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Abstract

“Faded” examples are example problems that provide a
solution, but first require students to generate a portion of the
solution themselves. Empirical studies have shown that such
examples can be more effective teaching aids than completely
worked examples that require no work from the student.
Cascade is a model of problem-solving skill acquisition that
was originally developed to explain other empirical
regularities associated with human problem solving and
learning, most notably the self-explanation effect. Past
research demonstrated that Cascade might also explain the
mechanisms underlying the effectiveness of example fading.
This paper analyzes new protocol data, and finds that it is
consistent with predictions derived from Cascade.

Overview

Renkl, Atkinson, and Maier (2000) empirically
demonstrated the qualitative result that, when learning
problem-solving skills, students studying a series of “faded”
examples show improved post-test performance over
students studying only completely worked examples. Jones
and Fleischman (2001) argue that this result can be
explained by Cascade (VanLehn, Jones, & Chi, 1991), a
computational model of problem-solving skill acquisition.
Cascade was originally developed to understand the
mechanisms of the self-explanation effect (Chi, Bassok,
Lewis, Reimann, & Glaser, 1989; Pirolli & Anderson,
1985). Jones and Fleischman demonstrated that the
mechanisms underlying self-explanation might also explain
the effectiveness of studying faded examples. Although
they showed that Cascade is consistent with the fading
result, the explanation involved assumptions that had not yet
been tested empirically. Therefore Jones and Fleischman
(2001) finished with a small set of predictions and
suggestions for new experiments to confirm or dispute
Cascade’s account. Since that time, Renkl, Atkinson, and
their colleagues have run additional experiments, collecting
detailed transcripts of subjects studying two types of faded
sequences of problems. Although the experiments are not
yet complete, we have been able to perform a qualitative
analysis of the protocol data for eight of the subjects.
Additionally, we have fine-tuned Cascade’s knowledge base
(but not its underlying mechanisms) to more faithfully
model the current data. This paper reports the result of using
Cascade to develop a qualitative analysis of the eight
subjects. The primary result is that the findings remain
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consistent with Cascade’s account of example fading, as
well as the predictions made by Jones and Fleischman
(2001).

Background

Years of research have demonstrated effective techniques
for teaching students problem-solving skills in a variety of
task domains. In particular, a number of studies show that
students benefit from being given a series of completely
worked example problems, followed by a series of
unworked practice problems (e.g., Chi et al., 1989; Pirolli &
Anderson, 1985; Renkl, 1997, VanlLehn, 1996). Other
studies show that the effectiveness of such a curriculum
depends in part on the willingness of the students to explain
the worked examples to themselves in detail, rather than
simply giving the examples a superficial read (Chi et al.,
1989; Fergusson-Hessler & de Jong, 1990; Pirolli &
Bielaczyc, 1989). VanLehn and Jones (1993a, 1993b;
VanLehn et al., 1991) developed Cascade in order to
determine the cognitive mechanisms behind this self-
explanation effect. In essence, Cascade suggests that
thorough study of worked examples help students
consciously expose and patch gaps in their task knowledge.
In addition, self-explanation provides contextual memories
that can guide future problem solving by analogy to familiar
examples.

Subsequent experiments by Renkl et al. (2000) suggest
that student learning can improve even further by fading a
curriculum from fully worked examples to partially worked
examples. The partially worked examples provide a
complete solution to the problem (as with fully worked
examples), but first require students to derive one or more
steps on their own. This in turn requires the students to
understand the rest of the example in at least enough detail
to be able to attempt a solution.

Jones and Fleischman (2001) argue that the reason faded
examples improve learning is that they retain much of the
guidance provided by the context of a solved example, but
they force the students to work on particular parts of the
problem, in turn possibly forcing them to expose and patch
knowledge gaps. This is in contrast to studying completely
worked examples, where it is basically up to the students to
decide whether they are going to put any effort into
understanding the examples (because the students are not
required to produce any answers in that case). This
argument came directly from the assumption that Cascade is



an accurate model of human problem solving and learning
(at this level of abstraction).

