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Abstract

Categories are learned in many ways, but the focus of much
category learning research has been on classification learning.
In classification learning, the diagnosticity of features is a
primary influence on learning and the category representation.
In this paper, we assess this influence of diagnosticity on a
different means of category learning, inference learning. In two
experiments, each with a different dependent measure, we found
the expected result that classification learning led to strong
sensitivity to the diagnosticity of the features, even to the
exclusion of prototypicality (when controlled for
diagnosticity). However, inference learners were significantly
less sensitive to the diagnostic value of the features, and were
sensitive to the prototypicality. This result provides further
evidence for the idea that different types of category learning
differentially influence the category representation and
provides a better understanding of inference learning.

Introduction
Categories are critical for a wide variety of cognitive

tasks, such as classification, inference, explanation,
communication, and problem solving. Category learning
reflects how it is that people acquire knowledge of the
categories that will successfully support these uses. Any
intelligent system that extends information from specific
examples to other related occurrences needs to account for
the processes related to category learning. Thus, developing
an understanding of category learning is an important
research endeavor in cognitive science.

Although categories may be learned in a number of ways,
the focus of category learning research has been on
classification, how items are assigned to categories (e.g.,
Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1986).
In classification learning, a subject is shown an item, asked
to indicate its category membership (usually from a set of
two possible categories), given feedback on their choice, and
then allowed to study the item before the next item is
presented. Through the learning trials of this classification
task, the subject learns what items go into what category,
thus developing a category representation that can be used
later to answer questions about the category members or to
classify novel items.

Category learning, however, does not just consist of
classification learning. We learn categories for a variety of
purposes, and how we learn categories is often tied to these
uses. Category learning is based on not just classification,
but on inference or explanation or problem solving (among
other possibilities). A complete understanding of category
learning requires considering additional category learning
tasks and how they influence the category representation.

The idea underlying this research is that different ways of
learning about categories lead to different category
representations, and that our real-world representations often
derive from a variety of ways in which categories are learned
and used. Although this notion has a certain intuitive
appeal, only a small number of category learning studies
have examined it.

One category learning task that has received attention over
the last few years is inference learning (Anderson, Ross &
Chin-Parker, 2002; Yamauchi, Love & Markman, 2002;
Yamauchi & Markman, 1998, 2000). In this task, a
classified item is presented with a category feature missing
and the task of the learner is to choose the appropriate
feature for that item. For example, if one were making
inferences about different types of birds, one might be given
a classified bird (e.g., yellow-rumped warbler) with a
number of its features and asked to choose its food
preference. Inference  is a critical component of category use.
Since people learn about categories as they make inferences
and receive feedback on their predictions, inference learning
is a natural direction to follow in category learning research.
This task has also been the focus of recent research because
it has many similarities to classification learning and is
formally equivalent to classification if the category label is
treated simply as another feature (Yamauchi & Markman,
1998).

Diagnosticity
A critical aspect of current theories of classification learning
is the focus on the diagnosticity of the features, how
predictive they are of category membership (Tversky, 1977).
As people learn to classify category members, they learn to
attend more to those features that help to distinguish the
categories (e.g., Kruschke, 1992). In the simple case in
which the categories may be distinguished on the basis of a
single feature, all the attention may be focused on that
feature. For more complex cases, the attention is distributed
across the diagnostic features to maximize classification
performance.

Inference learning, however, may not lead to such an
exclusive attention to diagnostic features. In inference
learning, the item is already classified, so the learner can
focus on that category and what features occur with
members of that category. This focus on a single category at
a time makes information about the prototypical feature
values more available (Anderson et al., 2002; Yamauchi &
Markman, 1998, 2000). This information about the
prototypical feature values for each category means that the
category representation emphasizes the internal structure of
the category, what it is that coheres the members of the



category. This focus during inference learning suggests that
different information about the category would be acquired
during learning when compared to classification learning.

Current Experiments
The goal of the current experiments is to investigate the role
of diagnosticity in category learning with two different
category learning tasks, classification and inference. Based
on a large body of previous research, we expect that
diagnosticity will be the primary influence in classification
learning. Thus, the question of most interest is how
inference learning is affected by feature diagnosticity (versus
the internal structure of the category). The hypothesis is that
inference learning will not lead to as strong an influence of
diagnosticity as does classification learning. This
hypothesis is of importance for two reasons. First, it
questions a major assumption of current models of category
learning, that the diagnosticity of features is the most
important determinant of category learning. Second, it helps
to provide a further understanding of another type of
category learning, inference learning.

