
How learning can guide evolution in hierarchical modular tasks

Janet Wiles (janetw@csee.uq.edu.au)
School of Psychology and School of Computer Science and Electrical Engineering

University of Queensland, Qld 4072 Australia
Bradley Tonkes (btonkes@csee.uq.edu.au)

James R. Watson (jwatson@csee.uq.edu.au)
School of Computer Science and Electrical Engineering

University of Queensland, Qld 4072 Australia

Abstract

This paper addresses the problem of how and when learn-
ing is an aid to evolutionary search in hierarchical modu-
lar tasks. It brings together two major areas of research in
evolutionary computation, the performance of evolution-
ary algorithms on hierarchical modular tasks, and the role
of learning in evolutionary search, known as the Bald-
win effect. A new task called the jester’s cap is pro-
posed, formed by adding learning to Watson, Hornby
and Pollack’s Hierarchical-If-and-only-If, function, using
the simple guessing framework of Hinton and Nowlan’s
Baldwin effect simulations. Whereas Hinton and Nowlan
used a task with a single fitness peak, ideally suited to
learning, the jester’s cap is a hierarchical task that has
two major fitness peaks and multiple sub-peaks. We con-
ducted a series of simulations to explore the effect of dif-
ferent amounts of learning on the jester’s cap. The sim-
ulations demonstrate that learning aids evolution only in
search spaces in which the simplest level of modules are
difficult to find. The learning mechanism explores lo-
cal regions of the search space, while crossover explores
neighborhoods in higher-order modular spaces.

Introduction
This paper addresses the problem of how and when learn-
ing is an aid to evolutionary search in hierarchical mod-
ular tasks. It brings together two major areas of research
in evolutionary computation (EC), the performance of
evolutionary algorithms (EAs) on hierarchical modular
tasks, and computational models of the role of learning
in evolutionary search, known as the Baldwin effect.

We begin with a brief review of modular tasks that
have been proposed to explore the performance of evo-
lutionary algorithms, and then briefly describe the Bald-
win effect. We then describe a specific task, the jester’s
cap, that incorporates learning into a hierarchical mod-
ular task. In many simulation tasks, learning is costly
and does not improve the performance of an evolutionary
algorithm (French and Messinger, 1994; Mayley, 1996;
Pereira et al., 2000). This study is as much an investiga-
tion of things that don’t learn, as of ones that do.

There are many types of EAs, and the field of evolu-
tionary computation is still determining features of prob-
lems that are easy or hard for a particular class of EA, and
the conditions under which such algorithms will perform
better than other search techniques. In evolutionary com-
putation, characterization of an EA’s performance con-
cerns not just optimization per se, but the behaviors of

populations as a whole, reflecting their original motiva-
tions as models (albeit abstract ones) of real evolutionary
processes.

Some of the oldest and most popular techniques for
evolutionary search are genetic algorithms (GAs), which
use crossover as their major search technique. Originally
developed by Holland (1992), their efficacy is thought
to be based on groups of genes acting together as mod-
ules (or building blocks, to use Holland’s original ter-
minology), and have been studied extensively since (for
general introductions see Goldberg, 1989 and Mitchell,
1996).

A variety of modular tasks have been proposed to
study the conditions under which GAs outperform com-
parable search techniques. The most widely known of
these are the Royal Road (RR) problems introduced by
Mitchell et al. (1992). However, some forms of hill-
climbers were found to easily outperform the GA, and a
variety of tasks that incorporate deceptive elements have
been defined (s.a., RR4 by Mitchell et al., 1994; HDF by
Pelikan and Goldberg, 2000; hdf by Holland, 2000).

An alternative approach to incorporating deceptive
elements is to define a fitness function with two or
more conflicting maxima. Watson et al. (1998) defined
Hierarchical-If-and-only-If (H-IFF) as such a function.
H-IFF is a simple function that is hierarchical, modular,
is not searchable by mutation, but is amenable to search
by crossover. Its defining characteristics are two fitness
peaks at opposing ends of the search space. Combina-
tions of the sub-components that comprise each level of
the competing hierarchies cause many sub-optimal peaks
and consequently many local minima (see below for the
complete definition).

