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Abstract

TRACS (Tool for Research on Adaptive Cognitive
Strategies) is a family of games played with a special
deck of two-sided cards (see www.tracsgame.com).
TRACS has the advantage of being both mathematically
tractable to theoretical analysis and psychologically
relevant to practical applications. The simplest game,
called Straight TRACS, is a series of choices where the
player must turn over one of two cards to match a third
card. The object is to make the most matches on a trip
through the deck. The challenge is to track the changing
odds in order to make the best choices. We performed
experiments and simulations to measure human
performance in this probabilistic and dynamic task. We
present our finding of a Baseline Bias, in which
subjective odds are (incorrectly) anchored to the baseline
odds. This is an interesting result because it is contrary to
other well-known biases, such as Gambler’s Fallacy, in
which subjective odds are (incorrectly) not anchored to
the baseline odds. We propose a theory of mental models
to reconcile our finding with previous research on
heuristics and biases.

Introduction

A dilemma of decision research is to obtain the rigors
of controlled experimentation yet maintain some
relevance to practical applications. Our approach is a
synthetic task environment (Gray, in press) called
“TRACS” (Burns, 2001a) that replicates the cognitive
challenges of naturalistic decision-making (Klein,
1998), including probabilistic risk assessment and
dynamic resource allocation.

TRACS is both a unique game and a useful tool
(Burns, 2001b). From a mathematical perspective,
TRACS is unique because it is played with a special
deck of two-sided cards, and because it has extensible
rules that allow the same game to be played alone or
with others.

Unlike standard playing cards, the backs of the cards
provide clues to the fronts, and the deck contains
unequal numbers of each card type (Table 1).
Compared to Poker and other games of imperfect
information, the two-sided cards make TRACS more
tractable to theoretical analysis of optimal solutions.
Compared to Chess and other games of perfect
information, the two-sided cards make TRACS more
relevant to diagnoses and decisions in practical domains
like business, medicine and warfare.

From a psychological perspective, TRACS is useful
because it provides a naturalistic micro world for
experiments and simulations. Unlike other approaches
to research on probabilistic reasoning, which often
employ verbal stimuli in the form of static questions,
TRACS employs graphical stimuli in a game of
dynamic situations. This reduces artificial framing
effects (see Nickerson, 1996) and introduces realistic
temporal context.

We are using TRACS to perform experiments on
human subjects and to perform simulations with
software agents. Our experiments are designed to elicit
cognitive strategies and our simulations are designed to
evaluate these strategies against normative standards.
Taken together, our experiments and simulations allow
us to build and test models of cognitive competence
that are relevant to practical applications in command
and control (Burns, 2001c).

This paper reports on our first experiment and
simulations using the simplest version of the game,
called Straight TRACS. We explain the game, discuss
our experiment and present our finding of a Baseline
Bias. We also propose a theory of mental models to
reconcile our finding with previous research on
heuristics and biases.

The Game

Straight TRACS is a solitaire game played with 24 two-
sided cards (Table 1). The backs of the cards, called
“tracks”, show black shapes (triangle, circle or square).
The fronts of the cards, called “treads”, show colored
sets (Red or Blue) of these same shapes. Table 1 shows
the distribution of shape/color (track/tread) cards in the
deck. This distribution defines the baseline odds. For
example, at the start of the game, a triangle track is
likely (6/8 = 75%) to be Red, a square track is likely
(6/8 = 75%) to be Blue and a circle track is 50-50.
However, during the game, the odds change as the deck
is depleted.

Table 1: Distribution of cards in the deck. The backs
are called “tracks” and the fronts are called “treads”.

# of Cards 6 4 2 2 4 6

Front (tread) Red Red Red | Blue | Blue | Blue

Back (track) A [ J ] A o |




To play Straight TRACS, the deck is held face down
and three cards are dealt to a field. Two cards are dealt
face down (showing their tracks) and the third card is
dealt face up (showing its tread). The player’s task is to
turn over one of the two tracks (revealing its tread),
trying to match the tread (color) of the third card. The
turn is scored a “save” if the treads match or a “strike”
if the treads clash. The two treads are removed from the
field and the remaining track is turned to reveal its
tread. This becomes the tread to match on the next turn.
Two new tracks are dealt from the deck, a track is
turned, the treads are scored, etc. Play continues until
all cards (except the last two, which do not count) have
been paired and scored. The object of the game is to
minimize strikes on a trip through the deck.