We used a common category structure, family
resemblance, as shown in Table 1. In this structure, the
prototype is chosen and the learning items from that
category consist of items that are similar to the prototype,
though they may be different from one another. In the
experiments reported here, all the learning exemplars match
the prototype on all but one of the features.

The diagnosticity of the features is manipulated by
varying the overlap of the prototypes. With this
manipulation, to be described in detail for each experiment,
we could separately vary the prototypicality of the item
(i.e., how similar it was to the prototype, reflecting the
internal structure) and the diagnosticity of the features (in
terms of how predictive they were of category membership,
reflecting the relation of the two categories).

Based on results from previous studies, we can anticipate
some of the results of these experiments. Classification
learners should show a strong effect of diagnosticity, but
not prototypicality. We also know the inference learners
should show a sensitivity to prototypicality. The question
remains to be answered as to whether the inference learners
will show any effect of diagnosticity. If they do show a
sensitivity to diagnosticity, it should be significantly less
than that of the classification learners.

Experiment 1
Experiment 1 investigated the influence of diagnosticity on
classification and inference learning with a forced-choice test
at transfer. The critical test trials varied the diagnosticity
and typicality to examine the influence of the learning
conditions. The categories learned were fictional “bugs”.

The manipulation of diagnosticity as a function of
prototype overlap can be seen in Table 1. The target
category is the one on the left, the Deegers (prototype
11111, indicating a particular set of values for each of the
five binary dimensions). Along with this category, subjects
either learned the Lokads (prototype 00011) or the Koozles
(prototype 11000). Those features common to both
prototypes  are not  diagnostic because they do not help one

Table 1: Category Structure for Experiment 1.

    Deeger                                                           Lokad                Koozle   
Learning 11110        00010 11001
Exemplars 11101        00001 11010

11011        00111 11100
10111        01011 10000
01111        10011 01000

Prototype 11111        00011 11000

to determine category membership. As can be seen, both
contrast categories overlapped Deegers on two features, but
two different features. Thus, for subjects learning Deegers
and Lokads, the last two features were not diagnostic,
whereas the first two were not diagnostic for the subjects
learning Deegers and Koozles. By varying the test features
for Deegers, we can determine the extent to which
diagnosticity is being used, as described shortly.

Method
Design There were two learning conditions, classification
learning and inference learning. Within each learning
condition half of the subjects learned about Deegers and
Lokads, and the other half learned about Deegers and
Koozles. The position of the bug attributes within the
category structure was balanced across subjects. This
resulted in a total of ten experimental groups. Within the
study and transfer blocks, items were randomly presented.

Subjects Fifty undergraduates from the University of
Illinois participated for either course credit or pay. Ten
subjects who did not meet the learning criterion (two
classification, eight inference) were replaced.

Materials The materials were drawings of “bugs” labeled
Deegers, Lokads or Koozles (see Figure 1). These bugs
varied along the binary attributes of their antenna, legs, tail,
body coloring and eyes.

Each subject learned two categories, the target category
(Deegers) and one of the two non-target categories (either
Koozles or Lokads). The abstract structures for the three
categories can be found in Table 1. Each of the non-target
category prototypes overlapped with the target category
prototype on two features. The features that overlapped were

Figure 1: Example Prototypes for Bug Categories in
Experiment One

Deeger Lokad     Koozle



not predictive of category membership as they occurred
equally often in each category. The remaining three features
were diagnostic in that they occurred 80% of the time with
one of the categories. Whether a particular feature was an
overlap or diagnostic feature depended on which of the two
non-target categories was learned with the Deeger category.
For example, the Deeger specified by 11110 was seen by all
subjects during learning. For a subject that learned the
Lokad category along with the Deeger category, the first
feature was a diagnostic feature, in that it was consistent
with the Deeger prototype but not the Lokad prototype. For
a subject that learned the Koozle category along with the
Deeger category, the first feature was an overlap feature
because it occurred in both the Koozle and Deeger
prototypes. This design of the category structures allowed
the same item to vary in terms of its diagnosticity between
subjects, depending only on the category set learned, while
the item prototypicality remained constant.

