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Abstract

When attempting to solve a problem, individuals may activate
multiple potential representations for that problem. Further,
different representations may be activated more or less
strongly. This study investigated how strength of problem
representations is related to patterns of strategy use and
strategy discovery. We hypothesized that the more strongly a
particular representation is cued, the more likely participants
should be to use a strategy that corresponds with that
representation. Further, for individuals who do not initially
have a corresponding strategy in their repertoires, the more
strongly a particular representation is cued, the more likely
participants should be to discover a strategy that corresponds
with that representation. These hypotheses were investigated
among adults solving word problems about constant change.
The problems could be represented in terms of discrete
change or continuous change. We varied two types of cues to
discrete and continuous problem representations: linguistic
cues and graphical cues. Both linguistic and graphical cues
influenced strategy use, and the effects of the two cue types
were additive. Among participants who did not use a
continuous strategy at the outset of the study, discovery of a
continuous strategy was relatively rare, and only participants
who received a continuous graph tended to discover a
continuous strategy. The findings suggest that it may be
fruitful to consider problem representations as graded and
variable rather than all-or-none.

Introduction

One step in the process of solving a problem is forming a
mental representation of important features of that problem.
Problem representations have been invoked to explain many
aspects of people’s problem-solving behavior, including
success, solution times, strategies, and errors (e.g.,
Kotovsky, Hayes, & Simon, 1985; Lovett & Schunn, 1998).
In the present study, we investigate links between problem
representations and patterns of strategy use and strategy
discovery.

Problem representations are sometimes conceptualized as
integrated wholes, such that a particular representation is
retrieved in its entirety from memory, and applied to the
problem at hand (e.g., Larkin, 1983). Although this
characterization may apply in some cases (e.g., for well-

practiced problems), we suggest that in most cases, problem
representations are constructed at the moment of solving,
based on both perceivable features of the problem and on
knowledge retrieved from memory about problem content or
about particular problem-solving strategies (McNeil &
Alibali, 2000). We further suggest that the knowledge
activated in constructing a problem representation may be
more or less strongly activated, and thus, aspects of the
representation may be graded rather than all-or-none (see
Munakata, McClelland, Johnson, & Siegler, 1997, for
discussion).

There is some support in the literature for the notion that
problem representations may be graded. Kaplan and Simon
(1990) studied this issue in the context of the mutilated
checkerboard problem. In this problem, the squares from
two diagonally opposite corners of a checkerboard are
removed, and the solver’s task is to cover the remainder of
the checkerboard with dominoes, each of which covers
exactly two squares, or to prove that such a covering is
impossible. Because the two diagonally opposite corners of
a checkerboard are the same color (both black or both
white), the covering task is indeed impossible; however, this
fact is notoriously difficult for solvers to discover. In their
experiment, Kaplan and Simon varied the strength of
various cues to the "paired-ness," or parity, of the squares.
Solvers were quicker to discover that the covering was
impossible when adjacent squares were labeled "bread" and
"butter" than when the squares were not labeled, or when
they were labeled with terms that did not form a strongly
associated pair ("black" and "pink"). The bread-and-butter
cue to parity facilitated a stronger representation of this
crucial problem feature, and this led to faster discovery of
the problem solution.

The purpose of the present study was to investigate
whether variations in the strength of problem
representations can account for variations across solvers in
patterns of strategy use. Several past studies have
investigated the links between problem representation and
strategy use (e.g., Alibali, Bassok, Solomon, Syc, & Goldin-
Meadow, 1999; Morales, Shute, & Pellegrino, 1985;
Siegler, 1976). However, to date, little research has
examined how the strength of representations relates to
patterns of strategy use. We hypothesized that the more



strongly a particular representation is activated, the more
likely participants would be to use a strategy that
corresponds with that representation. Further, for
individuals who do not initially have a corresponding
strategy in their repertoires, the more strongly a particular
representation is activated, the more likely participants
would be to discover a strategy that corresponds with that
representation.

