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Abstract

Everyone agrees that real cognition requires much more
than static pattern recognition. In particular, it requires the
ability to learn sequences of patterns (or actions) But
learning sequences really means being able to learn multiple
sequences, one after the other, without the most recently
learned ones erasing the previously learned ones. But if
catastrophic interference is a problem for the sequential
learning of individual patterns, the problem is amplified
many times over when multiple sequences of patterns have
to be learned consecutively, because each new sequence
consists of many linked patterns. In this paper we will
present a connectionist architecture that would seem to
solve the problem of multiple sequence learning using
pseudopatterns.

Introduction

Building a robot that could unfailingly recognize and
respond to hundreds of objects in the world — apples,
mice, telephones and paper napkins, among them —
would unquestionably constitute a major artificial
intelligence four de force. But everyone agrees that
real cognition requires much more than static pattern
recognition. In particular, it requires the ability to
learn sequences of patterns (or actions). This was the
primary reason for the development of the simple
recurrent network (SRN, Elman, 1990) and the many
variants of this architecture.

But learning sequences means more than being
able to learn a single, isolated sequence of patterns: it
means being able to learn multiple sequences, one
after the other, without the most recently learned ones
erasing the previously learned ones. But if
catastrophic interference — the phenomenon whereby
new learning completely erases old learning — is a
problem with static pattern learning (McCloskey &
Cohen, 1989; Ratcliff, 1990), the problem is
amplified many times over when multiple sequences
of patterns have to be learned consecutively, because
each sequence consists of many new linked patterns.
What hope is there for a previously learned sequence
of patterns to survive after the network has learned a
new sequence consisting of many individual patterns?

In this paper, we will present a connectionist
architecture that solves the problem of multiple
sequence learning.

Catastrophic interference

The problem of catastrophic interference (or
forgetting) has been with the connectionist
community for well over a decade now (McCloskey
& Cohen, 1989; Ratcliff, 1990; for a review see
Sharkey & Sharkey, 1995). Catastrophic forgetting
occurs when newly learned information suddenly and
completely erases information that was previously
learned by the network, a phenomenon that is not only
implausible cognitively, but disastrous for most
practical applications. The problem has been studied
by numerous authors over the past decade (see
French, 1999 for a review). The problem is that the
very property — a single set of weights to encode
information — that gives connectionist networks their
remarkable abilities of generalization and graceful
degradation in the presence of incomplete information
are also the root cause of catastrophic interference
(see, for example, French, 1992).

Various authors (Ans & Rousset, 1997, 2000;
French, 1997; Robins, 1995) have developed systems
that rehearse on pseudo-episodes (or pseudopatterns),
rather than on the real items that were previously
learned. The basic prindple of this mechanism is
when learning new external patterns to interleave
them with internally-generated pseudopatterns. These
latter patterns, selfgenerated by the network from
random activation, reflect (but are not identical to) the
previously learned information. It has now been
established that this pseudopattern rehearsal method
effectively eliminates catastrophic forgetting.

A serious problem remains, however, and that is
this: cognition involves more than being able to
sequentially learn a series of "static" (nontemporal)
patterns without interference. It is of equal importance
to be able to serially learn many of temporal
sequences of patterns. We will propose an
pseudopattern-based architecture that can effectively
learn multiple temporal pat terns consecutively.

The key insight of this paper is this:
Once an SRN has learned a particular sequence,
each pseudopattern generated by that network
reflects the entire sequence (or set of sequences)
that has been learned.




From which our key result follows:
When learning a new sequence, simple rehearsal
with these sequence-encoding pseudopatterns will
prevent catastrophic forgetting of the previously
learned sequence(s).

We will use a connectionist architecture using two

coupled “auto-associative  recurrent networks
(AARN)” (Maskara & Noetzel, 1992, 1993;
Cleeremans & Destrebecqz, 1997) that pass

information back and forth to each other by means of
pseudopatterns. We will refer to auto-associative
recurrent networks as Reverberating SRNs (RSRN),
in order to emphasize the manner in which they use
pseudopatterns to eliminate catastrophic interference
in multiple sequence learning.