Table 2 specifies the terminology used to describe the
bugs. The bugs varied on two dimensions, their relation to
the category prototype (prototypicality) and the number of
diagnostic features maintained. Along the first dimension,
there were three possible levels: prototype, typical and
atypical, which indicated whether there were 5, 4, or 3
features consistent with the prototype. For the second
dimension, the item could maintain 1, 2, or 3 of the
diagnostic features. For a subject that learned the Deeger-
Lokad combination, 11110 would be a typ3 Deeger: it is
typical because it has four features consistent with the
prototype 11111, and it has a diagnosticity of 3 because it
has all three of the diagnostic features for Deeger (111--).
However, for a subject that learned the Deeger-Koozle
combination, 11110 would be a typ2 Deeger: again it is
typical because it has four of the prototype features, but now
it only has 2 of the diagnostic features (--111).

The study items were the five typical bugs for each
category being learned. For the classification subjects, these
bugs were always seen complete. In the inference condition,
the bugs were missing one feature that was consistent with
the prototype. The inference subjects also saw the two
possible features that were choices for the missing feature.

The transfer items were pairs of bugs from a given
category. There were two critical types that allowed an
examination of the influence of diagnosticity: typ/typ and
typ/atyp items. The six typ/typ transfer items were pairs of
bugs that were matched in prototypicality (both were
typical) but varied in the number of diagnostic features. One
of the bugs in the pair would be a typ2, while the other was
a typ3, the specification being dependent on which category

Table 2: Abbreviations for Items

  # of Prototype   # of Diagnostic
  Consistent Features  Features Maintained
Proto 5 3
Typ3 4 3
Typ2 4 2
Atyp3 3 3
Atyp2 3  2
Atyp1 3 1

set had been learned. The typ/atyp pairings varied both in
terms of how many features were consistent with the
category prototype and the number of diagnostic features. Of
the six typ/atyp transfer items, three of the pairs consisted
of a typ2 and an atyp3. These transfer items pitted typicality
to the category prototype against the diagnosticity of the
features. The other three pairs consisted of a typ3 and an
atyp1. For these pairs, both typicality and diagnosticity
were in agreement as to which bug was the better category
member. The content of the typ/atyp pairs was also
dependent on the category set learned; the typ2/atyp3 pair
for someone who learned Deeger-Koozle was the typ3/atyp1
pair for someone who learned the Deeger-Lokad set, and
vice-versa. The critical typ/atyp pairs are the typ2/atyp3, but
the typ3/atyp1 pairs allow full counterbalancing of items.

There were nine additional filler transfer pairs in the
Deeger task, as well as 12 pairs for the other category that
did not address the issues of interest.

Procedure Subjects were given verbal instructions prior to
the study phase. All subsequent instructions and reminders
appeared on the computer screen. Learning and testing were
done on Macintosh computers using Psyscope (Cohen,
MacWhinney, Flatt, & Provost, 1993). All subjects were
debriefed both verbally and with a written statement as to
the general intent of the experiment.

In the classification condition, subjects saw a bug
presented in the center of the screen. Subjects indicated
which category they thought the bug belonged to by
pressing the “D” key for Deeger, the “K” key for Koozle or
the “L” key for Lokad. Feedback was given as to whether
the choice was correct or incorrect, and the subject was
shown the bug again along with the correct name to study.
This study time was self-paced. The learning phase
continued for a minimum of four blocks, ten exemplars per
block, until the subject was able to correctly identify nine of
the ten bugs within a block.

In the inference condition, the subjects were presented
with an incomplete bug (one of the five attributes was
absent from the bug picture) centered on the screen. The
category label was presented to the left of the bug, and the
two possible features for the missing attribute were
presented on the right side of the screen, one above the
other. The subject indicated a choice by clicking the mouse
on one of the two features. The position of the correct
feature was randomized across learning trials. Feedback was
given, and self-paced study time was allowed. The learning
criteria were the same as in the classification condition.

