A Classification of Cognitive Agents

Mehdi Dastani (mehdi@cs.uu.nl)
Institute of Information and Computer Sciences
P.O.Box 80.089
3508 TB Utrecht, The Netherlands

Leendert van der Torre (torre@cs.vu.nl)
Department of Artificial Intelligence, Vrije Universiteit Amsterdam
De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands

Abstract

In this paper we discuss a generic component of
a cognitive agent architecture that merges beliefs,
obligations, intentions and desires into goals. The
output of belief, obligation, intention and desire
components may conflict and the way the conflicts
are resolved determines the type of the agent. For
component based cognitive agents, we introduce an
alternative classification of agent types based on
the order of output generation among components.
This ordering determines the type of agents. Given
four components, there are 24 distinct total orders
and 144 distinct partial orders of output genera-
tion. These orders of output generation provide the
space of possible types for the suggested component
based cognitive agents. Some of these agent types
correspond to well-known agent types such as real-
istic, social, and selfish, but most of them are new
characterizing specific types of cognitive agents.

Introduction

Imagine an agent who is obliged to settle his debt,
desires to go on holiday, and intends to attend a
conference. Suppose that he believes he can only af-
ford to finance one of these activities and decides to
pay his checks to settle his debt. Unfortunately, our
agent does not earn much money and is in the habit
of buying expensive books. Therefore, he runs again
into debt after a short while. Despite the fact that
he still has the same obligation, desire, and inten-
tion and believes that he can only afford to finance
one of these activities, he decides this time to attend
the conference. Directly after this decision, he hears
that the conference is cancelled and he receives a
telephone call from his mother telling him that she
is willing to pay his checks for this time. The agent is
now happy and decides to go on holiday. Our agent
has a friend who has the same obligation, desire, and
intention, and likewise believes that he can only af-
ford to finance one of these activities. In contrast to
our agent, this friend decides to go on holiday. How-
ever, he is late with arranging his holiday; all travel
agencies are sold out. Therefore, he decides to at-
tend the conference. In a different situation where
these two agents are obliged to visit their mothers,
desire to go to cinema, and believe they cannot do
both simultaneously, the first agent decides to visit

his mother while his friend goes to cinema. Yet in
another situation where these agents intend to clean
up their houses, are obliged to help their friends, and
believe they cannot do both, they decide to clean up
their houses. Although these agents behave differ-
ently, each of them seems to follow a certain be-
havior pattern under different situations. The first
agent seems to be more sensitive to his intentions
and obligations than to his desires while the second
agent seems to prefer his desires more than his in-
tentions and obligations. Moreover, the first agent
seems to be indifferent towards his intentions and
obligations while the second agent seems to prefer
his intentions above his obligations. These charac-
teristics and principles that govern agent’s actions
and behavior determine the type of cognitive agents
and can be used as the basis for a classification of
cognitive agents.

We are motivated by the studies of cognitive
agents where the behavior of an agent is defined in
terms of rational balance between its mental atti-
tudes [1, 9, 5]. A classification of cognitive agent
types specifies possible ways to define the rational
balance. Beside the scientific need to study possible
definitions of rational balance in a systematic way,
a classification of cognitive agent types is important
for many applications where it is impossible to spec-
ify agent behavior in specific and usually unknown
situations. In such applications, it is important to
specify the behavior of agents in strategic terms and
by means of types of behavior.

In [2] we investigate the design and implemen-
tation issues of generic component-based cognitive
agents. In the present paper, we propose an alter-
native classification of cognitive agent types. There
has been many formal and informal studies propos-
ing agent types [1, 8, 4]. In these studies, there is a
trade-off between the space of possible agent types
and their precise and formal definitions. In partic-
ular, informal studies provide a rich space of possi-
ble types of cognitive agents and ignore their precise
definitions, while formal studies provide precise def-
inition of agent types but ignore the richness of the
space of possible types. The proposed classification
of cognitive agent types in this paper is formal and
in terms of a generic component based architecture.