The remainder of this paper is organized as
follows. We will briefly review the standard dual-
network pseudopattern solution to the problem of
catastrophic forgetting in static pattern learning. We
will then show (Simulation 1) that multiple-sequence
learning is particularly susceptible to catastrophic
forgetting. We will then show how our
pseudopatterns-based dual-network architecture can
be used to effectively overcome catastrophic
interference in multiple sequence learning.

Overcoming catastrophic interference

with pseudopatterns
Before discussing catastrophic interference in
multiple-sequence learning, we need to briefly
describe what pseudopatterns are and how they can be
used to reduce catastrophic interference in the simpler
case of staticpattern learning.

Assume we have a threelayer feedforward
network that learns a number of binary patterns drawn
from some distibution. Assume, thereafter, that these
patterns are no longer available. How can one
determine, even approximately, what the network has
learned? Answer: By "bombarding" the input of the
network with random binary vectors and collecting
the associated output vectors. Each input-output pair
of vectors produced in this way will constitute a
pseudopattern that will be a reflection of the function
previously learned by the network.

The basic idea to use pseudopatterns to reduce
catastrophic interference is due to Robins (1995). It
works as follows. The network learns a first set of
patterns, {P;}. Then before it begins to learn a second
set of patterns, {Q;}, noise is fed through the network
to produce a set of pseudopatterns, {y;}, as above.
These pseudopatterns are added to the new patterns to
be learned and the network trains on this larger set
until all of the new patterns, {Q;}, are learned to
criterion. When the network is tested on the originally
learned patterns, {F£}, it has not forgotten them
catastrop hically. Had there been no pseudopatterns
mixed in with the new patterns that were learned, the
network would have completely forgotten the
originally learned patterns.

Dual-Network Architectures

But where are these internally generated
pseudopatterns stored so that they can be interleaved
with the new patterns? One answer is to generate
them on the fly in a separate network (French, 1997;
Ans & Rousset, 1997, 2000). Let us consider one way
that a single new pattern, O, might be learned in this
dual-network model. Assume that new patterns are
learned by NET 1 (this can be considered to be the
“Performance Network™), while previously learned
patterns are stored in NET 2 (which could be
considered to be the “Storage Network™). NET 1
learns Q as follows:

i) pattern Q is input to NET 1, which modifies its

weights once; ii) noise is input to NET 2, which

generates a pseudopattern; iii) this pseudopattern is
presented to NET 1, which modifies its weights
once; iv) if Q has been learned to criterion, stop;

otherwise go to i).

We call this the “awake state”. Once the output error
for pattern O has dropped below criterion, we transfer
the information in NET1 to NET 2 as follows:

Loop N times: i) noise is input to NET 1, which
generates a pseudopattern; ii) this pseudopattern is
input to NET 2, which modifies its weights once.

We call this phase, when information is transferred to
NET 2, the “sleep state.” This will be the basis of all
learning in the dual-network framework described in
this paper.

“Reverberating” backpropagation

A reverberating backpropagation (RBP) network is a
standard three-layer network that has a built-in
autoassociator (“reverberator”) for the input of the
patterns to be learned (Ans & Rousset, 1997, 2000).
We have shown this network in an “unfolded” manner
(Figure 1). In this visualization, the output layer is
divided into the “autoassociative” nodes for the input
component of the patterns to be learned (on the left in
Figure 1) and the “target” nodes for the targets of the
patterns to be learned (on the right in Figure 1).

“autoassociative” nodes  “target” nodes
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Figure 1. An RBP network

Assume the network is to learn a pattern P: [ ? T,
consisting of an input, /, and a target, 7. [ is presented
on input and is sent through the network to the output
layer. For all of the nodes in the output layer, an error
is calculated. For the “autoassociative” output nodes,



the error is based on the difference between the
network output and the original input, /, whereas for
the “target” mnodes, this error is based on the
difference between the “heteroassociative” output and
the desired target 7. The errors associated with both
the autoassociator and the target output nodes are then
backpropagated through the network in order to
change the network’s weights.