Before proceeding further with the computational as-
pects, it is worthwhile considering the relevance of mod-
ule building to many areas of cognitive science. The
role of modules in evolution has long been recognized
(e.g., Dawkins, 1986). In evolutionary psychology there
is a particularly strong interest in modules, in part due
to Tooby and Cosmides (1994) claims that humans have
behavioral modules analogous to other mental functions.
By studying building block problems, we are consider-
ing the types of processes that allow species to evolve
varieties of modules, and their combination into com-
plex mental organs. For example, echolocation in bats
requires both the ability to emit and to receive high fre-



quency sounds. Each of these abilities has utility as a
module in its own right, but the combination provides an
additional capacity that goes beyond the cumulative ben-
efit of the independent components.

The Baldwin effect: How learning can guide
evolution

Under Darwinian inheritance, the things that an animal
learns during its life cannot be passed directly to its off-
spring via the genotype. However, researchers in the late
19th century (Baldwin, 1896; Morgan, 1896), proposed
a way in which learned behaviors could be incorporated
into a genome over many generations (i.e., become in-
stinctual). The mechanism is purely Darwinian, and re-
lies on gradual changes in the distribution of genes in a
population, as the following rationale explains.

Consider a population of agents comprising a variety
of search strategies with initially random starting points
and a range of search radii. The starting point and search
radius of an agent is its “bias”. An evolutionary algo-
rithm that selected for speed in finding a point in the
search landscape over many generations would evolve a
population of individuals that had starting points close
to the fitness maximum and small search radii. That is,
behaviors that were initially interpreted as general learn-
ing abilities would, over time, become innate. No in-
formation about the content of learning is passed from
parent to offspring, but in the general variation across
the population, some individuals would by chance have
starting points closer to the fitness maximum and smaller
search radii (i.e., slightly stronger biases). These individ-
uals would have more offspring than those with weaker
biases, and in environments with fixed fitness functions,
innate behaviors would gradually replace learned ones.

This process is often called the Baldwin effect and has
two interesting components. The first is the explanation
of how learned behaviors can become innate as described
above. The other is the power of learning to augment
genetic search to build complex modules. Agents that
can search their local environment will be able to explore
whole regions of search space in their lifetimes, rather
than the single point of their own genotype. In this way,
learning can enable an evolutionary algorithm to solve
problems that are too costly for genetic search alone.

The first computational simulations of the Baldwin ef-
fect were by Hinton and Nowlan (1987). They used
a needle-in-a-haystack (NIAH) problem, in which the
maximum fitness of an agent corresponded to a geno-
type comprising all ones. Each gene could be one, zero
or question mark. The ones and zeroes were fixed val-
ues that did not change during an individual’s lifetime.
The question marks were learnable genes, which could
change during a lifetime. Hinton and Nowlan showed
that the zero alleles quickly dropped out of the popu-
lation and the number of question marks reduced over
time. Hinton and Nowlan’s study is a landmark in EC be-
cause it was the first computational demonstration show-
ing how learning can guide evolution.

Hinton and Nowlan’s original simulations have stim-
ulated a considerable body of literature, which is only
briefly mentioned here: Belew (1990) replicated and ex-
tended the original study, adding changing environments
and cultural advantage; Harvey (1993) showed how
remnants of residual learning are due to genetic drift;
French and Messinger (1994) investigated under what
conditions learning supplements genetic search; May-
ley (1996) demonstrated how learning is first selected
for, then against as evolution progresses; and Mitchell
and Belew (1996) discuss issues arising from the orig-
inal study. A useful reference is the edited volume of
papers relating to learning and evolution by Mitchell and
Belew (1996), which includes reprints of the original pa-
pers by Baldwin (1896), Morgan (1896), and Hinton and
Nowlan (1987) as well as many other related studies.

