Do Expression and Identity Need Separate Representations?
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Abstract

Recent work has shown that expression recogni-
tion shows holistic processing effects much like face
recognition (Calder et al., ress). We extend our pre-
vious model of facial expression recognition (Dailey
et al., 2000) to account for these results. We show
that our model, with small modifications to the
training procedure, can account for the systematic
biases between upper and lower facial expression
recognition, and the holistic/configural processing
effect. Finally, we show that results that seem to
support the idea that separate representations are
necessary for emotion and identity processing can
be accounted for by a single representation model.
This latter effect is demonstrated in subjects by
constructing chimeric faces by taking the top half
of one face and the bottom half of another.

Background

In recent years a consensus has emerged that face
processing is ”holistic” in nature (Tanaka and Farah,
1993; Farah et al., 1998). Here ”holistic” means
”configural”: that is, there is an effect of the whole
in recognition of the parts of a face. One way to
show this is to construct composite faces by com-
bining the upper and lower halves of different faces.
If the subject’s task is to recognize the identity of
the upper half of the face, there is interference if the
lower half of the face is from a different person. How-
ever, if the lower half of the face is misaligned with
the upper half, there is no difference in subjects’ re-
sponses when the lower half is the same person or a
different person (Young et al., 1987).

Recently, it has been shown that this effect ex-
tends to facial expression recognition (Calder et al.,
ress). Calder et al. first replicate a well-known effect
that certain expressions are more easily recognized
from their top or bottom halves. A summary of the
data is shown in Table 1. Based on this data, Calder
et al. constructed composite faces from the same
subject using a top-biased emotion in the top half
and a bottom-biased emotion in the bottom half.
When subjects were asked to identify the emotion
in one half, their reaction times were slower when
the two halves were aligned versus when they were
misaligned.

In further experiments, Calder et al. present data
that they interpret as showing that there must be
separate representations for facial identity and facial
expression processing. The experiment in this case
was to show several kinds of composite images to the
subjects, and to give them two tasks: identity judge-
ments (after training on the identities of the sub-
jects), and expression judgements. There were three
kinds of composite images: 1) same identity, differ-
ent emotion; 2) different identity, same emotion; and
3) different identity, different emotion. Consider the
case of identity judgements. The subjects are asked
to judge the identity of the subject in the bottom
half of the image. If the top of the image is the
same subject, but a different emotion, the reaction
times are faster than if the top half of the image
is a different subject. This is expected based on
the above results on configural processing. However,
when the top was a different subject, their reaction
times did not differ between the case where the ex-
pression of the different subject was the same or dif-
ferent. The interpretation is that identity processing
is not affected by affect processing. Identical results
in the emotion identification task support the idea
that expression processing is not affected by identity
processing. The conclusion that two representations
must therefore be in play makes intuitive sense, but
should be tested in a model. In the following, we
show that a single representation suffices to obtain
these results.

The Model

We performed three experiments that paralleled as
closely as possibly three of the experiments reported
in (Calder et al., ress). In each experiment, we
used the same images from the Pictures of Facial
Affect (POFA) dataset (Ekman and Friesen, 1976),
although normalized as described below. Also,
we constructed our own versions of Calder’s hand-
constructed split images. All experiments used a
similar model and data. The details of these exper-
iments are described in this section.

Classification Model

In all experiments, our classification model em-
ploys image filtering, principal components analysis



Expression | Human Top | Human Bottom | Net Top | Net Bottom
Happy 0.20 (.09) 0.01 (.01) 0.40 0.00
Sad 0.19 (.05) 0.34 (.08) 0.28 0.40
Afraid 0.33 (.08) 0.56 (.09) 0.28 0.70
Angry 0.28 (.06) 0.49 (.09) 0.29 0.65
Surprised 0.06 (.21) 0.33 (.07) 0.00 0.21
Disgusted | 0.62 (.10) 0.04 (.14) 0.20 0.00

Table 1: Fraction of test examples incorrectly identified for each expression. The Human Top and Human
Bottom results correspond to the results reported for expression recognition by (Calder et al., ress). The
Net Top and Net Bottom results correspond to the results achieved by our classification model. The number
in parentheses is the standard error for the humans.