Jones and Fleischman ran Cascade on a mock “faded”
curriculum in order to demonstrate the plausibility of their
hypothesis. This exercise confirmed that the proposed
explanation is a sufficient account of the general fading
results, but the explanation rests on a number of
assumptions that had not yet been confirmed by empirical
data. The first assumption was that the classical physics
problem domain (implemented in Cascade and studied by
Chi et al., 1989) is sufficiently similar to computing simple
probabilities (studied by Renkl et al., 2000). The second
assumption was that Cascade’s underlying processes
accurately match what subjects do when learning from
faded examples. Data had simply not yet been collected to
argue this point either way. Thus, Jones and Fleischman
(2001) presented three specific predictions to be confirmed
or denied by subsequent empirical research:

1. “Faded examples cause effective learning by
forcing the student to encounter and overcome
an impasse.”

2. There is likely “...at least some benefit to
example fading from the learning of search
control knowledge.”

3. “The primary benefit of a faded example is that
it forces the student to process parts of the
example that they might otherwise ignore.”

They also suggested that these predictions be tested with
new experiments that include the collection of protocol data.

The current work tackles both of these issues. To begin
with, Renkl and Atkinson (and their colleagues) have
initiated an additional study to collect more detailed subject
data, including transcribed talk-aloud protocols generated
by the subjects while studying and solving problems.
Although their experiment and analysis is not yet complete,
they provided us with eight initial transcripts, enabling us to
generate a partial coding that tests the predictions listed
above.

We have also generated a new task knowledge base for
computing probabilities, so Cascade can solve precisely
they same problems given to the subjects in the new
experiments. This allows us to remove a model assumption,
and verify the Cascade results with a more accurate match
to the data. The next section describes the methods we used
to generate the new knowledge base and encode the
protocols. The following sections present the results of
those activities in more detail.

Methods

Given the study material presented to the experimental
subjects, we first performed a thorough task analysis. This
involved identifying the probability equations required for
solving the set of study problems. This set serves as the
target knowledge base that we would expect a “perfect
learner” to have acquired after complete study of the
curriculum. The task analysis allowed us to replace
Cascade’s physics task knowledge with task knowledge

about computing probabilities. It is important to note that
we only changed Cascade’s task knowledge. We did not
change any of the underlying problem-solving or learning
mechanisms built into Cascade. Once we defined the target
knowledge base, we represented each problem as a set of
given and sought quantities, using Cascade’s representation
language within Prolog.

After doing the task analysis, we ran Cascade on each
problem in order to perform a content analysis. The content
analysis records the required equations for each solution.
This allows us to predict interactions between performance
on separate problems by a single subject. For example, if a
subject fails to use an identified equation in one problem (as
suggested by an error combined with protocol evidence),
but then correctly solves a subsequent problem that requires
the same equation, we can safely hypothesize that some sort
of learning took place even if there is no direct evidence of a
learning episode in the protocol transcript. This helps us
track learning across a series of problems. The content
analysis also helps constrain the encoding of the subject
protocols. In the face of ambiguous utterances that lead to a
correct solution, we can generally infer which equations the
subject must have used correctly.

Our final task was to encode the subject protocols for
behavior episodes relevant to the predictions reported
above. Future work (when all subject protocols are
available) will contain thorough quantitative analyses of
various protocol encodings. For the current effort, however,
we performed a qualitative analysis, looking for general
trends in the data. The goal was to investigate whether there
were any relationships between example fading and
learning, the use of analogies for search control, and the
generation of self-explanations. ~ We constrained the
protocol encoding by performing a goal decomposition to
match each subject protocol. Running Cascade on the same
problems generates similar goal decompositions, which we
can then use to inform the coding process.