Learning in hierarchical modular spaces

The issues in this study follows from French and
Messinger’s (1994): Consideration of the circumstances
under which is it reasonable to expect that learned be-
haviors will firstly enhance evolutionary search, and
secondly be gradually replaced by genetically specified
traits. However, we take an alternative approach and
investigate whether learning aids evolution in search
spaces that contain competing modules. One way of
thinking about this issue is in terms of the difficulty of
the search task compared to the operators that are avail-
able. In Hinton and Nowlan’s NIAH task, the set of
twenty ones can be considered as one module, with no
intermediate fitness levels for partial results. The search
task for the genome is too large to find by populations of
size substantially smaller than that of the search space. In
this case, learning performs the function of a local search
through points close together in Hamming distance. The
local search supplements the genetic search, effectively
smoothing the search landscape (see top, Figure 1).

The NIAH task is a particularly pathological as it con-
tains no partial information to guide a search process.
The majority of tasks of interest in EC and cognitive sci-
ence have some internal structure, or distinct modules.
The most tractable problems that have modular structure
are those in which the genes that comprise modules can
be selected independently of the settings or global struc-
ture of other genes.

As described above, a variety of such tasks have been
proposed to explore the functionality of GAs, including
the Royal Road problems (Forrest and Mitchell, 1993;
Mitchell et al., 1994). The Royal Road problems had
only one fitness peak, and hence hill climbing strategies
worked well (see Mitchell, 1996 for a summary of the
reasons).

The H-IFF problem has the interesting property of
symmetry around diametrically opposed fitness peaks
with many sub-optimal peaks and consequently many lo-
cal minima (see bottom, Figure 1).



F
itn

es
s

Combinations of Alleles

Combinations of Alleles

F
itn

es
s

Figure 1: Fitness landscapes in different search tasks.
(top) The needle-in-a-haystack task has a single fitness
peak, and learning smoothes the search landscape around
the peak (adapted from Hinton and Nowlan, 1987, Fig-
ure 1). (bottom) A slice through the fitness landscape of
H-IFF, showing the multiple fitness peaks and the two
maxima at all ones and all zeros (adapted from Watson
and Pollack, 1999, Figure 1).

Tasks: H-IFF and the Jester’s Cap
H-IFF (Watson and Pollack, 1999) is a function defined
on bit-strings of length 2n. The fitness value of a par-
ticular string is defined in terms of hierarchical ‘building
blocks’ which are sub-strings of the main bit-string. The
building block at the highest level of the hierarchy is the
entire bit-string (i.e., all 2n bits). Each building block
is recursively divided into two equally-sized blocks, ex-
cept for blocks of size one, which cannot be divided. For
a building block to be correctly set, it must consist of
either all 1s or all 0s. The value of a correctly set build-
ing block of size n is 2n plus the sum of the values of
its two sub-blocks (whose values depend on the sub-sub-
blocks). Thus, the overall value of a bit-string of length
2n is the sum of values for the building blocks of sizes
1�2�4� � � � �2n. The optimum bit-strings consist of either
all 0s or all 1s so that they are rewarded for building
blocks of every size. In the simulations in this paper,
we use 2n � 32. The evaluation of the H-IFF function is
more easily understood by way of example, shown for an
8-bit string in Figure 2.

As described above, the major difference between H-
IFF and the more well known Royal Road (RR) func-
tion is that RR has a single optimal bit-string (all 1s) and
significantly, no local optima other than the global opti-
mum (although there are local plateaus). By comparison,
H-IFF has two optimal bit-strings and, for bit-strings of
length l � 2n, there are 2l�2 local optima.

