) with as the current goal.

If CURRENT GOAL receives a positive input from
COMPARE, the schema terminates returning Success and
the control is given to an appropriate ‘Action schema’
that will carry out the action currently active in memory
(). If the original goal is not achieved via the execu-
tion of this action, the planning schema is re-invoked and
re-initialized with . Note that we are not assuming the
existence of a working memory which would allow the
agent to dynamically store sub-goals during the planning
process or to maintain active more than one PAC event at
a time. Because of this, the proposed system is forced to
‘re-discover’ parts of the same plan every time an action
is executed, as described below.

Returning to the example, the result of COMPARE
is negative and no action is performed: is ‘forgot-
ten’, while becomes the new subgoal and is passed
on to RECALL. The schema now queries the episodic
memory by asking if OnTable(A),OnTable(B)
has been achieved in the past: PAC event E is recol-
lected. The precondition = On(B,A) – required
to perform Unstack(B,A) – becomes the new fo-
cus of attention and is compared with the current world
state, producing a successful outcome: a chain of (two)
PAC events connecting the goal to the initial state has
been found, and the planning problem has been (poten-
tially) solved. However, because of the absence of a
working memory able to dynamically store goals and
subgoals, all the agent can ‘see’ at this point is the
last PAC event recollected. The currently active ac-
tion (=Unstack(B,A)), though, can and should
be executed, since this will get the current state one
step closer to the goal. After the positive outcome of
COMPARE, the schema terminates returning ‘Success’:
the agent carries out the currently active action Un-
stack(B,A), and the new state of the world becomes
OnTable(A),OnTable(B) .
After the action has been completed, the agent is

‘re-exposed’ to the initial goal (which has not
been achieved yet), and the planning schema is re-
invoked. The subsequent flow of activity is iden-
tical to the first part of the previous one, except
that now = OnTable(A),OnTable(B) matches
the current state of the world, and thus action =
Stack(A,B) is executed. This leads to achieving the
original goal , and the schema is no longer invoked.

The connectionist planning schema
The planning mechanism described above has been
implemented using the representational machinery of
SHRUTI, a neurally plausible structured connectionist ar-
chitecture that demonstrates how a network of neuron-
like elements can encode a large body of structured
knowledge and perform a variety of inferences within a
few hundred milliseconds (Shastri & Ajjanagadde, 1993;
Shastri, 1999; Shastri & Wendelken, 2000).

SHRUTI suggests that the encoding of relational infor-
mation (frames, predicates, and schemas) is mediated by

neural circuits composed of focal-clusters, and that the
dynamic representation and communication of relational
instances involves the transient propagation of rhythmic
activity across these clusters. A role-entity binding is
represented in this rhythmic activity by the synchronous
firing of appropriate cells. Rules are encoded by links
that enable the propagation of rhythmic activity across
focal clusters, and a fact in long-term memory is a tem-
poral pattern matching circuit.

In the past, SHRUTI’s representational machinery has
been used to encode commonsense knowledge (Shastri
& Ajjanagadde, 1993), causal models (Shastri & Wen-
delken, 2000), as well as action schemas and reactive
plans (Shastri, Grannes, Narayanan & Feldman, 1997)
and decision-making (Wendelken, 2001).

A memory-based proto-planner
Consider the network structure depicted in Figure 2.
This network fragment consists of two ‘control’ focal-
clusters ACHIEVE and RECALL, two predicate focal-
clusters On and OnTable, an action focal-cluster Un-
stack, two entity focal-clusters A and B, and a type
focal-cluster Block. Typically, a focal-cluster contains
several control and role nodes. For example, the focal-
cluster ACHIEVE contains control nodes +, -, and ?, and
role nodes and (the entity and type focal-clusters do
not contain role nodes).

Role nodes within the focal-cluster of a predicate or
schema provide a mechanism for expressing role (or pa-
rameter) bindings. In particular, a dynamic binding be-
tween a role and its filler is expressed by the synchronous
firing of the role node and the focal-cluster of the object
filling the role. A relational focal-cluster with bound role
nodes designates a particular relational instance.

The enabler (?) node associated with a focal-cluster
may be viewed as an “initiate query” or “initiate activ-
ity” node. In contrast, collector nodes (+ and –) associ-
ated with a focal-cluster indicate the outcome of a query
or of other activity pertaining to the focal-cluster. In par-
ticular, the activation of the + (–) collector indicates a
positive (negative) response to a query or signals a suc-
cessful (unsuccessful) completion of some activity.