This classification is systematic and provides a large
space of possible types for cognitive agents. Some of
these agent types such as realistic, social, and selfish
are well-known. However, most of these agent types
are new and characterize specific types of behavior.
The layout of this paper is as follows. First,
we discuss different ways of classifying agent types.
Since our classification is based on generic compo-
nent based agent architecture, we briefly discuss this
architecture and explain some of its properties that
are relevant for the agent type classification. Pos-
sible agent types within this architecture are dis-
cussed. An example of a conflict situation is formal-
ized and it is shown how different agent types behave
differently in this situation. Finally, we conclude the
paper and indicate future research directions.

Classification based on Agent
Architecture

Various frameworks with corresponding type classi-
fications for cognitive agents are proposed [9, 5, 3].
Considering different phases in agent oriented soft-
ware development process such as analysis, design,
and implementation phases, most proposed cogni-
tive agent frameworks with corresponding type clas-
sifications are provided for the analysis phase. For
example, Rao and Georgeft’s BDI framework with
realism and commitment strategies as agents types
[9] have been developed as formal specification tools
for the analysis phase. In this framework, the single
minded agent type is thought to be the one which
maintains its commitments until either it believes it
has fulfilled its commitments or it does not believe
it can ever fulfill its commitments.

Although these formal tools and concepts are very
useful to specify various types of cognitive agents,
they are specifically developed for the analysis phase
which makes them too abstract for other phases.
In fact, to design and to implement various types
of cognitive agents, we need to define agent types
in terms of tools and concepts available at the de-
sign and the implementation phases such that they
can be translated into agent architectures and agent
implementations. A closer look at the specification
formalisms such as Rao and Georgeff’s BDICTL for-
malism shows that the space of theoretically possible
cognitive agent types is determined by the expressive
power of that formalism. Obviously, other phases of
agent development process restrict and narrow down
the space of possible agent types since available con-
cepts and tools at those phases should satisfy con-
ditions such as realizability and computability. This
implies that each agent architecture allows only a
subset of possible agent types that can be specified
at the analysis phase. Therefore, it is essential for
each agent architecture to indicate which types of
agents can be designed in that architecture. The
classification of cognitive agent types in this paper

is proposed for the design phase and it is thus in
terms of agent architecture.

Agent Architecture

In general, agent architectures are defined in terms
of knowledge representation (i.e. data) and reason-
ing mechanism (i.e. control). The agent type clas-
sification, which we introduce in the next section, is
defined in terms of properties of generic component
based architecture called BOID (BOID stands for
Beliefs, Obligations, Intention, and Desire). There-
fore, we first briefly explain this architecture, which
can be seen as a black box with observations as in-
put and intended actions as output. The architec-
ture and the logic of BOID are discussed in more
detail elsewhere [2].

A BOID agent observes the environment and re-
acts to it by means of detectors and effectors, respec-
tively. Each component in the BOID architecture is
a process having an input and output behavior. For
this reason and to model the input/output behavior
of each component, the components are abstracted
as a rule-based systems that contains a set of de-
feasible rules. As these components output mental
attitude only for certain inputs, they represent con-
ditional mental attitudes. In the BOID architecture
two modules are distinguished: the goal generation
module and the plan generation module. The goal
generation module generates goals based on beliefs,
desires, intentions and obligations, and the plan gen-
eration module generates sequences of actions based
on these goals. In the rest of this paper, we focus
only on the goal generation module since the pre-
sented classification of the agent types is defined in
terms of rational balance between agent’s mental at-
titudes. Possible classification of agent types that
can be defined in terms of the plan generation mod-
ule or in terms of the interaction between the goal
or the plan generation modules are out of the scope
of this paper.

The BOID architecture differs from the Proce-
dural Reasoning System (PRS) [7], which is devel-
oped within the BDI (Beliefs, Desires, and Intention)
framework, in several aspects. The first difference is
that BOID extends PRS with obligations as an ad-
ditional component. One reason for this extension is
to incorporate elements of the social level, i.e. social
commitments, to formalize for example social agents
and social rationality. The second difference is re-
lated to the conditional nature of mental attitudes
in BOID. In fact, each mental attitude is abstracted
as a rule-based system containing defeasible rules.
This is in contrast with the representation of mental
attitudes in PRS which are sets or lists of formula.
The third difference is that the BOID components,
which represent mental attitudes, are processes hav-
ing their own control mechanism. Thus, in contrast
to the central control mechanism in PRS, in BOID
there are two levels of controls. A central control

mechanism at the agent level coordinates activities
among components. The control mechanism at the
component level determines how and which output
is generated by each component when it receives in-
put. Finally, the goals in BOID are generated by the
interactions between agent’s mental attitudes in con-
trast to the PRS where goals are given beforehand
and become selected by the central control mecha-
nism.