In this paper, we apply the learning-based approach of
Hinton and Nowlan’s simulations to the H-IFF function.
We call this modified version the jester’s cap. Specifi-

0 0 1 0 1 1 1 1 Value

1 1 1 1 1 1 1 1 8
2 — 2 2 6

— 4 4
— 0

Figure 2: Evaluation of H-IFF for the bit-string
00101111 showing hierarchical decomposition. For this
bit-string, H-IFF evaluates to 8� 6� 4� 0 � 18. Note
that the maximum obtainable value for each level of the
hierarchy is 8, so the maximum value for H-IFF on bit-
strings of length 8 is 32. In general, there will be n� 1
levels of building blocks. Within these levels there will
be 2n�k building blocks of size k, each of which has value
k. The optimal bit-strings of length 2n therefore have
value �n� 1��2k. The minimum value for H-IFF on bit-
strings of length l � 2n is l. Such a bit-string contains all
building blocks of size 1 but no higher-level blocks.

cally, we consider a genome of 32 genes, each of which
may be a 0, 1 or ?. During its lifetime, an individual
tries to ‘learn’ the best setting of the ? genes. Each of
the ? genes can be set to either 0 or 1, and the resulting
bit-string, comprising all 1s and 0s is evaluated with the
H-IFF fitness function, described above. We take a very
simplistic view of learning (as in Hinton and Nowlan’s
original simulations), and give the agent N attempts at
guessing the best setting. The agent tests N replacements
of all of the question marks with random choices of 1s
and 0s. After N guesses, the best guess (i.e., that which
maximizes fitness) is taken and the fitness of the agent
is the H-IFF fitness of that guess. (Unlike Hinton and
Nowlan’s simulations, there is no scaling of the fitness
based on the number of guesses required.) For example,
an agent with the genome 0??1 may generate the guesses
0101, 0111 and 0011 which evaluate to 4, 6 and 8 respec-
tively. The highest scoring guess (0011) is taken as the
‘learned’ setting. However, this ‘learned’ setting is not
passed on during reproduction, it is the initial genome,
0??1 that is used in reproduction.

Simulation 1: The Jester’s Cap
We consider the jester’s cap task with three variations
of the amount of learning time available to the agents:
no learning (replicating the H-IFF task), a small amount
of learning (N � 10) and a moderate amount of learning
(N � 100). A population comprising 500 individuals is
embedded within a genetic algorithm. In this initial pop-
ulation, 50% of the genes are ?s, 25% are 1s and 25% are
0s, except in the case without learning, where there are
no ?s and equal proportions of 1s and 0s. In each genera-
tion, the fitness of each of the agents is determined, after
learning when appropriate. These fitness values are used
to determine the parents for the next generation, those
agents with higher fitness being (probabilistically) more
likely to be selected as parents than those with lower fit-



nesses. (We used a sigma-scaled roulette algorithm for
choosing the parents, see Wiles et al. for further details.)
Each pair of parents is used to generate two new off-
spring using single point crossover (zero mutation). In
this recombination technique a ‘cut-point’ is selected at
a random position on the genome. One offspring is gen-
erated by joining the genes to the left of the cut-point
in parent 1 to the genes to the right of the cut-point in
parent 2. The second offspring is formed by the reverse
combination.

The idea behind this evolutionary approach is that in
the initial population some agents will, by chance, hap-
pen to have lower-level modules (or the ability to learn
them). These agents will have a slightly higher fitness
than the rest of the population, and will be selected as
parents more often. When two such agents are paired to-
gether for reproduction, it is quite likely that one of the
offspring will have two modules, one from each parent.
These modules may also combine to form a higher-level
module. In later generations, even larger modules can
form, so that after a sufficient number of generations the
low-level modules that were initially scattered randomly
throughout the population have combined in single in-
dividuals. The genes of these individuals then begin to
dominate the population due to an enhanced fitness, so
that every individual has the high-level modules.

These simulations were repeated 100 times for each
condition, varying the initial random seed. During the
course of a simulation, the mean fitness of the population
is monitored. Simulations were run for a maximum of
2000 generations, or until the population converged.