Inference occurs via the propagation of activity be-
tween focal-clusters. The links between the enabler and
role nodes of interconnected focal-clusters allow queries
posed in one focal-cluster to propagate to other focal-
clusters: if role node is linked to role node , the
firing of induces synchronous firing in , allowing
dynamic binding propagation.

A query is communicated to a focal-cluster by acti-
vating its enabler node and binding its role nodes to ap-
propriate role fillers. In Figure 2, the query “Can block
B be placed on the table, given that B is on A?” is
communicated by activating ?:ACHIEVE, and synchro-
nizing the firing of ACHIEVE.I and +:On; the firing
of ACHIEVE.G and +:OnTable; the firing of On.x,
OnTable.x and ?:B; and that of On.y and ?:A. The
activity of ACHIEVE propagates to the RECALL cluster,
resulting in the query “Is there some action which led to

OnTable(B) from the precondition On(B,A).”

+ ? On+ ? On

+ ?+ ? + ?+ ?

 Block+e +v ?v ?e

 ...

+ − ?

+ − ?

 + ?

+ − ?

+ − ?

 + ?

P A CR

ACHIEVE I G

+ ?+ ? OnTable

OnTable(A)

OnTable(B)

x

x y

x y

On(B,A)

 Block

 A A B B

+ ?+ ? Unstack

On(B,A)

OnTable(A) &
OnTable(B)

On(B,A); Unstack(B,A); [

p ; a ; c]

j

1 1[1

 j[p ; a ; c j]

]OnTable(A),}OnTable(B){

ECALL

to

to

Figure 2: diagram showing network structure for a proto-
planning mechanism.

Fact structures attached to a relational focal-cluster en-
code specific instances of that relation. If the query active
at a focal-cluster matches an attached fact, the fact be-
comes active and, in turn, activates the positive collector
of the relation’s focal-cluster, binding (via synchronous
firing) each of the relation’s role nodes to the entity fill-
ing these roles in the fact. A neurally plausible model of
how this might happen in the brain is described in (Shas-
tri, 2001b).

In the case of RECALL, the facts structures attached to
this focal-cluster represent episodic memories of specific
PAC events. The activation of the query “Is there some
action which led to OnTable(B) from the precondi-
tion On(B,A)” matches the memorized PAC event and
leads to this event becoming active (i.e., recalled). This
in turn results in the activation of +:RECALL and the
synchronous firing of the unbound role RECALL.A with
the representation of Unstack(B,A): the system re-

calls that performing Unstack(B,A) when On(B,A)
was true lead to OnTable(B) being true.

An important feature of the system consists of its
ability to treat a relational instance as a role-filler
(e.g. ACHIEVE.I On(B,A)). In order to support
this requirement, SHRUTI allows for two levels of tem-
poral synchrony. Bindings between standard role nodes
and entity/type nodes are represented within a rapid mi-
nor oscillatory cycle, while bindings between specialized
role nodes and relational instances are encoded within a
slower major oscillatory cycle.

The simple schema described above, consisting of the
ACHIEVE and RECALL clusters acting in concert with
the episodic memory, can retrieve previously memorized
‘if-then’ (PAC) tuples. Thus, this schema can be con-
strued as a proto-planner capable of returning one-step
‘plans.’ The next section demonstrates how this schema
can search for sequences of actions, therefore constitut-
ing the next ‘stage of evolution’ of this proto-planner.

The planning schema in SHRUTI
Figure 3 shows how the planning schema of Figure 1 has
been implemented using SHRUTI’s representational ma-
chinery. It is easy to see how the focal clusters of this
schema can be mapped to the elements of Figure 1 (the
CURRENT GOAL block has been realized with two clus-
ters, PLAN and SUBGOAL). We shall use the same ex-
ample adopted earlier to illustrate how the schema can
perform a basic form of planning as search.

Let us assume that the memory of the agent (repre-
sented only abstractly in the figure) contains the two PAC
events of the previous example, namely, E = (P , A ,
C) and E = (P , A , C), and that the PERCEPTION
block, when queried with input P, activates the + or –
collector depending on whether the event bound to P is
true or false in the observed world state.