As noticed, each component can be abstracted as
a rule-based system specified by propositional logical
formulas, in the form of defeasible rules represented
as a — b. The reading of a rule depends on the com-
ponent in which it occurs. For example, a rule in the

obligation component, represented as a <9> b, should
be read as follows: if a is derived as a goal and it is
not inconsistent to derive b, then b is obliged to be a
goal. The input and the output of components are
represented by sets of logical formulas, closed under
logical consequence. Following Thomason [10] these
are called extensions. The logic that specifies exten-
sions is based on prioritized default logic that takes
an ordering function p as parameter. This function
constraints the order of derivation steps for different
components and characterizes the type of the agent.
We first briefly discuss the BOID conflict resolution
mechanism and then explain how the ordering func-
tion can be used to define various agent types.

Conflict Resolution Mechanism

In the BOID architecture, goals are generated by a
calculation mechanism. The calculation starts with
a set of observations Obs, which cannot be overrid-
den, and initial sets of default rules for the other
components: B, O, I, D. Moreover, it assumes an
ordering function p on the rules of the different com-
ponents. The procedure then determines a sequence
of sets of extensions Sg, S1,.... The first element in
the sequence is the set of observations: Sy = {Obs}.
A set of extensions S;1; is calculated from a set of
extensions S; by checking for each extension E in
S; whether there are rules that can extend the ex-
tension. There can be none, in which case nothing
happens. Otherwise each of the consequents of the
applicable rules with highest p-value are added to
the extension separately, to form distinct extensions
in S;11. The operator Th(S) refers to the logical
closure of S, and the syntactic operation Lit(b) ex-
tracts the set of literals from a conjunction of literals
b. In practice not the whole set of extensions is cal-
culated, but only those that are calculated before
the agent runs out of resources.

Definition 1 A tuple A =(0bs,B,0,1,D,p) is
called a BOID theory. Let L be a propositional logic,
and an extension E be a set of L literals (an atom
or the negation of an atom). We say that:

e arule (a <= b) is strictly applicable to an extension
E, iffa€ Th(E), b€ Th(E) and —b & Th(E);

e max(E,A) C BUOUIUD is the set of rules
(a — b) € max(E, A) strictly applicable to E such
that there does not exists a (¢ — d) € BUOUIUD
strictly applicable to E with p(c < d) > p(a < b);

e F C L is an extension for A iff E € S, and
Sn = Spy1 for the procedure in Figure 1.

i:=0;5; :={Obs};
repeat
Siy1:=0;
for all £ € S; do
if exists (¢ — b) € BUO U I U D strictly
applicable to £ then
for all (¢ — b) € max(E,A) do
Si+1 = SiJrl (@] { EU th(w)},
end for
else
Sit1:= Six1 U{E}
end if
end for
i=i+1;
until Sl = Sifl;

Figure 1: Procedure to calculate extensions

In our model, p can assign values to the rules,
such that all rules from one component receive ei-
ther larger or smaller values than the rules from an-
other component. This implies that the rules from
one components are applied before the rules from an-
other component can be applied. This is the basis of
our idea to define agent types. Of course, in many
practical applications p must be specified further.
For example, an agent may prefer some of his O rules
to some of his D rules while conversely preferring
some other D rules to some other O rules. However,
this does not mean that our basic idea has to be
dropped. It just means that the number of compo-
nents has to be further specified and the p function
has to be defined accordingly. Each component can
thus be subdivided in a number of subcomponents
such that the p can describe the preference of the
rules accordingly. Here we do not further describe
this division since it is not important for the general
idea of agent type classification that we present in
this paper.

The parameter p may assign unique values to the
rules of all components. In such a case, the BOID
calculation scheme can apply in each iteration loop
only one rule, which implies that the BOID calcula-
tion scheme generates only one extension. However,
p may also assign identical integers to different rules.
In this case, p imposes a partial ordering among the
rules. For such a p, the above BOID calculation
scheme can apply more than one rule in each itera-
tion loop, which implies that the BOID calculation

scheme may generate a set of extensions. For exam-
ple, consider a scenario in which an agent believes

B
that he is in a non-smoking area (i.e. T < nsa).

