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Abstract

Shepard and Chipman’s second order isomorphism de-
scribes how the brain may represent the relations in the
world. However, a common interpretation of the theory
can cause difficulties. The problem originates from the
static nature of representations. In an alternative interpre-
tation, I propose that we assign an active role to the inter-
nal representations and relations. It turns out that a col-
lection of such active units can perform analogical tasks.
The new interpretation is supported by the existence of
neural circuits that may be implementing such a function.
Within this framework, perception, cognition, and motor
function can be understood under a unifying principle of
analogy.

Introduction
One of the central tenets in neuroscience is that neu-
rons receive incoming spikes, process that spatial or
temporal information, and then pass on the transformed
information for further analysis. Also, neurons that
fire together develop strong connections (Bliss and
Collingridge 1993). Thus, the neurons represent features
in the input, and connections encode relational context
among features. This viewpoint is analogous to the sec-
ond order isomorphism by Shepard and Chipman (1970;
below, just S&C). However, a problem can arise depend-
ing on how we interpret S&C’s theory.

The difficulty comes from the static role assigned to
representations. In this paper, the representations and
the relations are given an active role. When working
as a collection, these active units can perform an ana-
logical function. In fact, a similar active approach has
been employed in previous work, resulting in the emer-
gence of analogical (Hofstadter 1985; Mitchell 2001) or
metaphorical (Narayanan 1999) functionality. 1 An im-
portant observation advanced in this paper is that the
function of active representations and relations are very
similar to that of neurons, and specific circuits in the
cortex and the thalamus can actually implement analogi-
cal functions. Analogy is commonly attributed to higher
cognitive faculties only, but it does not always have to
be the case (Chalmers et al. 1992); it may be part of a
larger set of human brain function including perception
and motor function. I will discuss in the end how such an

1Analogy and metaphor are closely related in that they refer
to similarities in relations and attributes although the relative
degree in each may differ (Gentner 1989).
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Figure 1: S&C’s Second Order Isomorphism. There are
two objects, one square and one round in the world (on the
left). The internal representations in the brain of these two ob-
jects are shown on the right. The vertical arrows represent the
relations between the objects. The two horizontal arrows repre-
sent mapping from the world to the brain which is initiated by
sensory transduction. Note: The square and circle on the right
(in the brain) are just there for the ease of reference. They can
be removed without causing any change in content (this applies
to the rest of the figures).

analogical framework can allow us to better understand
the nature of cognition and brain function.

Common Interpretations
Under second order isomorphism the brain needs to find
the relation between the (1) relations between external
objects and (2) relations between internal representations
(figure 1). S&C’s theory seems to be more appropri-
ate in modeling how our brain represents the world than
Locke’s Isomorphism (Edelman 1998, 1999). In physical
terms, we can interpret the figure as follows: (1) relation
in the world (W1; coincidences in sensory events) (2) ar-
rows from world to brain (B1; sensory transduction), (3)
representations in the brain (B2; afferent connections),
and (4) relation in the brain (B3; lateral connections). Of
these, let us focus on what is available in our brain (B1–
B3). If we take for granted the information our sensory
transducers tell us, we can drop B1 from our discussion
and focus on just B2 and B3.

An implicit message in figure 1 is that two objects are
represented, and some brain process then judges the rela-
tionship between the two (the open arrow). Making this
point more explicit, we can illustrate S&C’s theory as in
figure 2 (the diamond box). We can see that a difficulty
can arise in such an interpretation; something has to per-
form the comparison function, but this creates an ever
increasing levels in a hierarchical way (i.e. higher areas
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Figure 2: Common Interpretations of Second Order Isomorphism. ( ) An explicit comparison mechanism is necessary to
judge the relations between the two representations. ( ) The comparison box is replaced by a representation of relation. However,
this figure still requires a third-party to evaluate the representation of relation.

judging the output relation in the lower areas). However,
as Hilgetag et al. (1996) noted, it is hard to determine
a strict hierarchy among cortical maps (in this case, be-
tween visual areas). Also, as Zeki (2001) suggests, in-
tegration of these information may be a nonhierarchical
process. Thus, representing something and delaying the
interpretation until later may not work very well.