(PCA), and a single-layer neural network to classify
the expression and identity of an input pixel image
of an actor posing an expression (Dailey et al., 2000).

Preprocessing of these images begins by aligning
the images so that the eyes and mouth of all im-
ages are in the same location, then cropping the im-
ages to eliminate the background. After each im-
age is aligned, it is convolved with a grid of two-
dimensional Gabor jets. Each jet is composed of 40
Gabor filters of five different sizes and eight different
orientations. Each jet is centered on a pixel of the
aligned image. This image filtering was chosen be-
cause it is similar to filtering done in the striate cor-
tex of cats and has previously been shown to improve
expression recognition in neural networks (Dailey
et al., 2000). Applying Gabor filters to a sub-
sampled 240 x 292 pixel image results in a 40,600
component vector. These vectors are then z-scored
(transformed to 0 mean, unit std. dev.) on an indi-
vidual filter basis, resulting in the Gabor pattern.

As our experiments required a method of directing
the classification model’s attention to just one half
(bottom or top) of the face stimulus, the other half
of the face stimulus is attenuated. Each component
in the half of the Gabor pattern to be attenuated is
multiplied by 0.125. The factor 0.125 was chosen af-
ter comparing the results of attenuating by different
fractions. An attenuation factor of 0.125 resulted in
the error of the model’s recognition of expression
in half face training data (described below) most
closely resembling the error of the human’s recog-
nition of expression in half face images. However,
we found little variance in the model’s error with at-
tenuation factors between 0.5 and 0.125. We define
a Gabor filter as being within the half the image to
be attenuated if the pixel it is centered on is in that
half, or if it is within two times the standard devia-
tion of the Gaussian of the Gabor filter. This way,
even filters in the attended half will be attenuated
if their receptive field overlaps the other half of the
image.

50 principal components of each Gabor pattern
are extracted from the training data. These are also

Figure 1: Whole and Half Face Training Data: (a)
Aligned and cropped pixel image; (b) Pixels corre-
sponding to the top half; (¢) Pixels corresponding to
the bottom half.

z-scored. Finally, a soft-maxed single-layer neural
network is trained using the cross-entropy error cri-
terion.

Training Data

All stimuli are derived from pixel images from the
POFA database. This data set includes images of
14 actors posing 6 expressions: happiness, sadness,
fear, anger, surprise, and disgust.

In all experiments, the principal components of
the Gabor patterns are extracted from whole face
and half face Gabor patterns, and the neural net-
work is trained upon those. We assume that during
the learning of the emotions, subjects also attend to
just one half of the face at different times. We can
think of this as either an attentional process or as
a crude simulation of eye movements. In addition,
splitting the images between the top half and bot-
tom half, as defined by Calder, resulted in the top
half of the image being smaller in area than the bot-
tom half of the image. Extracting principal compo-
nents while attenuating one half of the image allowed
more equal representation of each half in the prin-
cipal components. Whole face Gabor patterns are
created by convolving the original pixel image with
the Gabor filters, as described above, then z-scoring
these patterns. Half face Gabor patterns are cre-
ated in a similar manner: the original pixel image is
convolved with the Gabor filters and z-scored, then
one half of the pattern is attenuated to a fraction of
0.125. Thus, when creating a top half face Gabor



pattern, components corresponding to the bottom
half of the face are multiplied by the fraction 0.125.
An alternative method would have been to start with
a pixel image of just one half of the face, and then
convolve the image with Gabor filters. We did not
do this because the Gabor filters would have given
a strong response at the edge in the image between
the zeroed half and the non-zeroed half, and we were
concerned that this signal might confuse the network
(this may have been an unnecessary worry). An ex-
ample of an aligned and cropped pixel image and
bottom and top half images are shown in Figure 1.