We also wished to examine the effects on strategy use of
having multiple, incompatible representations that are
simultaneously active. We hypothesize that the operative
factor in determining which representation guides solution is
the relative strength of a particular problem representation.
Therefore, when multiple, potentially incompatible problem
representations are simultaneously active, participants’
performance should be more variable than when a single
problem representation is active.

This study investigated these hypotheses among adults
solving word problems about constant change (Bassok &
Olseth, 1995). The problems could be represented in terms
of either discrete, stepwise change or smooth, continuous
change. The experiment varied two types of cues to discrete
and continuous problem representations: linguistic cues and
graphical cues. The linguistic cues were drawn from
previous research on people’s verbal descriptions of constant
change problems (Alibali et al., 1999). The graphical cues
were chosen based on previous research about graph
comprehension (Zacks & Tversky, 1999), which indicated
that line graphs cue representations of continuous changes
in values, whereas bar graphs cue representations of discrete
changes in values.

In some conditions in the present experiment, the
linguistic and graphical cues converged on a single
representation. In other conditions, linguistic cues alone
were provided. In still other conditions, the linguistic cue
pointed toward one representation and the graphical cue
pointed toward the other representation. If stronger
representations lead to more frequent use of a corresponding
strategy, participants should use that strategy most often in
the corresponding cues case, and least often in the
conflicting cues case. The single-cue case should fall
somewhere in the middle.

Method

Participants

Participants were 158 Introductory Psychology students at
the University of Wisconsin—Madison. The sample included
58 males, 90 females, and 10 participants who did not
disclose their gender. Most participants were either
freshmen (58%) or sophomores (23%), and all had taken at
least one semester of college-level mathematics. Students
received extra credit points for Introductory Psychology in
exchange for their participation.

Procedure

Students were tested in a small classroom in groups of 15 to
25. They were given up to 45 minutes to complete a set of
10 story problems. They were instructed to work the

problems in the order presented and not to return to earlier
problems after solving later ones. They were also asked to
show all of their work and to circle their final solution for
each problem. Students were not permitted to use
calculators.

Materials

Students received a packet of 10 words problems about
constant change, based on those used in prior studies (e.g.,
Alibali et al., 1999; Bassok & Olseth, 1995). The first 8
problems in each packet focused on quantities that changed
continuously (e.g., rain falling, a tree growing), and these
problems were the site of the manipulation. As seen in Table
1, the wording of the problems was varied to cue either a
discrete representation or a continuous representation. Cues
to the discrete representation included amount-like units for
the initial and final quantities (e.g., 5 millimeters), mention
of individual units of time (e.g., the 12 weeks), and explicit
reference to the constant. Cues to the continuous
representation included rate-like units for the initial and
final quantities (e.g., 5 millimeters per week), mention of
the entire period of time (e.g., the 12-week period), and
explicit reference to rate.

In addition, as seen in Figure 1, the problems were
accompanied either by bar graphs, by line graphs, or by no
graphs at all. Thus, the study utilized a 2 (verbal cues:
discrete or continuous) x 3 (graphs: discrete [bar],
continuous [line], or none) between-subjects design. The
final two problems were transfer problems that were the
same across all conditions, and they utilized discrete content
(e.g., plants per row in a garden), discrete wording, and no
graph. Participants’ performance on the transfer problems is
not addressed in this paper.

Table 1: Sample Problems

Discrete Wording

A sapling grows for 12 weeks. The number of
millimeters it grows in each successive week
increases by a constant from the number in the
previous week. In the first week the sapling grows
5 millimeters and in the twelfth week it grows 137
millimeters. How many millimeters does the
sapling grow in total over the 12 weeks?

Continuous Wording

A sapling grows for a period of 12 weeks. The rate
at which it grows increases steadily over the
period, from 5 millimeters per week at the
beginning of the first week to 137 millimeters per
week at the end of the twelfth week. How many
millimeters does the sapling grow in total over the
12-week period?