Task and Content Analysis

As mentioned above, the task analysis determined all of the
equations, or knowledge chunks, required to solve the set of
probability problems from the empirical study. We did not
include more basic arithmetic reasoning (such as addition,
multiplication, and the ability to isolate variables) in the
analysis. This is because, for the domains Cascade has been
used to study so far, it simplifies the model to assume that
subjects have well rehearsed knowledge of these tasks. For
the problems in question, we identified twelve distinct,
required equations. Some of the equations compute simple
probabilities by dividing the cardinality of various sets of
objects. The task knowledge includes cases for choosing
objects at random with and without replacement. The target
knowledge base also includes various equations for
combining probabilities. These include the special
multiplication rule
P(el and e2) = P(el) x P(e2)

the addition rule



So I have a total of 12 bottles and there are 4 that are turned into
vinegar. So a total of 4 vinegar and 8 drinkable. Probability of
vinegar is 1/3 and drinkable is 2/3. Now if we take one then
we’re left with...There is a 1 in 3 chance that that will be
vinegar...

S: value(p(eventla))
S: solve(p(event) = size(selectionpool) / size(totalpool))
S: value(size(selectionpool))
F: value(size(selectionpool)) = 4
S: value(size(totalpool))
F: value(size(totalpool)) = 12
F: solve(p(event) = size(selectionpool) / size(totalpool)): 1/3
F: value(p(eventla)) = 1/3

Table 1.
form of a Cascade trace.

P(el or e2) =P(el) + P(e2) — P(el and e2)
and the subtraction rule
P(note) =1 -P(e).

It is worth comparing some features of this domain with
classical mechanics, the domain used in previous studies
with Cascade. The physics and probabilities domains share
the feature of involving mostly symbolic problem-solving
skills, which we feel is the defining characteristic that
allows Cascade to model both well. However, there are also
some potentially significant differences between the two
domains.

To begin with, the target knowledge base for computing
probabilities is much smaller than the physics knowledge
base. In contrast to the current set of 12 equations, Cascade
required explicit representation of 62 separate chunks of
knowledge for classical physics.  Another significant
difference is that subjects often relied on common-sense
reasoning to explain and learn physics skills. Thus, the
Cascade model for physics included a number of general
common-sense rules that could be used to guide the learning
of correct (and sometimes incorrect) physics knowledge. In
contrast, there seems to be much less opportunity to
generate common-sense explanations for the rules of
probabilities (although there are certainly some). In the
protocols we have studied so far, subjects generally made
little use of common-sense principles when they got stuck.

To perform the content analysis, we encoded the
problems provided by Renkl and Atkinson into Cascade’s
representation. This essentially involved translating the
problems’ given and sought quantities into a Prolog-style
predicate representation. Once complete, we ran Cascade to
ensure it could solve each problem with the complete
knowledge base. Each problem run generated an execution
trace that provides explicit detail about which equations are
necessary to solve each problem. With these tools in hand,
we proceeded to analyze each subject protocol to track the
usage of individual equations, self-explanation behavior, the
use of analogy to guide problem solving, and learning.

Protocol Analysis

The basic approach to the protocol analysis was to assume
that Cascade provides an accurate model of each subject’s
behavior and then to look for inconsistencies. We patterned
this approach after Jones and VanLehn’s (1992) evaluation
of Cascade’s ability to model the fine-grained behavior of
individual subjects studying and solving physics problems.

A protocol excerpt and its corresponding analysis in the

For each subject-problem pair, we generated the
hypothetical solution trace that Cascade would have to
generate in order to produce the utterances observed in the
subject. We allowed ourselves to tune the trace only by
assuming that Cascade has missing or incorrect knowledge
about computing probabilities. Any other discrepancies
between Cascade and the protocol data are marked against
Cascade’s ability to explain the subject’s performance.
Table 1 presents an example protocol excerpt and the
corresponding Cascade trace that matches the internal
behavior suggested by the subject’s utterances.

We constructed Cascade-like traces for a number of
problems, and used those results to guide the rest of our
protocol analysis. Recall that the predictions presented by
Jones and Fleischman (2001) focused on self-explanation,
forced impasses, knowledge acquisition from impasses, and
knowledge tuning. Thus, our protocol analysis focuses on
these three issues.