Following learning, all subjects completed the same
forced choice test. No feedback was given to the subjects
during the transfer phase. Each subject completed the target
(Deeger) test first. Subjects saw two possible Deegers on the
screen, one centered on the right-hand side of the screen and
the other centered on the left-hand side of the screen. Below
the pictures appeared the question, “Which of these bugs is
most typical of a Deeger?” Once the subject clicked on one
of the pictures, a box appeared around the choice and the
prior question was replaced by “How confident are you of
your choice?” along with a number scale going from one
(guessing) to seven (very sure). The subject clicked on a



number to indicate his or her confidence. Once the target
category transfer was completed, the subject was informed
that the same type of questions would be asked about the
other bug category. The procedure for the non-target
category transfer was identical.

Results and Discussion
For the typ/typ transfer items, the mean proportion of
choice for the typ3 Deeger was calculated. Also, the mean
confidence scores were determined; confidence scores when
selecting the typ2 were multiplied by –1 (no preference
between the bugs would result in a mean confidence of
zero). These results examine how important the
diagnosticity was to each condition when the prototypicality
is held constant. The classification learners chose the bug
with more diagnostic features well above chance (m = .79),
t(19) = 4.74, p < .01, while the inference learners did not
(m = .56), t(19) < 1. These results are also reflected in the
group confidence ratings. The classification learners’
confidence rating (m = 3.44) was significantly greater than
0, t(19) = 5.38, p < .01, while the inference mean
confidence rating (m = 0.70), was not, t(19) = 1.22, p >
.10. The proportion of the classification learners who chose
the typ3 bug over the typ2 bug was significantly greater
than the proportion of inference learners, t(38) = 2.70, p <
.01. The mean confidence score of the classification learners
was also significantly different from the score of the
inference learners, t(38) = 3.19, p < .01.

For the typ/atyp items, the mean proportion of times the
typical Deeger was chosen over the atypical Deeger was
determined. The mean confidence rating was calculated by
multiplying the confidence scores when choosing the
atypical bug by –1. Of interest are the bug pairs that pitted
typicality against diagnosticity, the typ2/atyp3 pairs;
choosing the typ2 bug meant that overall typicality to the
prototype was of primary importance while choosing the
atyp3 bug indicated that diagnosticity was driving the
decision. The classification learners chose the typ2 bug (m
= .35) marginally less than the inference learners (m = .57),
t(38) = 1.81, p < .10. However, the mean confidence score
for the classification learners (-2.22) was significantly lower
than that of the inference learners (0.76), t(38) = 2.49, p <
.05.

For both transfer measures, the typ/typ and typ/atyp
items, the classification learners showed significantly more
dependence on diagnostic information than the inference
learners when making decisions about the category
members. In the typ/typ measure, the inference learners did
not show an influence of diagnosticity. The typ/atyp results
are more difficult to assess in this regard since there is no
clear baseline to compare performance to. These results
show a clear difference in the role of diagnosticity for the
two different types of category learning.

Experiment 2
Experiment 2 examined the same issues, but had three
differences from Experiment 1 to increase generality and the
number of critical observations. First, during transfer, a
typicality rating task  was  used  rather  than a forced-choice
task.  Second, to allow us to use  all the transfer data to test

Table 3: Category Structure for Experiment 2

    Deeger          Lokad           Koozle          Himlit   

Learning 11110 00010 11001 10100
Exemplars 11101 00001 11010 10111

11011 00111 11100 10001
10111 01011 10000 11101
01111 10011 01000 00101

Prototype 11111 00011 11000 10101

the hypothesis, we changed the design so that each category
had a critical contrast (see Table 3). As before, one subject
might learn Deegers and Lokads, whereas another learned
Deegers and Koozles. However, by adding two more
counterbalancing groups (Himlit and Lokads, Himlit and
Koozles), all the categories had critical test items. Third,
although the items were again fictitious bugs, new features
were constructed.

Method
Design As in Experiment 1, there were a classification and
an inference condition. There were four possible category
combinations a subject could learn [Deeger-Koozle, Deeger-
Lokad, Himlit-Koozle, Himlit-Lokad]. Within each possible
combination, there was a balancing as to the order of the
categories presented during the typicality rating task. The
presentation of items within both study and transfer blocks
was random.

Subjects Sixty-one undergraduates from the University of
Illinois participated for either course credit or pay. One
subject’s data were lost due to a computer error and 12
subjects (five inference, seven classification) were replaced
who did not meet the learning criterion.