Coding

Each problem was initially scored as correct, incorrect, or
no response. Next, the strategy that each participant used to
solve each problem was coded, and all strategies were



classified as either discrete, continuous, or other
(unclassifiable). Coding definitions are presented in Table 2.
Most strategies in the "other" category were conceptually
flawed attempts to solve the problems (e.g., adding or
multiplying the initial and final values, or multiplying the
initial value by the number of intervals and then adding the
final value).
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Figure 1: Sample bar and line graph.
Data from a subsample of 30 participants were rescored
by a second coder to establish reliability. Agreement
between the coders was 97% (N = 282 problems).

Table 2: Strategy Codes

Strategy  Definition
Discrete Strategies
Sum Participant finds the constant increase,
calculates the value for each interval, and
adds these values
Gauss Participant adds values for initial and

final intervals and multiplies this sum by
half of the number of intervals

Continuous Strategies

Average  Participant finds average value per
interval and multiplies by number of
intervals

Calculus  Participant sets up equation and integrates

Area Participant calculates area using

geometric methods (e.g., adds areas of
rectangle and triangle)

Results

Our analysis focuses on the effects of cues to discrete and
continuous representations on participants’ overall level of
performance, their strategy use, and their strategy discovery.
The analyses reported here focus on the first eight problems,
where the experimental manipulation occurred.

Problem solutions

We first examined whether variations in problem wording
and graphs influenced whether participants solved the
problems correctly. The interaction of wording and graphs
was not significant, but there were main effects of both
factors. As seen in Figure 2, participants who received
problems with discrete wording were more successful than
participants who received problems with continuous
wording, F(1, 152) = 7.22, p < .01, despite the fact that all
of the problems involved quantities that changed in a
continuous fashion. Graphs also influenced success, F(2,
152) = 3.61, p < .05. Participants who received problems
with continuous graphs performed most poorly, and
participants who received discrete graphs and no graphs
performed similarly well. Post hoc tests indicated that the
discrete-graph and no-graph groups each differed
significantly from the continuous-graph group, but they did
not differ from one another.

Why were continuous wording and continuous graphs
associated with poorer performance? Before addressing this
question, we first consider patterns of strategy use.

Figure 2: Proportion of problems solved correctly by
participants in each group.
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Participants used discrete strategies much more often than
continuous strategies in the dataset as a whole (63% vs. 16%
of trials). Because of this, we used frequency of discrete
strategy use rather than frequency of continuous strategy use
as the dependent measure in our analysis of strategy use, to
avoid possible floor effects in some of the cells of the
design.



Once again, the interaction of wording and graphs was not
significant, but there were main effects of both factors. As
seen in Figure 3, participants who received discrete wording
used discrete strategies more frequently than participants
who received continuous wording, F(1, 152) = 6.97, p < .01.
Graphs also influenced whether participants used discrete
strategies, F'(1, 152) = 15.10, p < .001. Participants who
received continuous graphs used discrete strategies least
often, and participants who received discrete graphs and no
graphs used discrete strategies much more often. Post hoc
tests indicated that the discrete-graph and no-graph groups
both differed significantly from the continuous-graph group,
but they did not differ from one another. Thus, both types of
cues influenced participants’ strategy use, and the effects of
wording and graphs appear to be additive.
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Figure 3: Number of problems solved using discrete
strategies by participants in each group.

We now return to the question of why continuous
wording and continuous graphs were associated with poorer
problem-solving success in the initial analysis. The strategy
analysis indicates that participants who received continuous
wording or continuous graphs were less likely to use
discrete strategies. Perhaps participants also applied discrete
strategies more successfully than continuous ones, and this
accounts for the performance differences seen in Figure 2.
However, the success rates for discrete and continuous
strategies did not differ. Participants succeeded on 50% of
trials on which they used discrete strategies (N = 1012), and
52% of trials on which they used continuous strategies (N =
238).

To shed additional light on the performance differences,
we examined the number of trials (out of 8) on which
participants used discrete strategies, continuous strategies,
or other, unclassifiable strategies, which were typically
incorrect. These data are presented in Table 3. As seen in
the table, participants who received continuous wording or
continuous graphs used more strategies in the "Other"
category than participants who received discrete wording

and discrete graphs, or discrete wording and no graphs.
Strategies in this category were often conceptually flawed
attempts to solve the problems, suggesting that participants
who received continuous wording or graphs were often at a
loss as to how to solve the problems. They may have
attempted various strategies in an effort to generate or
discover a strategy compatible with the continuous problem
representation.

