
Advantages of a Visual Representation for Computer Programming

Kirsten N. Whitley (whitley@vuse.vanderbilt.edu)
Department of Computer Science, Box 1679 Station B

Nashville, TN 37235 USA

Laura R. Novick (Laura.Novick@vanderbilt.edu)
Department of Psychology, Box 512 Peabody

Nashville, TN 37203 USA

Doug Fisher (dfisher@vuse.vanderbilt.edu)
Department of Computer Science, Box 1679 Station B

Nashville, TN 37235 USA

Pictures and diagrams have long played an important
role in human societies (Novick, 2001). Prehistoric
peoples painted pictures on cave walls. The Bayeux
Tapestry, from the 11th century, records the events
surrounding the Battle of Hastings. In the 15th century,
da Vinci made thousands of anatomical, mechanical,
geographical, and other drawings. Today, diagrams are
found on blackboards in most university departments
(McKim, 1980). In our increasingly technical and
technological society, diagrams (especially abstract
ones) are likely to gain in importance. Even the
traditionally text-driven field of computer programming
now includes languages whose representations are
diagrammatic rather than textual (Whitley, 1997).

LabVIEWTM (National Instruments, 1998), for
example, features a programming language based on
the dataflow paradigm in which the flow of information
through the program is expressed using a notation that
resembles circuit diagrams. LabVIEWTM was designed
to facilitate the development of data acquisition,
analysis, display, and control applications for science
and engineering laboratories.

In an experiment with a 2 × 3 mixed-factors design,
we assessed the comprehensibility of LabVIEWTM’s
representation. Representation type was manipulated
between subjects, with 15 upper-level computer science
students randomly assigned to receive LabVIEWTM’s
visual representation and 16 such students randomly
assigned to receive an equivalent textual dataflow
representation. The second factor – problem type
(tracing, parallelism, debugging) – was manipulated
within subjects.

The experiment involved a 90 min lecture, during
which subjects were taught a subset of the LabVIEWTM

language, followed by a 90 min test session. The test
problems required subjects to read and understand code
segments. For the three tracing problems, subjects were
given input values for variables in the code and had to
determine what the output values would be if the code
were to execute. For the three parallelism problems,
several program operators were highlighted, and
subjects had to specify the order in which pairs of

operators could execute. For the three debugging
problems, subjects were given written specifications for
the code and had to find the (single) error in the code.

For both solution accuracy and time, representation
type interacted with problem type. For the more
difficult parallelism and debugging problems, the visual
representation was clearly superior to the textual
representation: The visual subjects had higher accuracy
scores and spent less time working on the problems.
For the tracing problems, accuracy was similar for the
two representations, but the visual subjects spent more
time working on them. Overall, these results provide
compelling evidence for the superiority of
LabVIEWTM’s visual representation over an equivalent
textual representation.

The comprehensibility effects we found seem likely
to generalize to novice LabVIEWTM programmers in
more naturalistic situations. The subset of LabVIEWTM

we used included a fair portion of the language.
Moreover, our experimental tasks were representative
of actual programming tasks and were sequenced in a
natural instructional order. Although it is an open
question whether the superiority of the visual
representation will apply to other types of programming
tasks (e.g., writing new code, modifying existing code),
we suspect that it will under a variety of conditions.

References

McKim, R. H. (1980). Thinking visually: A strategy
manual for problem solving. Belmont, CA:
Wadsworth.

National Instruments (1998). LabVIEWTM User
Manual [Software manual]. Austin, TX: Author.

Novick, L. R. (2001). Spatial diagrams: Key
instruments in the toolbox for thought. In D. L.
Medin (Ed.), The psychology of learning and
motivation (Vol. 40, pp. 279-325). San Diego, CA:
Academic Press.

Whitley, K. N. (1997). Visual programming languages
and the empirical evidence for and against. Journal
of Visual Languages and Computing, 8, 109-142.

