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Abstract
Everyone agrees that real cognition requires much more 
than static pattern recognition. In particular, it requires the 
ability to learn sequences of patterns (or actions) But
learning sequences really means being able to learn multiple
sequences, one after the other, wi thout the most recently 
learned ones erasing the previously learned ones. But if 
catastrophic interference is a problem for the sequential 
learning of individual patterns, the problem is amplified 
many times over when multiple sequences of patterns have 
to be learned consecutively, because each new sequence 
consists of many linked patterns. In this paper we will 
present a connectionist architecture that would seem to
solve  the problem of multiple sequence learning using
pseudopatterns.

Introduction
Building a robot that could unfailingly recognize and 
respond to hundreds of objects in the world – apples, 
mice, telephones and paper napkins, among them –
would unquestionably constitute a major artificial
intelligence tour de force. But everyone agrees that 
real cognition requires much more than static pattern 
recognition. In particular, it requires the ability to 
learn sequences of patterns (or actions). This was the 
primary reason for the development of the simple 
recurrent network (SRN, Elman, 1990) and the many 
variants  of this architecture. 

But learning sequences means more than being 
able to learn a single, isolated sequence of patterns: it 
means being able to learn multiple sequences, one 
after the other, without the most recently learned ones 
erasing the previously learned ones. But if
catastrophic interference – the phenomenon whereby 
new learning completely erases old learning – is a 
problem with static pattern learning (McCloskey & 
Cohen, 1989; Ratcliff, 1990), the problem is
amplified many times over when multiple sequences 
of patterns have to be learned consecutively, because 
each sequence consists of many new linked patterns. 
What hope is there for a previously learned sequence 
of patterns to survive after the network has learned a 
new sequence consisting of many individual patterns? 

In this paper, we will present a connectionist 
architecture that solves the problem of multiple
sequence learning. 

Catastrophic interference
The problem of catastrophic interference (or
forgetting) has been with the connectionist
community for well over a decade now (McCloskey 
& Cohen, 1989; Ratcliff, 1990; for a review see 
Sharkey & Sharkey, 1995). Catastrophic forgetting 
occurs when newly learned information suddenly and 
completely erases information that was previously 
learned by the network, a phenomenon that is not only 
implausible cognitively, but disastrous for most
practical applications. The problem has been studied 
by numerous authors over the past decade (see
French, 1999 for a review). The problem is that the 
very property – a single set of weights to encode 
information – that gives connectionist networks their 
remarkable abilities of generalization  and graceful 
degradation in the presence of incomplete information 
are also the root cause of catastrophic interference 
(see, for example, French, 1992). 

Various authors (Ans & Rousset, 1997, 2000; 
French, 1997; Robins, 1995) have developed systems 
that rehearse on pseudo-episodes (or pseudopatterns), 
rather than on the real items that were previously 
learned. The basic principle of this mechanism is 
when learning new external patterns to interleave 
them with internally-generated pseudopatterns. These 
latter patterns, self-generated by the network from 
random activation, reflect (but are not identical to) the 
previously learned information. It has now been
established that this pseudopattern rehearsal method 
effectively eliminates catastrophic forgetting. 

A serious problem remains, however, and that is 
this: cognition involves more than being able to
sequentially learn a series of "static" (non-temporal)
patterns without interference. It is of equal importance
to be able to serially learn many of temporal
sequences of patterns. We will propose an
pseudopattern-based architecture that can effectively 
learn multiple temporal pat terns consecutively. 

The key insight of this paper is this: 
Once an SRN has learned a particular sequence, 
each pseudopattern generated by that network 
reflects the entire sequence (or set of sequences)
that has been learned .
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From which our key result follows:
When learning a new sequence, simple rehearsal 
with these sequence-encoding pseudopatterns will 
prevent catastrophic forgetting of the previously 
learned sequence(s).

We will use a connectionist architecture using two 
coupled “auto-associative recurrent networks
(AARN)” (Maskara & Noetzel, 1992, 1993;
Cleeremans & Destrebecqz, 1997) that pass
information back and forth to each other by means of 
pseudopatterns. We will refer to auto-associative
recurrent networks as Reverberating SRNs (RSRN), 
in order to emphasize the manner in which they use 
pseudopatterns to eliminate catastrophic interference 
in multiple sequence learning. 