Self-Explanation

For Cascade’s account of fading to be correct, it must mean
that subjects tend to generate more self-explanations (or
problem-solving activity) for faded examples than they do
for completely worked examples. This prediction is borne
out in the protocol data we examined. Subjects rarely
engaged in self-explaining on fully worked examples.
Subjects were much more engaged in the faded examples,
presumably because the faded examples demanded them to
generate some kind of answer. The protocols show
evidence that sometimes even this was not enough to ensure
self explanation. Sometimes, subjects would simply “click
through” the faded portions of the examples, and skip on to
the solutions. For example, after revealing a solution step,
one subject simply said “Boy...summmsumm...I don’t
know this right now,” and proceeded to the next step.
However, there were certainly many more instances of self-
explanation for faded examples than there were for
completely worked examples.

Impasses

Subjects encountered impasses during fully worked
examples even more rarely than they bothered to self-
explain the examples. This is because a subject cannot
experience an impasse without first engaging in some self-
explanation. However, subjects experienced many impasses
when working on faded examples. This is because, if the



subject made a mistake, they received relatively immediate
feedback by then being shown the correct solution step. If
the subject bothered to read the revealed solution, they
would have to acknowledge a discrepancy and go back to
refigure things. The following excerpt shows an example of
a subject first reading a completely worked example
(Problem 5) with no impasse, and then working a faded
example (Problem 6) that forces an impasse. Both problems
require precisely the same set of equations to generate a
correct solution.

Problem 5:

S: Okay, let’s see here. Probability is 1/10 time 1/5,

okay, I see how they did it, allright. Probability of

stitching and/or color defects is 1/10 plus 1/5 minus

the total probability that’s 1/50, and that equals

(reads aloud) okay, next.

Problem 6:
S: Okay, allright. Now. This is the difference, that’s
going to be 1 minus the 2/50 plus the 23/50, that’s
going to be, 1 minus okay, 2/50 or, 2/50 equals .04,
and plus 23/50 equals .46, now, .46 and .04, give me
.50, 1 minus .50 equals .50, so, I'm doing this right,
it should be .50, no, okay, allright, let’s see, okay, I
guess I..., okay, so that’s 1 minus that, okay, I see
what I did.
In this excerpt, the subject essentially just reads Problem
5 and claims to understand it (which is, paradoxically, a
hallmark of subjects that are not doing enough self
explanation). The subject generates an answer to Problem 6
that they think is correct, but when they reveal the correct
solution step they discover they are wrong. This forces an
impasse. In this particular excerpt, there is no convincing
evidence that the subject actually resolved the impasse and
learned the correct solution sequence, but the impasse at
least gave them the opportunity. The following sections
discuss analysis of actual learning episodes in the protocols.

Knowledge Acquisition

We were surprised to find no obvious episodes of
knowledge acquisition in the protocols. That is, we found
no evidence that subject were missing entire chunks of
knowledge that they were then able to discover in response
to an impasse. This was particularly surprising because
Jones and Fleischman (2001) assumed a key role for
knowledge acquisition episodes during their initial Cascade
study with physics problems. It appears that this is a place
where differences in the task domains are significant. As
mentioned previously, knowledge acquisition episodes were
an extremely important part of Cascade’s account of the
self-explanation effect for the physics domain. However, in
all of the protocols for subject computing probabilities, it
appears that they already know all of the equations they
need; they just have not yet learned the right times to use
them. This is admittedly a subtle distinction that cannot
always be verified in the protocol data, so we plan to give it
a much closer look in future studies. However, since our

original proposal gave such a large role to knowledge
acquisition, we feel we are being conservative by suggesting
that there are no knowledge acquisition episodes at all in the
current protocol data. There are clearly other types of
learning episodes in the data, which we describe below, and
we feel that those remain consistent with Cascade’s
predictions about fading.