Experiment

The goal of our experiment was to measure how people
track the changing odds in TRACS. The probe in our
experiment was a confidence meter that players set
before each turn to indicate their subjective belief in the
color (tread) of each shape (track) on the field. We used
two different confidence meters (Figure 1), both based
on a spectrum that runs from 100% Red to 100% Blue.
One confidence meter displayed a discrete set of
qualitative values on an octal scale. The other
confidence meter displayed a continuous set of
quantitative values on a decimal scale.

Red | PTIINAIN |51

000000000

“Button” Confidence Meter

red | NANANANNN |Bue

“Pointer” Confidence Meter

Figure 1: Two different confidence meters.

We tested 43 adults playing 10 games each. Subjects
were tested on a personal computer using a mouse to set
the confidence meter. There were no time limits, but
each game was typically completed in less than 5
minutes. Each subject played in two blocks of 5 games,
one block with each confidence meter in balanced
design to control for fatigue and learning effects. The
two blocks were separated by a short break. Before data
collection, subjects read a playbook that described the
cards and rules, watched a demo and played a practice
game. All games were played with random shuffles of
the deck and all 43*10 = 430 shuffles were unique. The
experimental results were similar for Button and
Pointer confidence meters, so all data is combined here,
rounding Pointer data to the nearest Button for
consistency.

Analysis

Baseline Bias

The player’s problem is illustrated in Figure 2, which
shows the actual odds for a typical game. By
convention, we measure odds in % Red, where % Blue
=100 - % Red. Figure 2 shows that the odds for each
track type start at their baseline values (75% Red for
triangles, 50% Red for circles and 25% Red for
squares). However, the actual odds change (moving
up/down on Figure 2) as tracks are turned to reveal their
treads (moving right on Figure 2).

Figure 2: Change in actual odds (typical game).

Figure 3 illustrates a typical player’s solution to the
problem illustrated in Figure 2, as reported by the
player’s setting of the confidence meter for each track
(before each turn). Relative to the actual odds (Figure
2), we see that the reported odds exhibit a bias towards
the baseline odds. For example, after a minor
adjustment near the start of the game, the player (Figure
3) reported constant odds for circles even after the
actual odds (Figure 2) had moved far from the baseline.
This Baseline Bias is explored further below.

Odds Inversions

Recall that the object of Straight TRACS is to turn the
track that is most likely to match a given tread. At the
start of the game, this is a simple task since the baseline
odds specify which track to turn, e.g., triangle rather
than circle to match Red. However, as the deck is
depleted, the actual odds for two track types may
become “inverted” with respect to their baseline
configuration. This occurs whenever there is a
crossover of two track types on the dynamic odds plot
(Figure 2).



Figure 3: Change in reported odds (typical game).

For example, in Figure 2, a crossover near the middle
of the game causes the odds to be less % Red for
triangles than for circles for the remainder of the game.
This is an inversion of the baseline odds relation
between triangles and circles. Figure 3 shows that the
player failed to detect this odds inversion.

As a gross measure of cognitive competence, we treat
each odds inversion as a signal that a player must detect
in order to minimize strikes in Straight TRACS. Figure
4 shows the total number of hits, misses and false
alarms for this signal (for all players and all games).
The relatively small number of hits compared to misses
demonstrates that subjects exhibit a Baseline Bias. The
occurrence of some hits and false alarms suggests that,
although biased towards the baseline odds, subjects are
at least trying to update odds, i.e., they are not just
playing the baseline odds.

Figure 4: Detection of odds inversions.

Average Error

Each odds inversion (see above) involves a pair of
tracks. As another measure of cognitive competence,
we also examine confidence errors for single tracks.
Figure 5 shows the average error versus turn in game,
for human subjects and for a simulated agent that
always plays the baseline odds.

Figure 5 shows that error increases with turn, i.e., as
the actual odds deviate more from the baseline odds, for
both the human subjects and the baseline agent. This
shows that people have a Baseline Bias relative to the
actual odds (zero error). Figure 5 also shows that the
average error is higher for human subjects than for the
baseline agent at the start of the game. This is a
surprising result because: (1) The baseline odds are
explicitly illustrated on the cards (treads) for the player
to see. (2) The actual odds are obviously equal to the
baseline odds at the start of the game. (3) Playing the
baseline odds is a strategy that requires virtually no
mental effort.

Figure 5: Average error in reported odds.

Kinds of Errors

To help explain Figure 5, we define a taxonomy of
errors (Table 2). We first distinguish between Cognitive
Errors, which are mental errors in judging odds, and
Manipulative FErrors, which are physical errors in
moving the mouse to match the mind. We then
distinguish between two kinds of Cognitive Errors:
Update Errors are mental errors in updating odds
relative to baseline odds, and Baseline Errors are
mental errors in estimating the baseline odds
themselves. Finally, we further distinguish between two
kinds of Update Errors: Omission Errors are where no
mental update is performed when it should be, and
Commission Errors are where a mental update is
performed but the result is incorrect.