Experiments

Experiment 1

The goal of the first experiment was to determine
whether our network gave the same results as Calder
et al.’s subjects in terms of which expressions are
top-biased and which are bottom-biased. An expres-
sion is top-biased if it is more accurately identified
by our model from the top half of the face than the
bottom. An expression is bottom-biased if the oppo-
site is true. Calder et al. used 10 of the POFA actors
for this experiment. We used the same 10 actors.

The general procedure for this experiment was to
classify half face examples using the classification
model described above, then compare the classifica-
tion error for top and bottom test half face examples
for each expression. We used ”hold one actor out”
cross validation, so we trained on nine and tested
on the tenth. Each of these were repeated ten times
using different initial random weights. The test half-
face examples classified by the network are the result
of convolving a whole face image with the Gabor fil-
ters, z-scoring, attenuating one half using the multi-
plier 0.0 (thus there is no output from that half), and
projecting onto the principal components. Train-
ing is stopped when error on the training set most
closely corresponds to the human confusion matrix
reported by Ekman.

Results: The average results of classifying each
test example 10 times are shown in Table 1. The
network responses do not vary much over networks.
These results show that for our classification model,
happy and disgusted are bottom-biased while sad,
afraid, angry and surprised are top-biased. These
results are very similar to the human results: happy
and disgusted are bottom-biased and sad, afraid,
and angry are top-biased. The only difference is that
our classification model finds surprised to be top-
biased while the human results find surprised to be
unbiased, due to subject variance. In addition, large
differences between the network’s classification error
fractions of the top- and bottom-half stimuli corre-
spond to large differences between humans’ classi-
fication error fractions of the top and bottom-half
images.

Experiment 2

The goal of the second experiment was to deter-
mine if incorrect configural information disrupts the
model’s expression recognition. This involves com-
paring the model’s accuracy on identifying the ex-
pression in one half of two different types of stimuli:
composite and noncomposite. A composite exam-
ple is the result of aligning the top half of one face
with the bottom half of another (Figure 2(a)). A
noncomposite example is the result of misaligning
the top half of one face with the bottom half of an-
other. When performance degrades on composite
faces compared to non-composites, this is taken to be
an indicator of configural processing (Young et al.,
1987). That is, when the two halves are aligned,
subjects are unable to ignore the information in the
other half of the face, even though they are judging
only one half.

In this experiment, both halves of the composite
and noncomposite examples correspond to the same
actor but different expressions. In Calder et al.’s
experiment, reaction times were slower for composite
images than for non-composite. Composite images
are created by aligning the bottom half of one happy,
surprised, or disgusted face image with the top half
of one sad, afraid, or angry face image. Following
Calder et al., images from only four of the actors
are used.

Composite Gabor patterns are the result of con-
volving these composite images with Gabor filters
and z-scoring. As the model must identify the ex-
pression in one half of the example, one half of the
composite Gabor pattern is attenuated by a fraction
of 0.125. Noncomposite Gabor patterns are created
from the composite Gabor patterns. The half of the
pattern that is attenuated is misaligned with the
other half by replacing the components of the at-
tenuated half corresponding to the right side of the
face with the components corresponding to the left
side and zeroing the components corresponding to
the left side. These are projected onto the principal
components of the same training set as the first ex-
periment. The network is trained as in the previous
experiment, and tested on identifying the expression
in one half of both composite and noncomposite ex-
amples.

Results: The results are shown in Figure 3. These
results indicate that our classification performs bet-
ter on noncomposite test examples than composite
test examples. As the top and bottom face halves are
aligned in the composite examples, there is incorrect
configural information in these examples that is not
present in the noncomposite examples. Therefore,
this result indicates that incorrect configural infor-
mation disrupts our model’s expression recognition.
The trend in classification error for these two types
of test examples is similar to the trend reported for
human response time for these two types of exam-
ples, as shown in Figure 3.