Materials The materials for this experiment were again
drawings of “bugs” (Deegers, Himlits, Koozles and Lokads)
that consisted of five binary attributes: legs, wing, eyes,
antenna, and tail. Across subjects, each attribute was
balanced as to whether it served as an overlap or diagnostic
attribute. The bugs seen during learning were the five
typical bugs (one feature of each was not consistent with the
prototype) from each of the two categories being learned,
and they were presented as in Experiment 1.

The typicality rating task consisted of 16 bugs for each
category learned. Five of the bugs were the typical bugs
(one inconsistent feature each) which had been seen during
learning. The other 11 bugs were novel to the subject at the
time of the typicality rating task. These bugs consisted of
the category prototype along with 10 atypical bugs, each of
which had two features that were inconsistent with the
prototype. The levels of prototypicality and diagnosticity
were specified as in Experiment 1 (refer to Table 2).

Procedure The procedures during the learning phase for this
experiment were very similar to those in Experiment 1. The
primary differences were that the classification subjects used
the mouse to click on the category label and the study time



was restricted to two seconds per bug. The learning criteria
were the same as Experiment 1.

Following the learning phase, the subjects were given
instructions on the computer screen explaining the typicality
rating task. During this task, a single bug appeared centered
on the screen along with the question, “How typical is this
bug of a [Deeger, Himlit, Koozle, Lokad]?” Underneath the
picture were the numbers from one (“Not at all typical”) to
seven (“Very typical”). The subject indicated their rating of
each bug by clicking the mouse on one of the numbers.

Results and Discussion
What influences the typicality ratings for the two learning
groups: diagnosticity, prototypicality or both? The short
answer is that the ratings of classification learners were
influenced only by diagnosticity, whereas both diagnosticity
and prototypicality affected the ratings of the inference
learners.  

The group means for each of the bug types are provided in
Table 4. The effect of diagnosticity becomes clear when the
column means are examined. Collapsing across the levels of
prototypicality, it is evident that classification learners
showed a large effect of diagnosticity, whereas inference
learners showed some effect, but a smaller one. The
ANOVA supports this interpretation with no main effect of
learning, F(1, 46) < 1, a significant main effect of
diagnosticity, F(2, 92) = 147.87, p < .001, and an
interaction between the factors, F(2, 92) = 13.17, p < .001.
As can be seen at the column mean level (and also within
each row), the loss of a diagnostic feature reduced typicality
ratings almost 1.5 (on a 1-7 scale) for the classification
learners, whereas it had much less of an effect on inference
learners .

The effect of prototypicality requires a more careful
examination. Collapsing over the diagnosticity levels, the
two learning conditions show very similar row means,
supported by the ANOVA indicating that there is no main
effect of learning condition, F(1, 46) < 1, a significant effect

Table 4: Mean Typicality Ratings from Experiment 2
Classification Learners

Number of Diagnostic Features
3 2 1 mean

Prototype 5.92 ----- ----- 5.92
Typical 5.98 4.39 ----- 5.02
Atypical 5.88 4.51 2.93 4.18
 5.94 4.47 2.93

Inference Learners
Number of Diagnostic Features
3 2 1 mean

Prototype 6.06 ----- ----- 6.06
Typical 5.24 4.98 ----- 5.08
Atypical 4.63 4.07 3.66 4.00

5.29 4.37 3.66

of prototypicality, F(2, 92) = 102.96, p < .001, and no
interaction between the two, F(2, 92) < 1. However, the
difference between conditions is hidden by the fact that
prototypicality in this analysis is confounded with
diagnosticity as can be seen in Table 4. For classification
learners, within each column there is no effect of
prototypicality. For example, as long as the item has all
three diagnostic features, the rating given by the
classification learners does not depend at all on whether it
has the two non-diagnostic features consistent with the
prototype (prototype, 5.92), just one of them (typical,
5.98), or neither of them (atypical, 5.88). A similar result is
seen with the items that maintained two diagnostic features;
on average, the classification learners actually rated the
atypical items 0.12 higher than the typical items. However,
inference learners show large effects of prototypicality at
each level of diagnosticity. For the test items with all three
diagnostic features, each non-diagnostic feature makes a
difference of about 0.7. The inference learners dropped their
typicality rating about 0.9 when a non-diagnostic feature
was removed from the items that maintained two diagnostic
features.

Thus, in Experiment 2, the typicality ratings of
classification learners were influenced only by diagnosticity,
whereas both diagnosticity and prototypicality affected the
ratings of inference learners.