One can argue that the lateral connections represent
the similarity relation, not requiring a separate interpreter
(figure 2 ). However, we still need something to evalu-
ate (or interpret) the resulting representation. Thus, this
reformulation just replaces the need for one kind of in-
terpreter with another.

Assigning an Active Role to Relation
What can a relation be if it should not be a representa-
tion? The problem seem to come from representations
and relations playing a static role. What if we assign an
active role to the representations as shown in figure 3 ?
In the figure, I assigned an active role to the relation ar-
row itself, allowing one representation to invoke another.
Thus the activation of the internal representation of the
square invokes (or turns on) that of the circle, and vice
versa.

Now consider how can we use this new active relation
(note that it is directional) to describe the relations in the
world. First, we have to know what kinds of relations
exist in the world. There are two basic relations: spatial
and temporal relations. Spatial relations are between ob-
jects, and they are causally bidirectional.2 On the other
hand, temporal relations are between events, and they are
causally directional. When one event precedes the other,
the reverse cannot happen simultaneously.

In the brain, action potentials only propagate in one
direction along the axon, and the adaptation of synapses
tend to learn causality (Song et al. 2000). Such connec-
tions are ideal for implementing temporal relations, but
what about spatial relations? If we pair a unidirectional
arrow from A to B with a reciprocal one from B to A,
then we can indeed represent spatial relations with only
directional arrows. If representations for object A and B
simultaneously activate through mutual excitation, then

2Note that causal simply means that one event precedes the
other in time.

they can represent the spatial relation between the two.
So, let us update our figure again to include backward re-
lational arrows (figure 3 ). We can now think in terms of
temporal relations only, because spatial relations seems
to be a special case of temporal relations (at least in the
brain).
The Role of Active Relations and its Neural

Basis
In the previous section, I replaced the representation for
relation by an active relation. What about the represen-
tations for the objects (or events)? Representation is an
inherently static term (like a symbol), thus, we should
take a more active viewpoint and ask what action occurs
when a neuron detects a pattern in its incoming input,
rather than focusing only on what a neuron represents.
Knowing what representations do may be as important
as knowing what they stand for.

To discover the relationship between things in the
world, we need the motor capabilities as much as we
need sensors. Thus, between the world and the brain
there must be a backward arrow from the brain to the
world. The resulting diagram is shown in figure 3 .
This addition is crucial in learning the relations in the
world (O’Regan and Noe 2001). The final diagram looks
very similar to the basic circuitry in our brain. How can
this final figure help us understand the mechanisms of the
brain? The key is to understand what is the action taken
by a neuron, no less than to know what it represents.

Active Relations: A Primitive for Analogical
Processing
Now we have a single active functional unit: a neuron
that fires a spike along the active relational arrow as soon
as it detects a certain input feature. This unit alone cannot
achieve much, neither can a serial chain of such units.
The true power of this simple unit is revealed when it is
used in a massively parallel way. This may be an obvious
line of thought because that is what our brains seem to
do. However, it turns out that the collective effort of these
simple units can embody a simple yet powerful function
of analogy.

We have to simplify matters to see how such neurons
can process analogy. Let us assume there are six neu-
rons in an imaginary creature’s brain inhabiting the world
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Figure 3: A New Interpretation of Second Order Isomorphism. ( ) In this new interpretation of S&C’s theory, an active role
is assigned to the relation arrow. Notice that the INVOKE arrow is a single arrow, not one arrow going into and another leaving out
of the box. Thus, the rounded box signifies that the arrow actually performs an action. ( ) Backward relational arrows are added
in the brain to account for the mutual, but directional nature of relations. With two relational arrows, both spatial and temporal
relations can be implemented. ( ) The neural counterparts of ( ) are shown. The limiting term representation is removed, and the
motor reaction (backward arrow from the brain to the world) is added. Sensory transducers are also explicitly shown.