Based on the data in Table 3, we next examined whether
participants who received converging cues to a single
representation used the corresponding strategies more often
than participants who received only a single cue.
Participants who received converging cues to continuous
representations (i.e., wording and graphs) were indeed more
likely to use continuous strategies than participants who
received only a single cue (i.e., wording only), F(1, 152) =
9.38, p < .01. For discrete representations, there was no
significant difference in discrete strategy use between
participants who received converging cues to a discrete
representation and participants who received only a single
cue (indeed, the direction of the effect is opposite that
predicted). This lack of difference suggests that the discrete
representation was readily accessible even in the absence of
the discrete graph.

Table 3: Mean Number of Strategies of Each Type
Used by Participants in Each Group

Strategy Category
Wording  Graph Discrete ~ Contin. Other
Discrete  Discrete 6.07 0.74 1.15
Discrete  Contin. 3.96 2.00 1.46
Discrete  None 7.16 0.00 0.76
Contin. Discrete 5.59 0.59 1.78
Contin. Contin. 2.15 3.11 2.70
Contin. None 5.46 0.92 1.54

We also compared the strategy use of participants who
received converging cues to a single representation and
participants who received cues to both representations.
Participants who received converging cues to discrete
representations used discrete strategies more often than
participants who received discrete wording and continuous
graphs, F(1, 152) = 5.46, p = .02, but they did not differ
significantly from participants who received continuous
wording and discrete graphs. Participants who received
converging cues to continuous representations used
continuous strategies more often than participants who
received continuous wording and discrete graphs, F(1, 152)
=12.62, p < .001, but they did not differ from participants
who received discrete wording and continuous graphs,
although the effect was in the predicted direction, F(1, 152)
= 2.18. This pattern of findings suggests that, for problems
like those used in the present study, graphs may be more
effective than wording as a cue to problem representations.



Strategy discovery

We next turn to the issue of strategy discovery. As noted
above, continuous strategies were used relatively
infrequently in the dataset as a whole. However, some
participants who did not use continuous strategies at the
outset of the session appeared to "discover" continuous
strategies in the course of solving the eight problems. Note
that we do not mean to imply that these participants
invented continuous strategies "from scratch." Instead, we
believe that participants realized that they could apply
familiar techniques such as averaging or calculating area as
a method for solving the constant change problems. In this
sense, they "discovered" continuous strategies.

Was discovery of a continuous strategy facilitated by cues
to a continuous representation? To address this question, we
eliminated all participants who used a continuous strategy
on the very first problem (N = 19), because those
participants may have already had the continuous strategy in
their repertoire before the session began, instead of
discovering it during the session. We then examined the
proportion of remaining participants in each group who used
a continuous strategy on at least one of the remaining seven
problems.

As seen in Table 4, the only groups in which a substantial
proportion of participants discovered the continuous
strategy were those that received continuous graphs. Thus,
graphs were an important cue in fostering the discovery of a
continuous strategy. It is also worth noting that the
continuous strategy was discovered most often in the group
that received converging cues to a continuous strategy, and
indeed, was never discovered in the group that received only
a single cue (wording) to a continuous strategy. Similarly,
the continuous strategy was never discovered among the
group that received continuous wording with a discrete
graph. However, 18% of participants who received discrete
wording with a continuous graph discovered the continuous
strategy. On the whole, the data are compatible with the
view that a stronger representation is more likely to lead to
strategy discovery.

Table 4: Percent of Participants in Each Group
Who Discovered a Continuous Strategy

Wording Graph % who Discovered
Continuous Strategy

Discrete Discrete 8

Discrete Contin. 18

Discrete None 0

Contin. Discrete 0

Contin. Contin. 26

Contin. None 0

Discussion

In this study, both linguistic and graphical cues to problem
representations influenced participants’ strategy choices and
strategy discovery. The overall analysis indicated main
effects of both cue types on success and strategy use.