The schema is invoked by activating the PLAN clus-
ter’s enabler (‘?’) node and by binding its role node
G to the relational instance expressing the current goal
(On(A,B) in the example). After initialization, activ-
ity propagates upwards along links to clusters SUBGOAL
and RECALL. After few major cycles, ?:RECALL is ac-
tivated, with role C firing in synchrony with the cur-
rent goal On(A,B) . The PAC event E matches the
activity in the cluster and is retrieved. Consequently,
+:RECALL becomes active, and the roles A and P are
instantiated with actions A = Stack(A,B) and rela-
tional instance P = OnTable(A,B) , respectively
(the clusters corresponding to predicate ‘OnTable’ and
action ‘Stack’ are not shown in the figure). The ac-
tivity of P reaches COMPARE. Since OnTable(A,B)
is not true in the current world state, -:Compare be-
comes active. This leads to the inhibition of the links
from PLAN to SUBGOAL, which blocks the propaga-
tion of the query PLAN(On(A,B)) through the schema.
Simultaneously, activity from COMPARE reaches SUB-
GOAL: the role node G starts firing in synchrony with
P, which was temporally bound to the relational in-
stance OnTable(A,B) . Hence, this becomes the

new (sub)goal of the schema, and its focus of attention.
Activity from ?:SUBGOAL reaches ?:RECALL again,
while role node C starts firing in synchrony with G. This
leads to the retrieval of PAC event E , and hence, the pre-
condition P = On(A,B) gets bound to role P and role
A is bound to the action instance A = Unstack(B,A).
These bindings are in turn propagated to COMPARE.

+?

+?

? + +?

PLAN

RECALL

G

SUBGOAL

COMPARE

FAILURE
SUCCESS

from
ACHIEVE

(P2 ,A2, C2)
....

(P1, A1, C1)EPISODIC PERCEPTION

EXECUTE
ACTION
Schema

to +:SUBGOAL

CAP
P

G

WORLD STATE
OBSERVABLE

MEMORY

Figure 3: A diagram showing the connectionist structure
of the planning schema.

The positive outcome of the comparison leads to
the activation of +:COMPARE, which communicates to
PLAN that the search has terminated successfully. After
action A is executed, the initial goal = On(A,B)
(not yet achieved and still present in the system) causes
the schema to restart. The subsequent flow of activation
is identical to the initial part of the previous sequence,
except that when P = OnTable(A,B) is compared
with the current state, the outcome is positive and the
currently active action (Stack(A,B)) is executed. This
achieves the goal and terminates the activity.

Simulation results
The above planning schema has been realised and tested
using the “SHRUTI Agent Simulator” software written in
Java. The example described in the previous section has
been used to test the functioning of the schema. Figure 4
shows the detailed trace of activation resulting from the
actual simulation. Note how the diagram reflects closely
the flow of activity described before, up to the first posi-
tive outcome of COMPARE.

Consider, for example, time point of the dia-
gram. Here, the PAC fact E has just become ac-
tive because of the initial query ‘PLAN(On(A,B))’,
which has been propagated upwards and has led to the
query ‘RECALL(, ,On(A,B))’. As a consequence,

the two preconditions OnTable(A),OnTable(B)
are about to become active, and will be propagated to the
COMPARE cluster, where they will be matched against
the current state of the world4.

?
+
g

?
+
p

a
c

?
+

+
g

p

RE
CA

LL
PL

A
N

SU
BG

O
A

L
CO

M
PA

RE

On(A,B)
On(B,A)

?

OnTable(A)
/\ OnTable(B) α β

Figure 4: Node activation trace of the simulation.

Time point is a snapshot of the situation immedi-
ately following the negative outcome of the (simulated)
comparison. Notice how the ow of activity going from
the PLAN cluster to the RECALL cluster has been inter-
rupted by the negative outcome of COMPARE in order to
allow the new goal OnTable(A),OnTable(B) to
make its way through to cluster RECALL.

Discussion
The work described in this paper is part of a larger effort
whose goal is to develop a neurally plausible architec-
ture for reasoning, remembering, planning, and decision
making. This paper presents progress along an important
dimension of this ongoing effort. Perhaps the most inter-
esting aspect of this work is the demonstration that gen-
eral purpose cognitive faculties such as episodic mem-
ory, semantic memory and perception can be harnessed
to produce a state-space search behavior and solve a sub-
class of planning problems.