The remainder of this paper is organized as
follows. We will briefly review the standard dual-
network pseudopattern solution to the problem of 
catastrophic forgetting in static pattern learning. We 
will then show (Simulation 1) that multiple-sequence
learning is particularly susceptible to catastrophic
forgetting. We will then show how our
pseudopatterns-based dual-network architecture can
be used to effectively overcome catastrophic
interference in multiple sequence learning. 

Overcoming catastrophic interference 
with pseudopatterns

Before discussing catastrophic interference in
multiple-sequence learning, we need to briefly
describe what pseudopatterns are and how they can be 
used to reduce catastrophic interference in the simpler 
case of static pattern learning. 

Assume we have a three-layer feedforward
network that learns a number of binary patterns drawn 
from some distribution. Assume, thereafter, that these 
patterns are no longer available. How can one
determine, even approximately, what the network has 
learned? Answer: By "bombarding" the input of the 
network with random binary vectors and collecting 
the associated output vectors. Each input-output pair 
of vectors produced in this way will constitute a
pseudopattern  that will be a reflection of the function 
previously learned by the network.

The basic idea to use pseudopatterns to reduce 
catastrophic interference is due to Robins (1995). It 
works as follows. The network learns a first set of 
patterns, {Pi}. Then before it begins to learn a second 
set of patterns, {Qi}, noise is fed through the network 
to produce a set of pseudopatterns, {ψi}, as above. 
These pseudopatterns are added to the new patterns to 
be learned and the network trains on this larger set 
until all of the new patterns, {Q i}, are learned to 
criterion. When the network is tested on the originally 
learned patterns, {Pi}, it has not forgotten them
catastrop hically. Had there been no pseudopatterns
mixed in with the new patterns that were learned, the 
network would have completely forgotten the
originally learned patterns.

Dual-Network Architectures
But where are these internally generated
pseudopatterns stored so that they can be interleaved 
with the new patterns? One answer is to generate 
them on the fly in a separate network (French, 1997; 
Ans & Rousset, 1997, 2000). Let us consider one way 
that a single new pattern, Q, might be learned in this 
dual-networ k model. Assume that new patterns are 
learned by NET 1 (this can be considered to be the 
“Performance Network”), while previously learned 
patterns are stored in NET 2 (which could be
considered to be the “Storage Network”). NET 1
learns Q as follows: 

i) pattern Q is input to NET 1, which modifies its 
weights once; ii) noise is input to NET 2, which 
generates a pseudopattern; iii) this pseudopattern is 
presented to NET 1, which modifies its weights 
once; iv) if Q has been learned to criterion, stop; 
otherwise go to i).

We call this the “awake state”. Once the output error 
for pattern Q  has dropped below criterion, we transfer
the information in NET1 to NET 2 as follows:

Loop N times: i) noise is input to NET 1, which 
generates a pseudopattern; ii) this pseudopattern is 
input to NET 2, which modifies its weights once.

We call this phase, when information is transferred to
NET 2, the “sleep state.” This will be the basis of all 
learning in the dual-network framework described in 
this paper.

“Reverberating” backpropagation 
A reverberating backpropagation (RBP) network is a 
standard three-layer network that has a built -in
autoassociator (“reverberator”) for the input of the 
patterns to be learned (Ans & Rousset, 1997, 2000). 
We have shown this network in an “unfolded” manner 
(Figure 1). In this visualization, the output layer is 
divided into the “autoassociative” nodes for the input 
component of the patterns to be learned (on the left in 
Figure 1) and the “target” nodes for the targets of the 
patterns to be learned (on the right in Figure 1). 

Input

Input Target

Output layer

Hidden layer

Input layer

Teacher
Error

“autoassociative” nodes “target” nodes

Figure 1. An RBP network

Assume the network is to learn a pattern P: I ? T,
consisting of an input, I, and a target, T. I is presented 
on input and is sent through the network to the output 
layer. For all of the nodes in the output layer, an error 
is calculated. For the “autoassociative” output nodes, 
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the error is based on the difference between the
network output and the original input, I, whereas for 
the “target” nodes, this error is based on the
difference between the “heteroassociative” output and 
the desired target T. The errors associated with both 
the autoassociator and the target output nodes are then 
backpropagated through the network in order to
change the network’s weights.