Figure 2: Different stimuli types. (a) Composite/Non-composite images; composites with (b) same iden-
tity /different expression; (c) different identity/same expression; and (d) different identity/different expres-

sion.
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Figure 3: Experiment 2 results. (a) Average error proportion for composite, noncomposite, and half face test
examples. Vertical bars indicate standard deviations. (b) Human response times for expression classification

of composite and noncomposite test examples
Experiment 3

In Calder et al.’s Experiment 4, they investigated
the interference between identity and expression pro-
cessing. They noticed that when two happy expres-
sions were combined from different individuals, the
new image looked like a happy person who was a
new individual, different from the two source indi-
viduals (see Figure 2(b)). They hypothesized from
this that ”the configural information used to en-
code facial identity may be different from that used
to code facial expression.” They suggested that if
the two kinds of processing could be selectively dis-
rupted, then that would be support for this two-
representation model. Note that our model has one
representation, corresponding to the principal com-
ponents layer. If we can obtain the same results,
then we will show that their conclusion, that there
are two representations, is unwarranted.

This experiment involved three types of compos-
ite stimuli. Same identity with different expression
(SID/DE) composite examples require that the iden-
tity of the actor in both halves be the same but the
expression in each half be different. Different iden-
tity with same expression (DID/SE) composite ex-
amples require that the identity of the actor in each
half be different but the expression in each half be
the same. Different identity with different expres-
sion (DID/DE) composite examples require that the
identity of the actor in each half be different but the
expression in each half be the same. Figure 2(b-d)

shows examples of all three types.

The model is trained on all the whole and half
face examples for ten actors. Following Calder et al.,
the model must classify the expression and identity
in the bottom half of the composite test examples
constructed from three of the actors. In order to
test for identity performance, Calder et al. trained
their subjects on both identity and expression for
the three actors they used to create the composite
test stimuli. Hence these stimuli were included in
the training set. Three additional localist outputs
were included to learn the identity of these three ac-
tors. The seven remaining actors were trained to
produce all 0’s on these units. Following Calder et
al., for the three test subjects, the composite ex-
amples constructed from them for testing purposes
only use the happy, surprised, and disgusted expres-
sions. We stopped training by using a holdout set
composed of the remaining four actors from POFA
that were not used in any of the Calder et al. ex-
periments. The network was trained until error on
the holdout set was minimal, and tested on all three
types of composite examples.

Results: The results are shown in Figure 4. While
both expression and identity were classified without
error on all types of composites, there was a signif-
icant difference in a standard measure of reaction
time from feed-forward networks: 1 - the maximum
output. Figure 4(a) shows the reaction time of our
network on the relevant stimuli.



Network Response Time for Different Types of Composites
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Figure 4: Experiment 3 results. Panel (a) shows the effect of composite type on our network reaction time
for identity and expression recognition. Panel (b) is derived from (Calder et al., ress).

When classifying expression (dashed line), the
model responds more quickly when the expression
is the same in both halves of the composite exam-
ple. Crucially, the model is not slowed more in the
DID/DE case than the SID/DE case. The same re-
sult is true for identity classification. When classi-
fying identity, the model is faster when the identity
is the same in both halves of the composite exam-
ple. Crucially, the model is not slowed more in the
DID/DE case than the DID/SE case. In fact, it
is slightly faster. The pattern of these results are
equivalent to the pattern of the response times in
the human experiments ( Figure 4(b)).

Analysis

In this section we examine the kind of representa-
tion that the network is using for this task. In par-
ticular, we examine the principal components of the
Gabor filters. Calder et al. showed that the princi-
pal components of gray scale images taken from the
POFA database show a separation in terms of iden-
tity and expression. That is, there are components
that best separate expressions, and different compo-
nents that best separate the identities of the models
in the POFA.