The planning schema discussed in this paper is limited
in a number of ways; however, as discussed below, this
schema can be extended into a much more powerful and
expressive planning system by incorporating additional
control and memory structures, and by leveraging the full
representational and expressive power of SHRUTI.

The proposed planning schema is susceptible to get-
ting trapped in deadends. As the system searches for a

4The perceptual task of verifying whether some conditions
hold in the current world state was simulated by manually acti-
vating the or collector of the cluster ëCompareí as appro-
priate.

path from the goal to the initial state, it can get caught
in a state that subsumes a set of conditions which
do not match the consequent of any PAC event in mem-
ory. There is, however, a simple three part solution to
this problem. First, the agent detects that it has reached
a deadend state (this is signaled by the activation of -
:RECALL. Second, the agent memorizes that this path
leads to a deadend in the context of the current prob-
lem. It can do so by memorizing the following episodic
memory trace: ìwhen trying to achieve the goal , in-
stantiating a subgoal leads to a deadendî. 5 Third, the
agent restarts the search and at each step in the search
process retrieves both PAC and DEADEND events that
match the current subgoal. Any retrieved PAC event that
is counterindicated by retrieved DEADEND event is ig-
nored. Since the memorization of deadends prunes the
potential search space, with suf cient practice, the agent
may memorize a large number of deadend events and
carry out a highly ef cient search.

Another limitation of the proposed planning schema
is that it needs to traverse the same paths through the
state space several times during the course of nding a
plan. However, if the agent could remember the path
traversed from the current goal to the initial state, it
would not have to rediscover the same plan subsequences
many times over: plan execution would involve travers-
ing the memorized sequence of PAC events only once (in
the reverse order) and executing the actions associated
with each PAC event in the sequence. Note that remem-
bering such a path can be viewed as memorizing a se-
quence of PAC events. Learning of event sequences is a
well-known property of episodic memory, but it remains
to be seen how the process of such on-line memoriza-
tion of event sequences can be fully integrated with the
on-line retrieval of previous episodic memories. Work-
ing memory mechanisms can also play a complementary
role in such on-line memorization. Our current research
addresses the functioning of episodic memory (Shas-
tri, 2001b; 2002) as well as that of working memory,
and we hope that the development of powerful episodic
and working memory models will directly bene t future
work in the development of planning schemas.

Since the proposed planning schema operates within
the SHRUTI architecture, the full range of knowledge
representation and reasoning capabilities of SHRUTI can
be leveraged during planning. This includes represent-
ing and reasoning with commonsense (semantic) knowl-
edge, causal models, type hierarchies, context-sensitive
prior probabilities of events and estimated utility/value of
world-states. Thus, general purpose domain knowledge
as well as planning speci c knowledge can be seamlessly
combined to support planning involving not just memory
retrieval, but also inference.

The functionality of the current planning schema is
5The representational machinery required to encode such

DEADEND ìeventsî is similar to that required to encode PAC
events: like PAC events, the episodic memory trace of DEAD-
END events also involves role- llers that are partial state-
descriptions, speci ed by sets of conditions.

also limited by its inability to make use of goal decompo-
sition. Imagine that the agent is trying to nd a plan for
the goal given the world state and the two PAC
events PAC and PAC in memory.
The planning schema described in this paper will be un-
able to solve the composite goal & , even though
it will be able to solve each of the subgoals and
if presented individually6. In order to deal with goal de-
composition, the schema must (i) recognize that it can
solve one of the subproblems using one of the PAC facts,
(ii) pick the subproblem to be solved, (iii) note down the
subproblem that it is deferring for now, (iv) nd a solu-
tion to the selected subproblem, (v) shift attention back
to the deferred subproblem, and (vi) solve the deferred
subproblem. A connectionist implementation of this al-
gorithm would require a more complex schema (control
structure) than the one described in the previous sections,
together with the ability to remember deferred goals. The
memory of deferred goals can take the form of working
memory (if deferred goals have to be remembered for a
few seconds) or episodic memory (if the goals have to be
remembered over longer time periods).