“Attractor” pseudopatterns
in an RBP Network

To generate pseudopatterns in a reverberating
network, a random input i, is presented to the input

layer of the network and fed through to the output
layer. The activation values of the “autoassociative”
nodes in the output layer (nodes on the left of the

output layer in Fig. 1) constitute a new input, l'l;,
which is then sent through the network (the activation
values on the “target” nodes in the output layer are

ignored). This produces a pattern of activation on the

. . Y4 . .
autoassociative output nodes, 1I,, which is then

v/ b
presented to the input nodes of the network, and so

on. After a number of reverberating cycles through
. R .
the network, a final “reverberated” input, Ly is sent

through the network and the activation vector of all
the output nodes (the “autoassociative” and the

“target” aitput nodes), 0, , is used to produce a

v

pseudopattern Y/ : iv]j —o0,. The significant
advantages of using an input autoassociator with a
feedforward backpropagation network have been
shown elsewhere (Ans & Rousset, 1997, 2000).

Suffice it to say that the reverberation process

transforms a pure random input, I, into an atfractor

q] 2
of the system, iqlf.
produced provides a much better reflection of the old
patterns than a pseudopattern produced from simple
random noise on input. It is this reverberation
technique that is largely responsible for the power of
this technique.

An “attractor” pseudopattern

Reverberating Simple Recurrent
Networks (RSRN)
We will assume that the reader is familiar with the
design of a Simple Recurrent Network (SRN, Elman,
1990). An RSRN (Figure 2) works very much like a
standard SRN (Maskara & Noetzel, 1992, 1993;
Cleeremans & Destrebecqz, 1997). Just as the RBP
network involves adding “autoassociative” nodes to
the output layer of a BP network, a reverberating SRN
involves adding “autoassociative” nodes to the output
layer of an SRN. The full input to the network
consists of the “standard” input, i.e., the input from
the sequence item, S(f), and the “context” input,
H(t-1), which is the activation vector of the hidden

layer associated with the previous item in the
sequence, S(z-1).

“Attractor” pseudopatterns in an RSRN
The principle is identical to pseudopattern generation
in an RBP network. Crucially, once the RSRN las
learned a sequence of items, each “reverberated”
pseudopattern generated by it reflects the entire
sequence learned by the recurrent network. Each
pseudopattern can be thought of as a very compact
representation of the entire previously learned
sequence.
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Figure 2. A Reverberating SRN (RSRN)

A dual-network architecture with self-
refreshing memory to overcome
catastrophic forgetting in multiple

sequence learning

Ans & Rousset (1997, 2000) proposed a
reverberating dual-network architecture with a self-
refreshing memory to avoid catastrophic forgetting in
static pattern learning. The basic dual-network
architecture consists of two coupled RBP networks,
denoted NET 1 and NET 2. NET 1 is the primary
network that interfaces with the environment and that
learns the new patterns. The secondary network,
NET 2, is a “storage” network because information
initially learned in NET 1 will ultimately be
transferred to NET 2.

The basic principles of RSRN dual-network
learning, where each of the networks is an RSRN, are
virtually identical to those underlying dual-networks
composed of RBP networks. Dual-network RSRNs
are designed to learn multiple sequences of patterns.

Assume we have two identical RSRNs, NET 1 and
NET 2. New sequences will be learned only by
NET 1, while NET 2 will store the previously learned
information. The learning procedure is similar to that
of the basic RBP dual-network. A sequence, S = S(0),
S(1), ..., S(n) is presented to NET 1. The network
makes a single pass through the entire sequence,
updating its weights once for each item in the
sequence. This defines one learning "epoch"
corresponding to one presentation of all items in the
sequence in order. Next, NET 2 generates a number of
pseudopatterns (e.g., 10 per learning epoch). These
pseudopatterns are close to attractor states of NET 2,



which makes them particularly good vehicles for
information transfer from NET 2 to NET 1. For each
NET 2 pseudopattern, NET 1  performs one
feedforward-backpropagation learning pass. Once this
is completed, a new learning epoch starts and NET 1
makes another pass through the sequence S. NET 2
generates new pseudopatterns, each of which is
learned for one feedforward-backpropagation pass by
NET 1. And so on. This is the awake state for an
RSRN dual-network.

It is extremely important to notice that each
pseudopattern generated by NET 2 is a static input-
output pattern that represents a dynamic state (i.e.,
the previously learned sequence or sequences). This is
what gives this system its power: there is no need to
attempt to reproduce an entire pseudo-sequence that
will then be interleaved with the new sequence being
learned. Rather, we only need to interleave with the
new sequence to be learned non-temporal
pseudopatterns, each of which reflects (at least
partially) the information in the entire previously
learned temporal sequence (or sequences).