Knowledge Tuning

One of the predictions about Cascade’s account of fading
was that fading enables students to tune knowledge they
have already acquired, by allowing them to use it in a useful
problem-solving context. In Cascade, all knowledge tuning
occurs via a process of analogical search control. Thus, we
expect to see subjects learn after they have successfully
drawn an analogy between two problems. We observed
many such episodes in the current protocol data. The
following excerpt provides one of the clearest examples:

Problem 2:

S: ...The chance of it being drinkable is 8 to 11 so

the probability of her drinking, probability that the

first bottle is vinegar but the second is drinkable, 2

red balls and 2 white balls is 4, probability is 1/2 so

if we multiply 1/3 times 8/11 that will be 8/33...

Problem 2 involves a collection of bottles containing wine
and vinegar. However, in the middle of the excerpt, the
subject makes an explicit analogical reference to Problem 1,
which deals with selecting a particular configuration from a
collection of red and white balls. In a subsequent problem
that uses precisely the same solution technique, the subject
easily solves the problem correctly, without any evidence of
an impasse or overt analogical reference.

It seems clear that this particular episode involves
knowledge tuning via analogy. There are other episodes of
knowledge tuning that are not overtly analogical. The
current Cascade model dictates that all knowledge tuning
occurs by analogy, but that happens at a low enough
cognitive level that it is difficult to prove or disprove.
Certainly there are many cognitive theories that posit some
sort of similarity-based memory for skills and facts.

There is one aspect of knowledge tuning that Cascade
does not model well. Some subject protocols show
basically the same pattern as the excerpt above, but the
tuning occurs more gradually across 3 or 4 problems.
Cascade’s knowledge tuning mechanism is more of an all-
or-nothing proposition. As soon as Cascade solves one
problem by analogy, it can immediately retrieve the same
knowledge in similarly structured future problems. This
seems to be a clear weakness in the Cascade model.
However, it does not invalidate Cascade basic account of
fading. The subject protocols show that the use of analogy
occurs more frequently during fading-driven impasses than
during the study of completely worked examples.

In prior Cascade studies in the physics domain, there were
strong interactions between the knowledge tuning and
knowledge acquisition mechanisms (VanLehn & Jones,
1993b). We expect that similar interactions could help



explain the effectiveness of fading examples. However,
since we have so far seen no evidence of knowledge
acquisition in the current study, it has not been important to
analyze potential interactions.

Conclusions

We conclude by reiterating the predictions that Jones and
Fleischman (2001) proposed to gather evidence for
Cascade’s account of the benefit of faded examples:

1. “Faded examples cause effective learning by
forcing the student to encounter and overcome
an impasse.”

2. There is likely “...at least some benefit to
example fading from the learning of search
control knowledge.”

3. “The primary benefit of a faded example is that
it forces the student to process parts of the
example that they might otherwise ignore.”

We feel that our initial analysis of protocol data from
Renkl, Atkinson, and colleagues confirms each of these
predictions to some extent. The basic effect is strong:
students often do not expend much effort on understanding
completely worked examples, but fading the examples gives
the students a strong impetus to do so. This encouragement
to work out portions of the examples leads to more
opportunities to identify incorrect (or incorrectly applied)
knowledge, which in turn provides opportunities to correct
or tune that knowledge. We were surprised to find that
knowledge acquisition did not appear to play a significant
role in the probabilities task domain. However, future
analysis will more closely search for such episodes. In
addition, although it makes the model less interesting in
some ways, the preponderance of analogical knowledge
tuning is entirely consistent with the Cascade model. Since
Jones and Fleischman’s (2001) original study of fading with
Cascade did not focus strongly on knowledge tuning
(because it played less of a role in the physics domain), an
important future task is to run a thorough set of experiments
with Cascade to confirm that knowledge tuning can account
for all of the observed improvements in problem-solving
skill.

It is also certainly possible that future analysis will
uncover data that is inconsistent with Cascade’s predictions.
With this possibility in mind, our next course of action is to
gather even more data and perform a more thorough
quantitative analysis. We also expect that we will find some
ways in which Cascade should be improved. For example,
we already know that the knowledge tuning mechanism
should be adjusted to account for more gradual forms of
knowledge tuning observed in the subjects. Any further
mismatches of the model to the data should also serve to
improve our understanding of how humans learn problem-
solving skills and, as a consequence, inform how we ought
to teach them.
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