Another area of ongoing research of direct relevance
to the work described here concerns the representation
of complex action schemas and plans. In past work, we
have shown that parameterized schemas capable of deal-
ing with partially ordered actions, conditional actions,
concurrent and iterative actions, as well as compositional
and hierarchical actions can be encoded using SHRUTIís
representational machinery (Shastri et al., 1997). This
makes us con dent that the more complex control struc-
tures required for encoding more sophisticated planning
schemas would not present an insurmountable problem.

A key issue that remains open is the learning of appro-
priate control structures. We are investigating this ques-
tion within the frameworks of spike-timing dependent
synaptic plasticity (Wendelken & Shastri,2000; Song,
Miller & Abbott, 2000) and recruitment learning based
on long-term potentiation (Malenka & Nicoll, 1999;
Shastri, 2001a).

Acknowledgments
This work was partially funded by NSF grants 9720398
and 9970890.

References
Bacchus, F., & Teh, Y. W. (1998). Making forward

chaining relevant. Proceedings of the Fourth Inter-
national Conference on AI Planning Systems (AIPS
1998) (pp. 54ñ61).

Haslum, P., & Geffner, H. (2000). Admissible Heuristics
for Optimal Planning. Proceedings of the 5th Internat.
Conf. of AI Planning Systems (AIPS 2000) (pp. 140ñ
149). Breckenridge, Colorado: AAAI Press.
6That is, assuming that and hold in state , and that
also holds in the state resulting from performing action

in state .

Hoffmann, J., & Nebel, B. (2001). The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search.
Journal of Artificial Intelligence Research, 14, 253ñ
302.

Malenka, R. C., & Nicoll, R. A. (1999). Long-term Po-
tentiation - A Decade of Progress? Nature, 285, 1870ñ
1874.

Shastri, L. (1999). Advances in SHRUTI - a neurally mo-
tivated model of relational knowledge representation
and rapid inference using temporal synchrony. Ap-
plied Intelligence, 11.

Shastri, L. (2001a). A Biological Grounding of Recruit-
ment Learning and Vicinal Algorithms. In J. Austin,
S. Wermter & D. Wilshaw (Eds.), Emergent neural
computational architectures based on neuroscience.
Springer-Verlag.

Shastri, L. (2001b). A computational model of episodic
memory formation in the Hippocampal system. Neu-
rocomputing, 38-40, 889ñ897.

Shastri, L. (2002). Episodic memory and cortico-
hippocampal interactions. Trends in Cognitive Sci-
ences, 6(4), 162ñ168.

Shastri, L., & Ajjanagadde, V. (1993). From simple as-
sociations to systematic reasoning. Behavioral and
Brain Sciences, 16(3), 417ñ494.

Shastri, L., Grannes, D., Narayanan, S. & Feldman, J.
(1997). A Connectionist Encoding of Parameterized
Schemas and Reactive Plans. In G. Kraetzschmar
and G. Palm (Eds.), Hybrid Information Processing in
Adaptive Autonomous Vehicles. Springer-Verlag.

Shastri, L., & Wendelken, C. (2000). Seeking coherent
explanations - a fusion of structured connectionism,
temporal synchrony, and evidential reasoning. Pro-
ceedings of the Twenty-Second Conference of the Cog-
nitive Science Society. Philadelphia.

Song, S., Miller, K., & Abbott, L. (2000). Competitive
Hebbian Learning Through Spike-Timing Dependent
Synaptic Plasticity. Nature Neuroscience, 3, 919ñ926.

Spalazzi, L. (2001) A Survey on Case-Based Planning.
Artificial Intelligence Review, 16(1), 3ñ36.

Tulving, E. (1995) Organization of Memory: Quo Vadis?
In M.S. Gazzaniga (Ed.), The Cognitive Neuroscience.
MIT Press.

Waltz, D.L. (1995) Memory-based reasoning. In: M. A.
Arbib (Ed.), The Handbook of Brain Theory and Neu-
ral Networks. MIT Press.

Wendelken, C., & Shastri, L. (2000). Probabilistic infer-
ence and learning in a connectionist causal network.
Proceedings of the Second International Symposium
on Neural Computation.

Wendelken, C. & Shastri, L. (2002). SHRUTI-agent:
A structured connectionist model of decision-making.
Proceedings of the 24th Conference of the Cognitive
Science Society. Washington, D.C. August, 2002.