To transfer the sequence newly learned by NET 1
to NET 2, we again make use of pseudopatterns. This
time the pseudopatterns are generated by NET 1 and
learned by NET 2. For each pseudopattern generated
by NET 1, NET 2 performs a single feedforward-
backpropagation learning pass.

Overview of Simulations

We will present two simulations. The first will
demonstrate the severity of catastrophic interference
in multiple sequence learning in standard SRNs. The
second will demonstrate  that interleaving
pseudgatterns (reflecting the whole previously
learned sequence) with the new sequence effectively
eliminates catastrophic interference.

A standard SRN netw ork was used for the first
simulation demonstrating the severity of catastrophic
interference in multiple sequence learning. In the
second simulation, a dual-network architecture
consisting of two coupled RSRNs will be used. Each
RSRN has an input layer with 100 “standard” input
units (corresponding to the size of the items, f), in
the sequence) and 50 “context” units. The hidden
layer consists of 50 units. The output layer consists of
150 “autoassociative” inputs that are identical to the
input layer plus 100 “target” units (Figure 2).

Learning a given sequence consists of presenting
it repeatedly to the network until each item in the
sequence can predict the subsequent item with a pre-
defined degree of precision. The network weights are
updated by backpropagation once per presentation of
each sequence item. A cross-entropy error function is
used (Hinton, 1989; Plaut, McClelland, Seidenberg &
Patterson, 1996) with a learning rate of 0.01, a
momentum of 0.5 and a 1.0 bias term. All weights are
randomly initialized between —0.5 and 0.5.

To create the “attractor” pseudopatterns, noise on
input is “reverberated” 5 times before the actual

pseudopattern that will be used is created. Ten
pseudopatterns from NET 2 are interleaved with each
epoch of the sequence learned by NET 1. During
transfer of the information from NET 1 to NET 2, 10*
pseudopatterns are used.

Measuring learning and forgetting

For each item, S(f), of the sequence fed forward
through the network, we calculate the difference
between the activation values of “target” units in the
output layer and the desired target item in the
sequence, S(#1). We calculate this difference for
each of the 100 “target” output units and count the
number of output units for which the absolute value of
this difference is above the learning criterion of 0.1.
So, for example, assume a given item, S(f), in the
sequence is sent through the network. If, on the output
layer, 14 of the “target” output units differ from the
corresponding units of S(#+1) by more than 0.1, we
say that there are 14 “incorrect” units. A sequence is
considered to have been learned if, for each of its
elements, S(#), the network produces a vector of
“target” output values, each of which is within 0.1 of
the corresponding element of S(z+1). The overall
measure of how well the network has learned (or
forgotten) a sequence after a given number of learning
epochs will be the total number of incorrect units over
all items of the sequence.

Simulation 1: Catastrophic forgetting in

multiple sequence learning

To illustrate the severity of catastrophic forgetting in
multiple sequence learning, we will consider two
sequences, A and B, and have an SRN attempt to learn
them sequentially. The sequences are constructed as
follows. Twenty-two distinct random binary vectors
of length 100 are created. Half of these vectors are
used to produce the first ordered sequence of items, 4,
denoted by A(0), A(1), ..., A(10). The remaining 11
vectors are used to create a second sequence of items,
B, denoted by B(0), B(1), ..., B(10). In order to
introduce a degree of ambiguity into each sequence
(so that a simple BP network would not be able to
learn them), we modify each sequence so that 4(5) =
A(8) and B(1) = B(5). First, sequence A is completely
learned by the network. Then sequence B is learned
and, during the course of learning, we monitor at
regular intervals how much of sequence A has been
forgotten by the network.

Fig. 3a shows the progression of the network’s
learning of sequence B. The number of incorrect units
for each serial position of the sequence, as defined
above, is shown. As expected, it is harder for the
network to learn B(2) and B(6) since their immediate
predecessors are identical and, in order to distinguish
them, the network needs to additionally take into
consideration the context of the preceding items in the
sequence. After 450 epochs, the network has
completely learned the entire sequence.