Results
In all three conditions, a sizeable proportion of the 100
populations converged on genotypes of maximum fit-
ness. On average, trials in which agents were allowed ei-
ther no learning or a moderate amount of learning outper-
formed those where less learning was allowed, as shown
in Figure 3.

Discussion
The genetic operators of crossover are maximally suited
to the hierarchical structure of the H-IFF problem. Un-
surprisingly, crossover works well on this problem.
Learning, which one might expect to perform as well or
better, does not match the performance of the genetic op-
erators alone. This result can be explained by consid-
ering the way that learning searches the space. Learn-
ing in the jester’s cap is a mechanism for searching the
neighborhood as determined by Hamming distance. This
search is only effective for the lowest level of building
blocks. At subsequent levels, local and global minima
are close in recombination space, but not in Hamming
space. At these higher levels, learning merely adds dis-
tractions to an otherwise successful algorithm, although
adding a sufficient amount of learning can negate any
detrimental effects.

In conclusion, learning in this type of hierarchical task
is no more effective than genetic search because a way is

Jester’s Cap

140

145

150

155

160

165

170

175

180

185

190

195

No Learning 10 Learning Steps 100 Learning Steps

F
in

al
 m

ea
n 

po
pu

la
tio

n 
fit

ne
ss

Figure 3: Performance of populations on the jester’s cap
task under three conditions. Each point represents the
final mean fitness of a population. Error bars show first
and third quartile and the medians are linked. Note that in
the no learning (left) and moderate learning (right) con-
ditions, the error bars are obscured because first, second
(median) and third quartiles are all equal. Note also that
many populations have identical mean fitness and tend
to cluster around a set of discrete values because of the
nature of the H-IFF function.

needed to search module space, not Hamming space. As
posed, the jester’s cap assumes that low level modules
are trivial to find. We next consider a sparse version of
the task in which they are not so readily revealed.

Simulation 2: The Sparse Jester’s Cap
In the jester’s cap simulations, rewards were given for
modules of all levels (i.e, 1, 2, 4, 8, 16 and 32). In the
sparse jester’s cap, we consider rewarding only a subset
of the levels. For example, in Figure 2 the blocks of size
2 may not contribute to the overall fitness of the solution.
This modification allows us to vary the nature of the task
from the maximally hierarchical H-IFF function (where
all levels rewarded) to the NIAH function (where only
the highest level rewarded). Varying the rewarded levels
of the H-IFF function changes both the ease with which
the initial modules can be found, as well as the ease with
which the lower-level modules may be combined into the
next higher-level of module. In the simulations in this
section, only the building blocks of size 1, 16 and 32
are rewarded. With these choices of building-block and
population sizes the smallest non-trivial modules (those
of size 16) are difficult to find (cf. Hinton and Nowlan’s
simulations where the module is of size 20). It is thus ex-
pected that learning will substantially assist for the low-
level modules. We repeated the first series of simulations
using this alternative fitness function.

Results
Not surprisingly, the populations evolved using the
sparse jester’s cap fitness function fared substantially
worse than those evolved with the (standard) jester’s cap,



Sparse Jester’s Cap: Levels 1, 16, 32

100 Learning Steps10 Learning StepsNo Learning
30

40

50

60

70

80

90

100
F

in
al

 m
ea

n 
po

pu
la

tio
n 

fit
ne

ss

Figure 4: Performance of populations on the sparse
jester’s cap task under three learning conditions. Each
point represents the final mean fitness of one population.
Error bars show first and third quartile which are again
obscured in some cases. Most populations with no learn-
ing (left) converged on a final fitness of 48, correspond-
ing to one module. Populations in the moderate learn-
ing case converged on genomes giving a variety of fit-
ness values, indicating some amount of residual learning
in the genome (right). With a small amount of learn-
ing (center), performance was marginally improved over
the no-learning case, although again residual learning re-
mained.