Table 2: A taxonomy of errors.

Errors

!

Cognitive Errors Manipulative Errors

v

Update Errors Baseline Errors

Y

Omission Errors Commission Errors

The baseline agent makes no Manipulative Errors, no
Baseline Errors and no Commission Errors, i.e., it
makes only Update Errors of Omission. In fact, since
the baseline agent never updates odds, its performance
provides an upper bound on the magnitude of Omission
Errors. Figure 5 shows that the baseline agent’s Update
Error is non-zero on turn 1. This is because the tread on
the first field can cause a change in odds before the first
turn. For example, assume that the cards on the first
field are circle (track), Red circle (tread) and square
(track). The baseline odds for circles are 4/8 Red, but
since one Red circle is revealed as a tread on the field,
the actual (updated) odds for circles are 3/7 Red. The
same effect is magnified on later turns as more treads
are revealed, hence the Omission Error increases with
turn (Figure 5, curve for baseline agent).

For human subjects, the total error comprises
Manipulative Error, Baseline Error and Update Error
(Omission and Commission). The difference between
total human error and baseline agent error on turn 1 is
attributed to Manipulative Error and Baseline Error,
which we assume are relatively independent of turn in
game. Thus, the curve for total human error can be
shifted downwards (curve * in Figure 5) to get an
estimate of human Update Error.

This shifted curve for human error is directly
comparable to the error curve for the baseline agent,
which also includes only Update Error. The comparison
(Figure 5) shows that human subjects are biased
towards the baseline agent, relative to the actual odds
(zero error). However, the shifted curve also shows that
human subjects outperform the baseline agent (who
does not update odds), and the difference grows with
turn as the difference between actual odds and baseline
odds increases. Thus, we conclude that human subjects
make fewer Omission Errors than the baseline agent,
and that the Commission Errors made by human
subjects are not significantly larger in number and
magnitude than the baseline agent’s Omission Errors.

Anchoring and Adjustment

These results are consistent with the well-known
heuristic strategy of “anchoring and adjustment”
(Tversky & Kahneman, 1974). In our case, the baseline
odds (with some Baseline Error, see above) are the
anchor to which people make adjustments. The
adjustments are, on average, better than pure anchoring
but significantly worse than optimal adjusting.

To gain further insight into the adjustments, we
examine how the confidence meter settings change
from turn to turn (for the same track type). We define
various magnitudes of adjustment (i.e., no-button jump,
one-button jump, two-button jump, etc.) and compute
the number of times each magnitude of adjustment was
made. Figure 6 compares the results for human subjects
to an optimal agent (playing the same games) who
always sets the confidence meter at the actual odds. As
expected from anchoring, human subjects most often
make a no-button adjustment. This is in contrast to the
optimal agent, who most often makes a one-button
adjustment.

Figure 6: Number of adjustments (by magnitude).

Besides the magnitude of adjustment, we also
examine various types of adjustments. We define five
types of adjustments (Table 3) and compute the number
of times each type of adjustment was made. Figure 7
compares the results for human subjects to an optimal
agent (playing the same games) who always sets the
confidence meter at the actual odds.

Table 3: Types of adjustments (anchor = baseline odds).

Type 0 | No adjustment

Type 1 | From on-anchor to off-anchor

Type 2 | From off-anchor to more off-anchor
Type 3 | From more off-anchor to less off-anchor
Type 4 | From off-anchor to on-anchor




As expected from anchoring, Figure 7 shows that
human subjects make many more Type 0 adjustments
(actually non-adjustments) and less Type 1 and Type 2
adjustments than the optimal agent. Figure 7 also shows
that the difference between Type 1 and Type 4
adjustments is smaller for human subjects than for the
optimal agent. This suggests that, when people do move
off the baseline anchor (Type 1) in an attempt to adjust
odds, they often “lose it” and return to the baseline
anchor (Type 4). The optimal agent moves off the
baseline anchor (Type 1) more often and returns to the
anchor (Type 4) only when the actual odds are equal to
the baseline odds (i.e., the agent never “loses it”).

These results (Figures 6 and 7) further support our
conclusion that Baseline Bias in TRACS (Figures 4 and
5) is caused by a heuristic strategy of anchoring and
adjustment.

Figure 7: Number of adjustments (by type).