of fruits (figure 4). After the fruit brain experiences the
world of fruits, it will learn the co-occurrences between
features and establish relational arrows as shown in the
figure (arcs with arrows). Also suppose that the brain
is partitioned into several specialized map areas (or par-
titions), as in cortical maps. Now suppose apple ,

orange , and word-red were presented to the crea-
ture simultaneously. If we track the activation, we can
see that these detectors will turn on: apple detector,
orange detector, color-red detector, color-orange detec-
tor, and finally, word-red detector. These activations are
input-driven. Because the neurons are active, as soon as
they detect what they are familiar with, they send out sig-
nals through the relational arrows horizontally across the
cortex. As a result of this second order activation, the
word-orange detector turns on, even without input. Now,
here is the crucial moment. We can ask this question:
which neuron’s firing was purely cortically-driven? (note
that we can view this as a filtering process). The re-
sult of the filtering is then word-orange . The sig-
nificance of this observation is that this process is very
similar to solving analogical problems. The input pre-
sented to the creature is basically an analogical query:

apple : orange = word-red : ? . The filtered
cortical response word-orange can then be the an-
swer to this query.3 Thus, active neurons can perform a
rudimentary analogical function when the responses are
filtered properly.

However, things can get complicated when combi-
nations of objects are used as a query. Let us ex-
tend the creature’s feature detectors to include con-
cepts of small and big (not shown in the figure).
Then we can allow the creature to learn the re-
lations again. We can then present an analogi-
cal query like this: big apple : small apple
= big orange : ? . In this case, if we follow the
same steps as above we come across a problem. Be-
cause the answer we expect (i.e. small orange )
already appeared in the query, if we look for purely

3There is an issue of how the presence of word-red can
affect the outcome at all. This problem will be discussed later
in the discussion section.
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Figure 4: World of Fruits. A brain with object, color, and
word detector neurons is shown. The six neurons each respond
to these input features as labeled above. At the bottom is the
fruit world, and the thick vertical arrows represent afferent in-
put. The horizontal arcs are the relational arrows that point to
their most frequently co-occurring counterparts that have been
learned through experience. The gray vertical bars represent
the partitioning of the brain into separate map areas (from the
left to right, object map, color map, and word map). Note that
for simplicity, the word-orange detector connects only to the
color-orange detector, but not the orange detector, i.e. it is a
word-color-orange detector, not a word-object-orange detector.

cortically-driven activations, the answer will be word-
red word-orange . However, we can overcome this
problem if we ask: what are the most cortically-driven
activities in each partition of the brain? Because big
and apple appeared in the input twice but small
and orange appeared only once, the latter two can
be selected, as well as the purely cortically driven ac-
tivities listed above. Thus, even for derived activities
that are input-driven, those that are less input-driven can
survive and the correct analogical response can still be
found among such activities that are more cortically-
driven within each partition (or area). Note that color-
orange also survives the filtering, but what is more im-
portant here is that a simple filtering process as described
above can generate a small subset of potential answers
to analogical queries. Although the simple analogical
query presented above has a straight forward answer, in
more complex analogical problems, there can be multi-
ple answers depending on the interpretation (Hofstadter
and Mitchell 1994; Mitchell 2001).

In this section, I have shown that active neurons that
detect input features and establish relational contexts can
collectively perform a rudimentary analogical function. 4

4Analogical tasks can become much more complex than the
ones shown here. The example in this paper is decidedly simple



Activation
Subsequent

INPUT=0INPUT=1

nucleus
reticularis
thalami

1

C1 C2

C4
C3

CORTEX

R1 R2

T1 T2

WHITE MATTER

1
0

I1 I2input
present

no input
present

Thalamus
1

1

1
−2

1

1
−1

11

0

N
E
W
 
Q
U
E
R
Y

nRt

Figure 5: Analogical Filtering in the Thalamus. The dia-
gram shows a simplified thalamo-cortical loop that can perform
analogical completion and selection and then propagate the se-
lection back to the cortex. All connections shown are based
on known anatomy of the thalamus and the cortex (Mumford
1995). I1 and I2 are input fibers, T1 and T2 are thalamic re-
lay cells, and R1 and R2 are inhibitory nRt cells. C1, C2, C3,
and C4 are cortical neurons (each is a set of neurons ranging
multiple layers in a single cortical column). The neurons are
either excitatory (+) or inhibitory (–), and the arrows are axons
(pointing in the direction of action potential propagation). The
numbered labels on each arc show the activity being carried.
Black solid arrows are ascending fibers to the cortex and the
cortico-cortical connections (relational arrows), and gray solid
arrows are cortico-thalamic feedback. Black dashed arrows are
inhibitory connections. The diagram shows a scenario when an
input was presented to C1, which excites C2, and in turn gener-
ates the feedback from C2 to T2, which is then retransmitted to
the cortex as a new query (ascending thick black arrow). The
selection decision for further propagation to the cortex depends
on the relative excitation and inhibition T1(T2) receive from
C1(C2) and R1(R2). On the right of C2 (dotted) in the cor-
tex is the subsequent cascade of analogical completions. Note
that to avoid clutter, reciprocal connections in the cortex are not
shown.