as shown in Figure 4 (note that the y-axes differ be-
tween Figure 3 and Figure 4). In the condition of no
learning, most populations (83 of 100) found a single
module. With a small amount of learning, populations
converged on marginally better solutions on average. In
this condition, many residual question marks remained
in the final populations. As a result, the individuals from
these populations could only find modules with some de-
gree of chance, causing the observed scattering of results
in Figure 4. With moderate learning, some populations
converged on the optimal genomes, others converged on
genomes that gave agents the potential of finding the op-
timal solutions (i.e., there was again residual learning),
while others converged on poor genomes. However, the
populations with a moderate degree of learning, on aver-
age, outperformed the populations in the other learning
conditions.

Discussion and Conclusions
This paper addressed the problem of how and when
learning is an aid to evolutionary search in the jester’s
cap, a hierarchical modular task. Simulation 1 showed
that evolutionary search could efficiently find the opti-
mal solution with no learning. The addition of a small
amount of learning detracted from this performance. A
moderate amount of learning had no benefit, but did not
detract either. It turns out that H-IFF is not a difficult task
for a GA at the levels of complexity studied in this paper.

The main issues in reaching the highest levels of per-

formance on H-IFF relate to maintaining a diversity of
modules at intermediate levels. The population size of
500 in these simulations was clearly adequate for main-
taining this diversity. Adding learnable alleles increases
the search space, without a reciprocal benefit in assisting
search.

Simulation 2 showed that the sparse jester’s cap
(1,16,32), a problem intermediate between H-IFF and
NIAH, was not amenable to evolutionary search by the
GA. The majority of populations only found a single
module (fitness level 48). The smallest module involved
16 bits, and the likelihood of finding two such modules
in any one population before convergence was minimal.

In contrast to Simulation 1, in Simulation 2 a small
amount of learning (ten steps) marginally improved the
success with which populations discovered modules. Ten
learning steps is sufficient to effectively search four to
five learnable genes, and in this case, learning clearly did
provide a reciprocal benefit that more than compensated
for the increase in the search space.

Increasing the learning from ten to 100 steps substan-
tially improved the success of populations. All popu-
lations found at least one module, 75% found two mod-
ules, and at least 25% reached optimal performance. One
hundred learning steps is sufficient to search six to seven
learnable genes. Although this is only two more than
searched by ten learning steps, it had a demonstrable ef-
fect on performance.

Simulation 2 demonstrated that in the sparse version of
the jester’s cap, learning is required to discover the mod-
ules, as in NIAH. As in Hinton and Nowlan’s simula-
tions, populations are unlikely to find high-level modules
by crossover alone. Learning is able to guide the popu-
lation towards finding the low level modules, and then
crossover combines them. However, the performance is
still not optimal, and room for improvement remains.

In conclusion, there appears to be a role for learning in
situations where crossover is an ineffective search tech-
nique. Crossover searches module space whereas learn-
ing searches Hamming space. In tasks such as the jester’s
cap there is very little need for searching Hamming space
and the majority of optimization can be effectively per-
formed in module space. In this task, Hamming search
is useful only at the lowest-level of module. For higher-
level modules crossover searches through combinations
of peaks, rather than traversing the troughs between them
(Figure 1). Local search provides the wrong operator for
preserving and improving fitness because it spends too
much time in the troughs of fitness space. In the sparse
jester’s cap, modules must be discovered before search-
ing module space becomes a viable approach. The diffi-
culty in finding these modules necessitates local search.

NIAH and H-IFF may be viewed as being on alter-
native ends of a spectrum. In the former, the (single)
module is difficult to find as there is no partial feedback
to guide search. Learning is required to act as a proxy
for this partial feedback. In the latter, modules abound
so the important factor is not finding the modules, but
discovering how to put them together. Consequently, the



best search process is one that searches through combi-
nations of modules rather than searching for the modules
themselves. In this case, learning is merely a hindrance.
The sparse jester’s cap represents an intermediate point
on the spectrum. Modules are sufficiently difficult to find
so that learning is required to give partial feedback in the
search for the lowest-level modules. Once the modules
have been found, recombination can function.