“Attractor” pseudopatterns 
in an RBP Network

To generate pseudopatterns in a reverberating
network, a random input ψi is present ed to the input 

layer of the network and fed through to the output 
layer. The activation values of the “autoassociative” 
nodes in the output layer (nodes on the left of the 

output layer in Fig. 1) constitute a new input, ψi′ ,

which is then sent through the network (the activation 
values on the “target” nodes in the output layer are 
ignored). This produces a pattern of activation on the 
autoassociative output nodes, ψi ′′ , which is then

presented to the input nodes of the network, and so 
on. After a number of reverberating cycles through 

the network, a final “reverberated” input, Riψ , is sent 

through the network and the activation vector of all 
the output nodes (the “autoassociative” and the
“target” output nodes), ψo , is used to produce a 

pseudopattern ψψψ oiR →: . The significant

advantages of using an input autoassociator with a 
feedforward backpropagation network have been
shown elsewhere (Ans & Rousset, 1997, 2000).
Suffice it to say that the reverberation process

transforms a pure random input, ψi , into an attractor

of the system, Riψ . An “attractor” pseudopattern

produced provides a much better reflection of the old 
patterns than a pseudopattern produced from simple 
random noise on input. It is this reverberation
technique that is largely responsible for the power of 
this technique.

Reverberating Simple Recurrent 
Networks (RSRN)

We will assume that the reader is familiar with the 
design of a Simple Recurrent Network (SRN, Elman, 
1990). An RSRN (Figure 2) works very much like a 
standard SRN (Maskara & Noetzel, 1992, 1993;
Cleeremans & Destrebecqz, 1997). Just as the RBP 
network involves adding “autoassociative” nodes to 
the output layer of a BP network, a reverberating SRN 
involves adding “autoassociative” nodes to the output 
layer of an SRN. The full input to the network
consists of the “standard” input, i.e., the input from 
the sequence item, S(t), and the “context” input,
H(t -1), which is the activation vector of the hidden 

layer associated with the previous item in the
sequence, S(t -1).
“Attractor” pseudopatterns in an RSRN

The principle is identical to pseudopattern generation 
in an RBP network. Crucially, once the RSRN has
learned a sequence of items, each “reverberated”
pseudopattern generated by it reflects the entire
sequence learned by the recurrent network. Each 
pseudopattern can be thought of as a very compact 
representation of the entire previously learned
sequence.

S(t)

H(t-1) S(t+1)

Output

Hidden layer

Input

Teacher
Error

H(t)

S(t)

H(t-1)

“autoassociative”
(Input) nodes “target”

Input

Standard Context

Figure 2. A Reverberating SRN (RSRN)

A dual-network architecture with self-
refreshing memory to overcome 

catastrophic forgetting in multiple 
sequence learning

Ans & Rousset (1997, 2000) proposed a
reverberating dual-network architecture with a self -
refreshing memory to avoid catastrophic forgetting in 
static pattern learning. The basic dual-network
architecture consists of two coupled RBP networks, 
denoted NET 1 and NET 2. NET 1 is the primary 
network that interfaces with the environment and that 
learns the new patterns. The secondary network,
NET 2, is a “storage” network because information 
initially learned in NET 1 will ultimately be
transferred to NET 2.

The basic principles of RSRN dual-network
learning, where each of the networks is an RSRN, are 
virtually identical to those underlying dual-networks
composed of RBP networks. Dual-network RSRNs 
are designed to learn multiple sequences of patterns.

Assume we have two identical RSRNs, NET 1 and 
NET 2. New sequences will be learned only by
NET 1, while NET 2 will store the previously learned 
information. The learning procedure is similar to that 
of the basic RBP dual-network. A sequence, S = S(0),
S(1), ..., S(n) is presented to NET 1. The network 
makes a single pass through the entire sequence, 
updating its weights once for each item in the
sequence. This defines one learning "epoch"
corresponding to one presentation of all items in the 
sequence in order. Next, NET 2 generates a number of 
pseudopatterns (e.g., 10 per learning epoch). These 
pseudopatterns are close to attractor states  of NET 2,
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which makes them particularly good vehicles for
information transfer from NET 2 to NET 1. For each 
NET 2 pseudopattern, NET 1 performs one
feedforward-backpropagation learning pass. Once this 
is completed, a new learning epoch starts and NET 1
makes another pass through the sequence S. NET 2
generates new pseudopatterns, each of which is
learned for one feedforward-backpropagation pass by 
NET 1. And so on. This is the awake state for an 
RSRN dual-network.