General Discussion
The diagnosticity of features plays a critical role in current
theories of category learning. These experiments
investigated the role of diagnosticity for two different means
of category learning, classification and inference, and found
an important difference. For both experiments, classification
learners relied on the diagnostic features when making
decisions about category members. Inference learners were
sensitive to both the diagnosticity of the features (although
much less so than the classification learners) and the
relationship of the item to the category prototype. These
results indicate that these two different ways of category
learning lead to different emphases in the category
representation. Yamauchi, Love, and Markman (2002),
using a non-linearly separable category structure, also found
that inference learners did not show an effect of feature
diagnosticity, while the classification learners did, when
predicting missing features of items following learning.

The results of this study rule out the strong hypothesis
that the inference learners would not be at all sensitive to
the diagnostic value of the features. However, this
conclusion needs to await further research for two reasons.
First, there were only two categories, so the probability that
cross-category comparisons might be made (e.g., about the
internal structure learned by inference) was probably much
greater than in many more realistic situations. When we
learn about items there is normally not such an obvious and
closely related contrasting category being learned. Second, it
is possible that some or all of this influence occurred at test.
For example, the effect of diagnosticity in inference learning
was most evident when the items were less typical category
members. Since these items would have had more features
in common with the non-target category, their presence may



have prompted the inference learners to consider that other
category (although it was not necessary to do given the
design of the transfer tasks). Again, this seems to be much
less likely in more realistic category situations. It is
important to keep in mind that although the inference
learners did show some sensitivity to the diagnosticity of
the features, it was sometimes tiny and always significantly
less than the classification learners. Despite these
possibilities, it is important that future research more fully
examine how the category representation is influenced by
inference learning.

It is also interesting to consider the classification learners.
Their lack of sensitivity to the non-diagnostic features that
were part of the prototype suggests an extreme focus in the
representation they develop. Other results also point out
some difficulties that arise from category learning based
solely on classification. Yamauchi and Markman (1998,
Exp. 2) found that varying the order of classification and
inference learning resulted in a situation where a block of
classification learning prior to inference learning was not
beneficial (although inference learning prior to classification
learning was). Chin-Parker and Ross (in press) showed that
classification learners were not sensitive to within-category
correlations whereas inference learners were sensitive to this
relational structure. Anderson et al. (2002) also found that
classification learners were less accurate than inference
learners when classifying individual features of category
members. These lines of research suggest that classification
learning may lead to a category representation that is good
at determining category membership of items but is
impoverished with regards to other category information.

The question remains as to why classification and
inference learning lead to such different category
representations. Even though the two learning tasks can be
considered formally equivalent, they impose very different
demands on the learner. In the classification learning task, a
subject is shown an item and predicts the category label
using the available information. If a piece of information is
not diagnostic, such as “flying” when learning to
distinguish birds and bats, it is not important and not
incorporated into the category representation. The current
experiments and formal modeling (Krushke, 1992) have
shown that diagnosticity is the primary concern during
classification learning. As noted earlier, the inference
learning task focuses the learner on a single category,
promoting the acquisition of information about the internal
structure of that category. This would make the inference
subjects sensitive to what are the most likely features given
the category membership. If an item is labeled as a “bird”
and then a prediction is made about how it will get from
one tree to another,  the correct prediction would most
likely be “flying”, and that piece of information is
incorporated into the category representation. Recognition of
the features that distinguish birds from bats is not important
in this situation, so those diagnostic features would not be
made salient.

A major challenge now will be to formalize the
differences that exist between the various means of category
learning and to incorporate that information into a category
learning model. Such a model would be useful for any

endeavor within the cognitive sciences concerned with
learning from past experience.

In closing, it is important to remember that when we
learn about categories in more realistic situations, it is by a
combination of different tasks, such as classification,
inference, and explanation. The limited representation that is
developed as a result of classification learning does not
appear to be much like the flexible, dynamic representations
that underlie our knowledge of real world categories.
However, the same may be true of a category representation
that is developed as a result of any single category learning
task. It may the combination of various learning tasks that
creates a flexible and dynamic representation. To understand
category learning as it exists outside of the laboratory, we
are going to have to develop a more integrated approach to
category learning (e.g., Solomon, Medin, & Lynch, 1999).
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