But does the brain function in such a way? In fact, an
exact circuit that may be implementing such a function
exists in the brain.
Neural Basis of Analogical Completion and
Filtering
Two basic mechanisms are needed to account for the pro-
posed analogical function: completion and filtering. Be-
low, I will discuss how the cortico-cortical connections
and the thalamo-cortical loop can implement these two
mechanisms.

Completions may be accomplished by the long-range
cortico-cortical connections (Mumford 1992). As men-
tioned earlier, synapses are strengthened when the presy-
naptic activity precede postsynaptic activity (Song et al.
2000), thus the connections can implement causal rela-
tions. Also, specific patterns of connections observed in
animals (e.g. visual cortex of monkeys; Blasdel 1992)
show how such patterns can implement specific com-
pletion functions. Computational models also showed

to clearly illustrate the basic mechanism.

how such patterns can encode feature co-occurrence and
how they can dictate the performance of the model (Choe
2001; Geisler et al. 2001).

For filtering, a separate mechanism is necessary. In
the thalamo-cortical loop, there exists a massive feed-
back from the cortex to the thalamus and an inhibition
mechanism within the nucleus reticularis thalami (nRt)
on the surface of the thalamus (Mumford 1995). This
particular architecture has been thought to be involved
in the analysis and synthesis of new memories (MacKay
1956), active blackboard (Harth et al. 1987; Mumford
1995), global workspace (Newman et al. 1997), and fi-
nally, generating attention and consciousness (Crick and
Koch 1990). It turns out that these feedforward and feed-
back connections from nRt to the cortex together with
the nRt inhibitions can filter the feedback from the cor-
tex to promote the most cortically-driven feedback, i.e.
the analogical answers. Let us first see how the purely
cortically-driven activities are selected (figure 5). In the
thalamus, ascending fibers (T1 to C1) branch out and
excite the inhibitory nRt neuron R1 (T1 to R1). When
the feedback from C1 to T1 comes back, it branches and
stimulates R1. As a result, if the descending feedback
had a matching ascending signal, the inhibition T1 re-
ceives is twice as high as other neurons in the thalamus
that are activated by purely cortically-driven feedback
(i.e. that of T2). If the synaptic weights are appropriate
(i.e. and )5, at T1 the feedback will
cancel out, but at T2 the feedback will survive the inhi-
bition and be retransmitted to the cortex (the new query
arrow). Such a surviving cortical feedback, together with
the input stimulus at the next moment form a new ana-
logical query to the cortex, and the same process is re-
peated. That is, C2 elicits activities in C3, and in turn C4
through the thalamo-cortical loop (note that they can be
quite far away). For the selection of the most cortically
driven feedback, the mutual inhibitions in the nRt layer
(e.g. between R1 and R2) may disinhibit (inhibiting an
inhibitory neuron results in less net inhibition at the tar-
get; figure 5) each other and allow the more cortically
driven feedback to go back to the cortex, even when all
current cortical activities are input driven.

Discussion
The neural mechanisms described in this paper can only
account for simple kinds of analogies, and in some case
it can even seem as simple pattern completion. For ex-
ample, orange = ? will result in the same answer

word-orange as in the Active Relations:... section.
How can the term word-red in the original query af-
fect the outcome at all? For this, I believe that among
many possible completions, the general map area (i.e.
the partitions in figure 4) that are activated by input gets
higher preference. In this example, the fruit-map, word-
map and color-map will turn on, thus purely cortical ac-
tivations in other general maps (say odor-map, etc.) will
not be as salient as that of word-orange . Thus, in this

5Here, is the synaptic connection strength from neuron
X to neuron Y.



way, the presence of word-red can indeed affect the
outcome of the analogical query. A more precise neu-
ral mechanism for this kind of selection among areas (or
maps) needs to be investigated further.