It is extremely important to notice that each
pseudopattern generated by NET 2 is a static input-
output pattern that represents a dynamic state (i.e., 
the previously learned sequence or sequences). This is 
what gives this system its power: there is no need to 
attempt to reproduce an entire pseudo-sequence that 
will then be interleaved with the new sequence being 
learned. Rather, we only need to interleave with the 
new sequence to be learned non -temporal
pseudopatterns, each of which reflects (at least
partially) the information in the entire previously 
learned temporal sequence (or sequences). 

To transfer the sequence newly learned by NET 1
to NET 2, we again make use of pseudopatterns. This 
time the pseudopatterns are generated by NET 1 and
learned by NET 2. For each pseudopattern generated 
by NET 1, NET 2 performs a single feedforward-
backpropagation learning pass. 

Overview of Simulations
We will present two simulations. The first will
demonstrate the severity of catastrophic interference
in multiple sequence learning in standard SRNs. The 
second will demonstrate that interleaving
pseudopatterns (reflecting the whole previously
learned sequence) with the new sequence effectively 
eliminates catastrophic interference. 

A standard SRN netw ork was used for the first 
simulation demonstrating the severity of catastrophic 
interference in multiple sequence learning. In the
second simulation, a dual-network architecture
consisting of two coupled RSRNs will be used. Each 
RSRN has an input layer with 100 “standard” input 
units (corresponding to the size of the items, S(t), in 
the sequence) and 50 “context” units. The hidden 
layer consists of 50 units. The output layer consists of 
150 “autoassociative” inputs that are identical to the 
input layer plus 100 “target” units (Figure 2).

Learning a given sequence consists of presenting 
it repeatedly to the network until each item in the 
sequence can predict the subsequent item with a pre-
defined degree of precision. The network weights are 
updated by backpropagation once per presentation of 
each sequence item. A cross-entropy error function is 
used (Hinton, 1989; Plaut, McClelland, Seidenberg & 
Patterson, 1996) with a learning rate of 0.01, a
momentum of 0.5 and a 1.0 bias term. All weights are 
randomly init ialized between –0.5 and 0.5. 

To create the “attractor” pseudopatterns, noise on 
input is “reverberated” 5 times before the actual

pseudopattern that will be used is created. Ten
pseudopatterns from NET 2 are interleaved with each 
epoch of the sequence learned by NET 1. During 
transfer of the information from NET 1 to NET 2, 104

pseudopatterns are used. 

Measuring learning and forgetting
For each item, S(t), of the sequence fed forward 
through the network, we calculate the difference
between the activation values of “target” units in the 
output layer and the desired target item in the
sequence, S(t+1). We calculate this difference for 
each of the 100 “target” output units and count the 
number of output units for which the absolute value of 
this difference is above the learning criterion of 0.1. 
So, for example, assume a given item, S(t), in the 
sequence is sent through the network. If, on the output 
layer, 14 of the “target” output units differ from the 
corresponding units of S(t+1) by more than 0.1, we 
say that there are 14 “incorrect” units. A sequence is 
considered to have been learned if, for each of its 
elements, S(t), the network produces a vector of 
“target” output values, each of which is within 0.1 of 
the corresponding element of S(t+1). The overall
measure of how well the network has learned (or 
forgotten) a sequence after a given number of learning 
epochs will be the total number of incorrect units over 
all items of the sequence. 

Simulation 1: Catastrophic forgetting in 
multiple sequence learning

To illustrate the severity of catastrophic forgetting in 
multiple sequence learning, we will consider two 
sequences, A and B, and have an SRN attempt to learn 
them sequentially. The sequences are constructed as 
follows. Twenty-two distinct random binary vectors
of length 100 are created. Half of these vectors are 
used to produce the first ordered sequence of items, A,
denoted by A(0), A(1), …, A(10). The remaining 11 
vectors are used to create a second sequence of items, 
B, denoted by B(0), B(1), …, B(10). In order to 
introduce a degree of ambiguity into each sequence 
(so that a simple BP network would not be able to 
learn them), we modify each sequence so that A(5) = 
A(8) and B(1) = B(5). First, sequence A is completely 
learned by the network. Then sequence B is learned 
and, during the course of learning, we monitor at 
regular intervals how much of sequence A has been 
forgotten by the network. 

Fig. 3a shows the progression of the network’s 
learning of sequence B. The number of incorrect units 
for each serial position of the sequence, as defined 
above, is shown. As expected, it is harder for the 
network to learn B(2) and B(6) since their immediate 
predecessors are identical and, in order to distinguish 
them, the network needs to additionally take into 
consideration the context of the preceding items in the 
sequence. After 450 epochs, the network has
completely learned the entire sequence.