The principal components that best discriminate
a data set, assuming the data samples are normally
distributed, are those that minimize the variance of
the samples within each class, while maximizing the
total variance of all the samples. Therefore, we can
rank the approximate discriminating power of each
principal component by the Wilk’s A value: the
within-class scatter divided by the total scatter of
the samples. The smaller the Wilk’s A, the greater
the discriminating power.

The two Wilk’s A values for each principal com-
ponent were computed for the two face recognition
tasks compared in this paper: expression recognition
and identity recognition. Only two components out
of the highest 10 ranked principal components for
each task overlapped. The 5th and the 19th princi-
pal components were ranked in the top 10 for both

expression and identity recognition, but other than
that the top ten components for the two tasks were
disjoint.

This suggests that the principal components used
to encode expression are separate from those used to
encode identity. Figure 5(a) and (b) show the pro-
jections of the identity classes and expression classes
on the most discriminating expression principal com-
ponents. It is apparent that these components sep-
arate expression better than identity. Figure 5(c)
shows the identity Wilk’s A value plotted against the
expression Wilk’s A value, for corresponding princi-
pal components.

Discussion

Our results suggest that our simple neural network
model can explain a variety of effects in psycholog-
ical research in expression recognition. We found
that our model showed nearly the same pattern of
results in discriminability of expressions from half
faces. In order to obtain this result, we had to
change our model in two ways. First, we modeled
the attentional process as an inhibition of irrelevant
information, an approach that is well supported in
the literature. Second, we had to add training on
half faces to our model. We suggest that this modi-
fication is independently motivated by the fact that
people foveate on different parts of the face when
performing such tasks. Future research should con-
centrate on actually implementing an eye movement
mechanism that is modulated by the task. Our pre-
vious model of scan paths (Yamada and Cottrell,
1995) only used bottom up information. Top down,
task-related information can be incorporated by us-
ing the mutual information between the features and
the categories — essentially, feature selection.
Second, we showed that our model’s error pat-
terns when shown composite versus non-composite
faces follow the reaction time pattern in the human
subjects data. That is, where our model makes more
errors, the humans have longer reaction times. In an
unreported experiment, we found the correct pattern
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of reaction times when the network is only shown
a half face versus a composite face. This suggests
that either the human subjects do not look at the
other half of the face at all when they are misaligned,
or that a greater degree of attenuation of the mis-
aligned half should lead to results more in keeping
with the RT data.

Third, our model showed that it is not necessary
to posit two independent representations for identity
and expression processing. Since the representation
at the principal components layer is a set of orthog-
onal vectors, and the categorizer is a single layer
perceptron, this suggests that each output unit is
simply cutting off a different corner of the feature
hypercube, and the learned hyperplane is simply or-
thogonal to the non-informative directions of varia-
tion. This is exactly what one would expect given
this type of model, and so there is no mystery in our
results.

This result might also have been expected given
previous results examining the principal compo-
nents of gray scale images of facial expressions di-
rectly (Calder et al., 2001), where it was found that
expression and identity tended to load on different
principal components. The main difference here is
that our principal components are performed on a
more biologically plausible representation of faces
than gray scale images. However, we find that when
we do a similar analysis to that carried out by Calder
et al. (2001), we also find that the representation
loads expression and identity on orthogonal compo-
nents. Does this mean that we have two represen-
tations? If one thinks of each principal component
as a linear “neuron,” and the projection of an input
on that component as its activation, then observ-
ing these activities will appear to show units that
respond to identity, and other units that respond
to expression. One could argue that these are then
separate representations.

However, we argue that when viewed ontologically
these representations were developed to be orthogo-
nal with respect to one another. That is, due to the

constrain that the principal components must be or-
thogonal, the representation of emotion is made in
the context of and in competition with the represen-
tation of identity, as these are the major directions
in which the data vary. On the other hand, one can
say that this is a functional separation of the repre-
sentations, and indeed, it is.
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