. . I .
He intends to smoke (i.e. T < s), but he intends
not to smoke when he is in a non-smoking area (i.e.

nsa <5 —s). Define p as follows:

p(T A nsa) > p(nsa L —s) > p(T L s)

For this p, the BOID calculation scheme as defined
in Definition 1 generates one single extension which
is: {nsa,—s}.

Now, suppose p is defined as follows:

B I I
p(T = nsa) > p(nsa — —s) = p(T — s)

This p does assign identical integers to the intention
rules and the BOID calculation scheme generates the
following two extensions: {nsa, s} and {nsa, s}.

Agent Types

Given the presentation of mental attitudes and the
BOID calculation scheme, we investigate which type
of interactions between mental attitudes can arise
within the BOID architecture and how these inter-
actions can be classified. In principle, there are fif-
teen types of conflicts that can occur between the
mentioned four mental attitudes [2]. These conflicts
can be solved in different ways. We explain how dif-
ferent ways of resolving conflicts can be modelled by
restricting the order of rule application in the BOID
calculation scheme. We argue that these restrictions
specify different types of the BOID agent and in-
troduce a classification of the types for the BOID
agents. Finally, some examples of BOID types and
their solutions to one and the same conflict situation
is presented.

Conflict resolution and agent types

One of the main tasks of deliberative agents is to
solve possible conflicts among their mental attitudes.
In principle, there are fifteen different types of con-
flicts that may arise either within each class or be-
tween classes. Dependent on the exact interpreta-
tion of these classes, some of the conflict types may
be more interesting or important than others. We
distinguish two general types of conflicts: internal
and external conflicts. Internal conflicts are caused
within each component while external conflicts are
caused between them. Internal conflicts can be dis-
tinguished into four unary subtypes (B ; O ; I ; D).
External conflicts can be distinguished into six bi-
nary conflict subtypes (BO ; BI ; BD ; OI; OD ; ID),
and four ternary conflict types (BOIL; BOD; BID;
OID) and one quadruplicate conflict type (BOID).
An example of the BOID external conflict type is
the following situation: The agent intends to go to

a conference. It is obligatory for the agent not to
spend too much money for the conference. In par-
ticular, either the agent should pay for a cheap flight
ticket and stay in a better hotel, or the agent should
pay for an expensive flight ticket and stay in a bud-
get hotel. The agent desires to stay in a better hotel.
But, he believes that the secretary has booked an ex-
pensive flight ticket for him. More examples of these
conflicts are presented in [2].

A conflict resolution type, which characterizes an
agent type, is considered here as an order of overrul-
ing. Given four components in the goal generation
module of the BOID architecture, there are 24 pos-
sible orders of overruling. In this paper, we only
consider those orders according to which the belief
component overrules any other component. This re-
duces the number of possible overruling orders to 6.
Some examples of conflict resolution with beliefs are
as follows. A conflict between a belief and an inten-
tion means that an intended action can no longer be
executed due to the changing environment. Beliefs
therefore overrule the intention, which is retracted.
Any derived consequences of this intention are re-
tracted too. Of course, one may allow intentions
to overrule beliefs, but this results in unrealistic be-
havior. Conflicts between beliefs and obligations or
desires need to be resolved as well. As observed by
Thomason [10], the beliefs must override the desires
or otherwise there is wishful thinking. Moreover, a
conflict between an intention and an obligation or
desire means that you now should or want to do
something else than you intended before. Here in-
tentions override the latter because it is exactly this
property for which intentions have been introduced:
to bring stability [1]. Only in a call for intention
reconsideration such conflicts may be resolved oth-
erwise. For example, if I intend to go to cinema but
I am obliged to visit my mother, then I go to cinema
unless I reconsider my intentions.

Using the order of string letters as the overruling
order and thus as representing the agent type, a re-
alistic agent can have any of the following six specific
agent types, i.e. BOID, BODI, BDIO, BDOI, BIOD,
and BIDO. These specific agent types are not known
in the literature and we do not have any name for
them. Note that we overloaded the name BOID in
this way, because it becomes a specific type of agent
as well as the general name for the agent architec-
ture. These six specific agent types, in which beliefs
override all other components, can be represented
as a constraint on the p function resulting in the
well-known agent type, called realistic.