Researchers regard the analogical capability as the
crux of high-level cognition (see Gentner et al. 2001 for
a collection of current work on analogy). However, anal-
ogy does not need to be limited to high-level cognition.
Recent results suggest that analogy may be needed in
perception as well (Morrison 1998), and such an abil-
ity emerging in perceptual systems may even be a crucial
requirement for cognitive development (Chalmers et al.
1992). Then it is not unthinkable that motor function also
employ analogy in a similar manner (cf. sensory motor
contingency theory by O’Regan and Noe 2001), thus we
can then start to understand perception, cognition, and
motor function under the unifying framework of analogy.

How can such a diverse functionality be integrated un-
der a single framework of analogical processing? Mas-
sive connections exist within and across different func-
tional areas in the brain, and the sensory/motor maps
are topologically organized, i.e. nearby neurons are re-
sponsive to nearby features in the sensory space (Koho-
nen 1982; von der Malsburg 1973). Within each map,
the feature detectors and the cortico-cortical connections
learn to encode the relations (Choe 2001). It is possi-
ble that cognitive maps also have a topological organiza-
tion where nearby areas learn to encode similar concepts,
such as semantic maps or episodic memory maps (Miik-
kulainen 1993). When the sensory, cognitive, and motor
maps are connected in an orderly way preserving their
local topology, analogies can be drawn within and (more
importantly) across different functional domains.

Within this huge number of maps specializing in dif-
ferent tasks, a cascade of multiple analogical comple-
tions can be going on in parallel, synchronized at each
moment by the 40Hz rhythm to hold an instantaneously
coherent state (Gray 1999; Mumford 1995). Such a state
can then pose as another analogical query, and the pro-
cess can repeat. When the cascade reaches a motor area,
behavior will be generated. Memory content may also
enter the analogical cascade, and this quasi-static con-
tribution can prevent the continuously changing input
stream from causing random cascades, thereby main-
taining a more goal-directed and stable behavior. Spe-
cific mechanisms of how the memory content enters the
thalamo-cortical loop, and how analogies are archived in
long-term memory should be studied further.

Neuroscience research has revealed a lot about percep-
tion and motor abilities in the brain, but understanding
the cognitive faculty still remains elusive. Investigation
into cognitive functions can proceed under the analogi-
cal framework, where we can infer the functionality of
the higher areas by backtracking the connections to the
perceptual and motor areas and study their topology and
analogical links. Specific predictions regarding the lay-
out of the higher centers may be made based on the topol-
ogy of the lower centers and the connection structure be-
tween the two, and experiments can then focus on verify-

ing these predictions. For example, there are orientation
maps with smoothly changing orientation preference in
V1 (primary visual cortex; Blasdel 1992), and there are
object maps in TE (temporal area E; Tanaka 1996) that
also change smoothly (for example, rotation of a head).
The analogical framework predicts that there will be an
orderly mapping from V1 to TE that preserve such local
topology across different representation spaces. 6 Simi-
lar mappings may exist between sensory and cognitive
areas, and if such a mapping is found, we can start to un-
derstand the abstract cognitive functions based on con-
crete perceptual architecture.

The strong connection made in this paper between
analogical function and specific neural circuitry can help
us better understand both. The functionality of the target
area of a neuron can be studied to understand what ac-
tion occurs when a neuron detects a certain feature in the
input. Such a study can reveal the kinds of relations im-
plemented in the brain, thus providing us with insights
into what kinds of analogies are possible. The mecha-
nisms of neural circuits can also be further revealed by
carefully designed analogical tests in perception, cogni-
tion, and motor function, and also in a combination of
these different domains. Different types of unimodal and
cross-modal analogical tasks can reveal how the different
cortical areas are related and how they invoke each other.
In studying such mappings across tasks and modalities,
understanding the co-occurrence statistics of natural sig-
nals becomes increasingly important as they may give
us a hint on how the connections are organized in the
brain (Choe 2001; Simoncelli and Olshausen 2001).

Conclusion
In this paper, I analysed the difficulties that the common
interpretations of S&C’s second order isomorphism can
cause in understanding the brain. I proposed an active
role for representations and relations, and it turned out
that collectively they can perform an analogical func-
tion. An important connection between analogical func-
tion and a specific brain circuit was then established, pro-
viding support for the new interpretation. This new view-
point allows us to understand perception, cognition, and
motor function under a unifying framework of analogy,
and it can help us take a more focused approach in brain
and cognitive sciences.
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