Then, during learning of sequence B, we
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Figure 3. Catastrophic forgetting in an SRN during
multiple sequence learning. (a): Learning of
sequence B (after having previously learned
sequence A). By 450 epochs (an epoch corresponds
to one pass through the entire sequence), sequence
B has been completely learned. (b): The number of
incorrect units for sequence A during learning of
sequence B. After 450 epochs, the SRN has, for all
intents and purposes, completely forgotten the
previously learned sequence A4.

monitored the forgetting of the previously learned
sequence, A (Fig. 3b). Initially (i.e., before the
network began learning sequence B), it can be seen
that sequence 4 was completely learned. But very
early on, as sequence B is being learned, the
network’s memory of sequence 4 is overwritten. By 5
epochs after beginning to learn the sequence B (not
shown in Fig. 3b), the network gets an average of
40% of the units of the items of sequence A4 wrong.
By 250 epochs, the network’s performance on
sequence A is essentially no better than chance and,
by 450 epochs, sequence A is completely forgotten. In
short, learning sequence B causes severe catastrophic
forgetting of sequence A.

Simulation 2: Catastrophic forgetting is

overcome with pseudopatterns
An RSRN dual-network architedure was used with
the parameters indicated above. Both networks are

B
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Figure 4. Recall performance for sequences B and 4
during learning of sequence B by a dual-network
RSRN. (a): By 400 epochs, the second sequence B
has been completely learned. (b): The previously
learned sequence A shows virtually no forgetting.
Catastrophic forgetting of the previously learned
sequence 4 has been completely overcome.

initialized to random weight settings between —0.5
and 0.5. NET 1 then completely learns sequence A4
and then generates 10* pseudopatterns in order to
transfer this learning to NET 2. (There are 2%
possible distinct states for the input layer of each
network, and hence, there is a very little possibility
that the random binary vectors used to produce the
“attractor pseudo-input” would be actual input
patterns already seen by the network.)

Now, NET 1 begins to learn sequence B. After
each learning epoch (consisting of the entire sequence
of items in B), NET 1 receives 10 pseudopatterns
from NET 2 and does one feedforward-
backpropagation pass for each of them. (The number
of pseudopatterns is not related to the length of the
previously learned sequences and can be varied.)

Fig. 4a shows that the NET 1 does, in fact, learn
sequence B completely by 400 epochs. In other
words, for all items in sequence B, all of the units in
the network output are within 0.1 of the desired target



output. Notice that the sequence items B(2) and B(6)
are learned more slowly by the network. This was, of
course, expected since these two items are preceded
by identical items, hence creating ambiguity having to
be solved by the temporal context. During learning of
sequence B, we tested the performance of the network
on all of the items of sequence 4. Fig. 4b shows that
there is virtually no forgetting of sequence A as the
network learns sequence B. In short, catastrophic
forgetting has been completely overcome by the
coupled system of RSRNs using pseudopattern
information transfer.

Concluding remarks

We have shown that the reverberating dual-network
architecture, originally proposed earlier to overcome
catastrophic  forgetting in non-temporal pattern
learning (Ans & Rousset, 1997, 2000) can be
generalized to sequential learning of multiple
temporal sequences. The basic principle of
interleaving internally-generated pseudopatterns from
a longterm storage network with patterns from the
environment being learned by a second network has
been developed elsewhere (Ans & Rousset, 1997,
2000; French, 1997; Robins, 1995).

When learning multiple sequences of patterns, it
turns out that interleaving simple input-output
pseudopatterns, each of which reflect the entire
previously learned sequence(s), reduces (or eliminates
entirely) forgetting of the initially learned
sequence(s).

Further, we demonstrate the power of a network
architecture that allows us to produce “reverberated”
pseudopatterns that are, in reality, attractors of the
entire network and therefore reflect, in a highly
compressed manner, the previously learned
sequences.

We have demonstrated a technique that effectively
allows multiple sequences to be learned
consecutively. Of course, these networks can be
made to forget gradually. This gradual forgetting
depends on the size of the learning network and on
the number, the overlap, the length and the
complexity of the successively learned sequences.
But the problem of sudden, “catastrophic” forgetting
of previously learned sequences caused by learning a
new sequence of patterns would seem to have been
overcome.
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