Definition 2 Realistic agent type is a constraint on
the p function formulated as follows:
Vry € Byr, € O,r; € I,rqg € D

(p(re) > pl(ro) A p(ry) > p(ri) A p(rs) > p(ra))
or simply

B-=OANB>=I1NB=D

Now that we have a specific p function that char-
acterizes realistic BOID types, we indicate how the
extension is calculated. Following definition 1, a re-
alistic BOID agent starts with the observations and
calculates belief extensions by iteratively applying
belief rules. When no belief rule is applicable any-
more, then either the O, the I, or the D component
is chosen from which one applicable rule is selected
and applied. When a rule from a chosen component
is applied successfully, the belief component is at-
tended again and belief rules are applied. If there is
no rule from the chosen component applicable, then
another component is chosen again. If there is no
rule from any of the components applicable, then
the process terminates — a fixed point is reached —
and extensions are calculated.

Other agent types can be specified as constraints
on the p function as well. Since we consider in this
paper only realistic agent types, we limit ourselves
to those agent types that are subtypes of realistic
agent types. Some of well-known agent types can
now be represented as follows.

BIDO, BOID, and BIOD are called stable, because
intentions overrule desires, i.e.

B~-OANB>=INDB~=DANI=D

BDIO, BIDO, and BDOI are called selfish, because
desires overrule intentions, i.e.

B~OANB>=INDB>=DAND>=0O

BOID, BIOD, and BODI are called social, because
obligations overrule desires, i.e.

B~OANB>~INDB~=DANO>=D

The six specific realistic agent types mentioned ear-
lier are subtypes of these three well-known more
general realistic agent types. Other agent types,
for which we do not have any name, are still pos-
sible. The relation between these and other realis-
tic agent types forms a lattice illustrated in Figure
2. The level in this hierarchy indicates the gener-
ality of agent types. The bottom of this lattice is
the realistic agent type that is characterized by the
least number of constraints on the p function. Each
higher layer adds additional constraints resulting in
more specific agent types. At the second level, the
stable, social, and selfish agent types result, and at
the fourth level the mentioned six specific and un-
known agent types (BIDO, BIOD, BDIO, BDOI,
BOID, and BODI) result. The top of this lattice
is the falsum, which indicates that adding any ad-
ditional constraint to the p function results in an
inconsistent ordering.

Example

In this section, we illustrate how conflicts between
mental attitudes can be solved within the BOID

B>~0O B>~0O B»>~0 B>~0O B>~0O B>~0O
B>1 B>1 B>1 B>1 B>1 B>1
B>~D B>~D B>~D B>D B>D B>~D
1-0 O>1 I>-D O>~1 D1 D>0
1-D O>D I-0 O>~D D>0 D>1
O>D I1-D D>0 D>1 1-0 O>1
B>0O B>0O B>0O B>0O B>0O B>0O
B>1 B>1 B>1 B>1 B>1 B>1
B>~D B>~D B>~D B>~D B>~D B>~D
-0 I>-D O>1 10 D>1 O>1
I1-D O>D O0>D D>0 D>0 D1
B>~0O B>~0O B>~0 B>~0O B>~0O B>~0O
B>1 B>1 B>~1 B>1 B>1 B>1
B>D B>D B>D B>D B>D B>D
1-D O>D I-0 O>~1 D>0 D>1

B>~0O

B>1

B>~D

Figure 2: The lattice structure of agent types.

architecture by giving an example that describes the
following mental attitudes: If I go to Washington
DC (Go2DC), then I believe that there are no
cheap rooms (ChRm) close to the conference site
(Close2ConfSite). If I go to Washington DC,
then I am obliged to take a cheap room. If I go to
Washington DC, then I desire to stay close to the
conference site. I intend to go to Washington DC.
This example can be represented by the following
rules:

p=5 (Go2DC N ChRm) B, —Close2Con f Site
p=4 (Go2DC A Close2ConfSite) = ~ChRm
p=3 Go2DC L, Close2Conf Site

p=2 Go2DC S ChRm

p=1 T Go2DC

Lets examine a specific type of social agent,
i.e. BIOD. Let the input of the agent be empty.
Then, following the extension calculation mech-
anism, we first derive all beliefs and intentions,
resulting in the following extension:

{Go2D(}

Because it is a social agent (i.e. the fourth rule has
a higher priority than the fifth rule), the obligation
rule is applied first. This results in the following
intermediate extension:

{Go2DC, ChRm}

This extension is fed back into the B component
where it triggers the first belief rule (i.e. the first

rule), because the second belief rules is not appli-
cable as we already have ChRm. This produces the
following final extension:

{Go2DC,ChRm,—Close2ConfSite}

This extension denotes the situation in which the
agent has decided to go to Washington DC and takes
a cheap room not close to the conference site, which
is indeed social behavior.

However, if we exchange the priority of the fourth
and the fifth rules the agent becomes a selfish agent
‘BIDO’. Then, the D-rule would be applied before
any obligation rule is applied, resulting in the fol-
lowing final extension:

{Go2DC,—~ChRm, Close2ConfSite}

Sending the results back to the belief component
does not make any difference here. This extension
denotes the situation in which an agent has decided
to go to Washington DC and takes an expensive
room close to the conference site, which is indeed
selfish behavior.

Concluding Remarks

We have briefly discussed the generic component
based BOID architecture that is developed for cog-
nitive agents. Each component in the BOID archi-
tecture represents a mental attitudes of the agent.
The output of components may conflict. Some of
the conflicts that may arise among BOID’s compo-
nents are presented. In the BOID architecture the
conflicts are resolved by the order of output gener-
ation from different components. We have shown
that the order of output generation determines the
type of an agent. In general, the order of output
generation can be used to identify different types of
agents. We have shown that these conflict resolution
mechanisms provide some well-known agent types
and an interesting set of unknown agent types. In
particular, we have shown that for a realistic agent
beliefs are generated before obligations, intentions
or desires; for a stable agent intentions are gener-
ated before desires; and for selfish agents desires are
generated before intentions.

We believe that the way the BOID components are
updated depends also on the type of the agent. The
integration of updating various components have the
highest priority in our research agenda. Another is-
sue which in on our future research agenda is the
incorporation of agent types derived from plan gen-
eration module and its interaction with goal gener-
ation modules. In the BOID architecture, the plan
generation module influences the computation of ex-
tensions and therefore may play an important role
in agent type classification. For example, when a
generated extension cannot be transformed into a
sequence of actions, another extension should be se-
lected. The exact choice for a new extension should
depends on the type of agent as well.

1]

2]

(7]

[10]

References

M. E. Bratman. Intention, plans, and practical
reason. Harvard University Press, Cambridge
Mass, 1987.

J. Broersen, M. Dastani, Z. Huang, J. Hulstijn
and L. van der Torre. The BOID Architec-
ture: Conflicts between beliefs, obligations, in-
tentions, and desires. Proceedings of Fifth In-
ternational Conference on Autonomous Agents
(AA’01), 79-16" ,ACM Press (2001)

R. A. Brooks. A robust layered control system
for a mobile robot. IEEE J. Robotics Auromat.,
RA-2(7):14-23, Apr. 1986.

C. Castelfranchi. Prescribed Mental Attitudes
in Goal-Adoption and Norm-Adoption. In Al
and Law, Special Issue on Agents and Norms,
7, 1999, 37-50.

P. Cohen and H. Levesque. Intention is
choice with commitment. Artificial Intelligence,
42:213-261, 1990.

M. Gelfond and T. Cao Son. Reasoning with
Prioritized Defaults. Proceedings of Logic Pro-
gramming and Knowledge Representation 1997,
164-223, Port Jeerson, New York, October
1997.

M. P. Georgeff and A. L. Lansky. Reactive rea-
soning and planning. In Proceedings of the
Sixth National Conference on Artificial Intel-
ligence (AAAI-8T7), pages 677-682, 1987.

A. Rao and M. Georgeff. An abstract architec-
ture for rational agents. In Proceedings of the
KR92, 1992.

A. Rao and M. Georgeff. BDI agents: From
theory to practice. In Proceedings of the First
International Conference on Multi-Agent Sys-
tems (ICMAS’95), 1995.

R. Thomason. Desires and defaults. In Proceed-
ings of the KR’2000. Morgan Kaufmann, 2000.