Then, during learning of sequence B, we
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Figure 3. Catastrophic forgetting in an SRN during 
multiple sequence learning.  (a): Learning of
sequence B (after having previously learned
sequence A). By 450 epochs (an epoch corresponds 
to one pass through the entire sequence), sequence 
B has been completely learned.  (b) : The number of 
incorrect units for sequence A during learning of 
sequence B. After 450 epochs, the SRN has, for all 
intents and purposes, completely forgotten the
previously learned sequence A.

Figure 4. Recall performance for sequences B and A
during learning of sequence B by a dual-network
RSRN. (a): By 400 epochs, the second sequence B
has been completely learned. (b) : The previously 
learned sequence A shows virtually no forgetting. 
Catastrophic  forgetting of the previously learned 
sequence A has been completely overcome.

monitored the forgetting of the previously learned 
sequence, A (Fig. 3b). Initially (i.e., before the
network began learning sequence B), it can be seen 
that sequence A was completely learned. But very 
early on, as sequence B is being learned, the
network’s memory of sequence A is overwritten. By 5 
epochs after beginning to learn the sequence B (not 
shown in Fig. 3b), the network gets an average of 
40% of the units of the items of sequence A wrong. 
By 250 epochs, the network’s performance on
sequence A is essentially no better than chance and, 
by 450 epochs, sequence A is completely forgotten. In 
short, learning sequence B causes severe catastrophic 
forgetting of sequence A. 

Simulation 2: Catastrophic forgetting is 
overcome with pseudopatterns

An RSRN dual-network architecture was used with 
the parameters indicated above. Both networks are 

initialized to random weight settings between –0.5
and 0.5. NET 1 then completely learns sequence A
and then generates 104 pseudopatterns in order to 
transfer this learning to NET 2. (There are 2150

possible distinct states for the input layer of each 
network, and hence, there is a very little possibility 
that the random binary vectors used to produce the 
“attractor pseudo-input” would be actual input
patterns already seen by the network.)

Now, NET 1 begins to learn sequence B. After 
each learning epoch (consisting of the entire sequence 
of items in B), NET 1 receives 10 pseudopatterns 
from NET 2 and does one feedforward-
backpropagation pass for each of them.  (The number 
of pseudopatterns is not related to the length of the 
previously learned sequences and can be varied.)

Fig. 4a shows that the NET 1 does, in fact, learn 
sequence B completely by 400 epochs. In other
words, for all items in sequence B, all of the units in 
the network output are within 0.1 of the desired target 
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output. Notice that the sequence items B(2) and B(6)
are learned more slowly by the network. This was, of 
course, expected since these two items are preceded 
by identical items, hence creating ambiguity having to 
be solved by the temporal context. During learning of 
sequence B, we tested the performance of the network 
on all of the items of sequence A. Fig. 4b shows that 
there is virtually no forgetting of sequence A as the 
network learns sequence B. In short, catastrophic
forgetting has been completely overcome by the
coupled system of RSRNs using pseudopattern
information transfer.

Concluding remarks
We have shown that the reverberating dual-network
architecture, originally proposed earlier to overcome 
catastrophic forgetting in non -temporal pattern
learning (Ans & Rousset, 1997, 2000) can be
generalized to sequential learning of multiple
temporal sequences. The basic principle of
interleaving internally-generated pseudopatterns from 
a long-term storage network with patterns from the 
environment being learned by a second network has 
been developed elsewhere (Ans & Rousset, 1997,
2000; French, 1997; Robins, 1995).

When learning multiple sequences of patterns, it 
turns out that interleaving simple input -output
pseudopatterns, each of which reflect the entire
previously learned sequence(s), reduces (or eliminates 
entirely) forgetting of the initially learned
sequence(s).

Further, we demonstrate the power of a network 
architecture that allows us to produce “reverberated” 
pseudopatterns that are, in reality, attractors of the 
entire network and therefore reflect, in a highly
compressed manner, the previously learned
sequences.

We have demonstrated a technique that effectively 
allows multiple sequences to be learned
consecutively.  Of course, these networks can be
made to forget gradually. This gradual forgetting
depends on the size of the learning network and on 
the number, the overlap, the length and the
complexity of the successively learned sequences.
But the problem of sudden, “catastrophic” forgetting 
of previously learned sequences caused by learning a 
new sequence of patterns would seem to have been 
overcome.
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