The question, of course, is how (exactly) do people
decide when and how much to move off anchor? That
is, what (exactly) are the mental limits that prevent
more accurate adjustments? The answer is crucial if we
are to explain and predict human performance in
TRACS or any other domain where people must think
probabilistically about things that are changing
dynamically. Below we propose a theory of mental
models that takes a first step in this direction.

Theory

Mind Sets

We claim (Burns, in press; 2002; 2001b; 2001c; 2001d)
that people make sense of the world by forming
probabilistic models in their heads (see Knill &
Richards, 1996; Johnson-Laird, 1994; Gigerenzer et al.,
1991).

We further claim that: (1) Mental models are
bounded by natural regularities of the world. (2) Mental
models have a normative basis within their natural
bounds. (3) Cognitive competence can be explained and
predicted by specifying the natural bounds and
normative basis of mental models (i.e., in bounded
rationality, see Simon, 1990).

More specifically, we claim that probabilistic mental
models can be characterized as computational “mind
sets” (Burns, 2002). Like the term “model”, which is
both noun and verb, we use the term “set” in dual sense
to refer to both the mental representation of classes
(e.g., declarative knowledge) and the mental operation
of routines (e.g., procedural knowledge). The central
tenet of our theory (Burns 2002) is that these mind sets
are normative within their cognitive bounds.

As an initial test, below we sketch how our theory
can explain Baseline Bias in TRACS. We also sketch
how our theory can reconcile Baseline Bias with
previous findings of Gambler’s Fallacy and Base Rate
Neglect in other probabilistic reasoning tasks (Tversky
& Kahneman, 1974). This is a non-trivial test of the
theory, since Gambler’s Fallacy and Base Rate Neglect
appear at first glance to be contrary to Baseline Bias.

Gambler’s Fallacy and Base Rate Neglect

In Baseline Bias (in TRACS), people do not update the
baseline odds when they should. Conversely, in
Gambler’s Fallacy, people update the baseline odds
when they should not. Furthermore, in Base Rate
Neglect, people discount or ignore the baseline odds
altogether. How can we explain these differences?
According to our theory, all three biases occur because
people reason about probabilities with mind sets.

For Base Rate Neglect (Tversky & Kahneman, 1974;
Koehler, 1996; Cosmides & Tooby, 1996), we suggest
that people ignore the baseline odds in light of other
evidence because they believe that the baseline odds
reflect a less relevant (not applicable) set of
occurrences. It is difficult in theory, let alone in
practice, to aggregate probabilities that are derived from
diverse sources with different pedigrees. As such, it is a
bounded-Bayesian strategy to rely on the one source
that is judged to be most relevant and reliable. Base
rates that are judged irrelevant or unreliable are
therefore neglected.

For Gambler’s Fallacy (Tversky & Kahneman,
1974), we suggest that people update the baseline odds
because they are judging odds for a finite (bounded) set
rather than for an infinite set. For example, after seeing
10 heads and 2 tails, a gambler who believes the coin is
fair will think that the future holds more tails than
heads, simply because he thinks that the eventual (large
but finite) set of many tosses for this coin will be
balanced. As such, it is a bounded-Bayesian inference
to conclude that the future odds are slightly higher for
tails than for heads.



For Baseline Bias (in TRACS), we suggest that
people want to update odds (as they tell us) but that it is
simply beyond their cognitive capacity. To do so,
players must count cards in each of six sets (see Table
1) and normalize to convert the counts to odds. These
two tasks, i.e., concurrent counting and normalizing
numbers, are naturally hard for the unaided mind
(Dehaene, 1997; Dehaene, 1992; Gallistel & Gelman,
1992; Nickerson, 1996). Thus, with self-knowledge of
mental limits, it is a bounded-Bayesian strategy to
remain anchored to the baseline odds unless and until
the evidence for an adjustment is compelling. For
example, in the extreme case, pure anchoring to
baseline odds (i.e., never adjusting) is the bounded-
Bayesian strategy for a decision maker who knows that
he cannot remember which cards have been revealed in
the course of a game.

Conclusion

Our initial experiment and simulations show that
TRACS provides a useful micro world for investigating
how people make diagnoses and decisions under
uncertainty. Our finding in Straight TRACS is that
players exhibit a Baseline Bias, which we attribute to a
heuristic strategy of anchoring and adjustment. We
sketched a theory of set-based mental models that
reconciles our finding with previous research on
heuristics and biases. Our future plans are to use
TRACS to investigate the mental limits of concurrent
counting, normalizing numbers and other facets of
cognitive competence in probabilistic and dynamic
reasoning.
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