Focused contrasts indicated that participants who received
converging cues were more likely to use a target strategy
than were participants who received a verbal cue to the
target representation but a graphical cue to the alternative
representation. For the continuous representation,
participants who received converging cues were also more
likely to use corresponding (continuous) strategies than
participants who received the wording cue alone (i.e., with
no accompanying graph). However, for the discrete
representation, participants who received converging cues
and participants who received wording cues alone used
corresponding (discrete) strategies about equally often.

Although discovery of a continuous strategy was rare in
the sample as a whole, graphical cues appeared to be
especially important for strategy discovery. Continuous
strategies were discovered most often in the group that
received converging cues to a continuous representation,
and second most often in the group that received discrete
wording with a continuous graph. These findings underscore
the importance of graphical representations in helping
individuals construct mental models of problem situations.
Our findings are compatible with Kalchman, Moss and
Case’s (2001) claim that line graphs are especially important
in the development of understanding of mathematical
functions.

Several aspects of the results converge to suggest that the
"default" representation for constant change problems is one
of discrete rather than continuous change. First, the large
majority of problems were solved using discrete strategies.
Second, participants who received bar graphs performed
similarly to participants who received no graphs at all. This
suggests that participants did not need the aid of the bar
graphs in order to construct discrete mental models of the
problem situations. They appeared to construct discrete
representations spontaneously, even in the absence of the
bar graphs. In contrast, participants who received line
graphs performed quite differently from participants who
received no graphs. The line graphs appeared to help
participants construct continuous mental models of the
problem situations, as the strategy discovery data suggest.

Why might discrete representations be more readily
available to participants than continuous ones? One
possibility has to do with the nature of the mathematical
relations that are involved in working with the
representations. Strategies compatible with discrete
representations tend to rely on additive relations (e.g.,
summing the values for each increment), whereas strategies
compatible with continuous representations tend to rely on
multiplicative relations (e.g., multiplying the average value
times the number of increments). Because additive relations
are simpler and more fundamental than multiplicative ones,
they may be noticed first. This hypothesis implies that
individuals with strong mathematics skills should be
especially likely to use continuous strategies a possibility
we intend to examine in future work.

Even participants who received both linguistic and
graphical cues to a continuous representation used
continuous strategies relatively infrequently. The high
incidence of unclassifiable strategies among participants
who received continuous cues suggests that many



participants were unable to generate a strategy compatible
with the continuous representation. It is possible that some
of these unclassifiable strategies were generated based on
hybrid representations that combined both discrete and
continuous elements. If the "default" representation for
constant change problems is discrete, as we argued above,
then cues to a continuous representation may create a
situation in which multiple, incompatible representations are
simultaneously active. Indeed, many of the unclassifiable
strategies included both additive components, reminiscent of
discrete strategies, and multiplicative components,
reminiscent of continuous strategies. A more detailed
analysis of these unclassifiable strategies may shed light on
processes of strategy construction.

It also seems worth noting that a small number of
participants altered the presented graphs. On problems with
line graphs, some participants drew lines down to the x-axis
to "discretize" the graph, and on problems with bar graphs,
some participants drew a line across the tops of the bars to
"linearize" the graph. In this regard, it is interesting to note
that participants who received discrete wording and a
discrete graph were slightly more likely to use continuous
strategies than participants who received discrete wording
and no graph. It is possible that even a bar graph can
sometimes cue a continuous representation, because the
linear relationship between the variables is an emergent
feature of the bar graph.

In sum, the present findings add to the body of literature
elucidating the links between problem representation,
strategy use, and strategy discovery. For constant change
problems, graphical representations, and in particular, line
graphs, were important cues to strategy use and strategy
discovery. However, many participants in this study failed
to discover a continuous strategy. The findings suggest that
people often activate multiple representations for individual
problems, and if these representations are incompatible,
people may have difficulty generating an effective strategy
for solving the problems. More generally, the present
findings suggest that, to understand patterns of strategy
change and strategy discovery, it is fruitful to conceptualize
problem representations as graded and variable rather than
all-or-none.
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