Acknowledgements
We thank Rik Belew and two anonymous reviewers for
their constructive feedback on this paper. This research
has been supported by a CSEE scholarship to JRW.

References
Baldwin, J. M. (1896). A new factor in evolution. Amer-

ican Naturalist, 30:441–451. Reproduced in Belew,
R. K. & Mitchell, M. (Eds.), Adaptive Individuals
in Evolving Populations. Addison-Wesley, Reading,
MA.

Belew, R. K. (1990). Evolution, learning and culture:
computational metaphors for adaptive search. Com-
plex Systems, 4(1):11–49.

Dawkins, R. (1986). The Blind Watchmaker. Penguin
Books.

Forrest, S. and Mitchell, M. (1993). Relative building-
block fitness and the building-block hypothesis. In
Whitley, D., editor, Foundations of Genetic Algo-
rithms, volume 2, pages 109–126. San Mateo, CA:
Morgan Kaufmann.

French, R. and Messinger, A. (1994). Genes, phenes and
the baldwin effect: Learning and evolution in a simu-
lated population. In Brooks, R. A. and Maes, P., edi-
tors, Artificial Life IV, pages 277–282.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, Reading, MA.

Harvey, I. (1993). The puzzle of the persistent question
marks: A case study of genetic drift. In Forrest, S.,
editor, Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, pages 15–22, San Mateo,
CA. Morgan Kaufmann.

Hinton, G. and Nowlan, S. (1987). How learning can
guide evolution. Complex Systems, 1:495–502.

Holland, J. H. (1992). Adaption in Natural and Artificial
Systems. MIT Press, 2nd edition.

Holland, J. H. (2000). Building blocks, cohort genetic
algorithms, and hyperplane-defined functions. Evolu-
tionary Computation, 8(4):373–391.

Mayley, G. (1996). The evolutionary cost of learn-
ing. In Maes, P., Mataric, M. J., Meyer, J.-A., Pol-
lack, J., and Wilson, S. W., editors, Proceedings of
the Fourth International Conference on Simulation of
Adaptive behavior: From Animals to Animats 4. MIT
Press/Bradford Book.

Mitchell, M. (1996). An Introduction to Genetic Algo-
rithms. MIT Press, Cambridge, MA.

Mitchell, M. and Belew, R. K. (1996). Preface to ‘How
learning guides evolution’ by G. E. Hinton & S. J.
Nowlan. In Adaptive Individuals in Evolving Popula-
tions: Models and Algorithms, volume XXVI of Santa
Fe Institute Studies in the Science of Complexity, pages
443–446. Addison-Wesley.

Mitchell, M., Forrest, S., and Holland, J. H. (1992). The
royal road for genetic algorithms: Fitness landscapes
and GA performance. Proceedings of the First Euro-
pean Conference on Artificial Life, pages 245–254.

Mitchell, M., Holland, J. H., and Forrest, S. (1994).
When will a genetic algorithm outperform hill climb-
ing. In Cowan, J. D., Tesauro, G., and Alspector,
J., editors, Advances in Neural Information Process-
ing Systems, volume 6, pages 51–58, San Mateo, CA.
Morgan Kaufmann Publishers, Inc.

Morgan, L. C. (1896). On modification and variation.
Science, 4:733–740.

Pelikan, M. and Goldberg, D. E. (2000). Hierarchi-
cal problem solving by the bayesian optimization al-
gorithm. IlliGAL Report No. 2000002, Illinois Ge-
netic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, Urbana, IL.

Pereira, F. B., Machado, P., Costa, E., Cardoso, A.,
Ochoa-Rodriguez, A., Santana, R., and Soto, M.
(2000). Too busy to learn. In Proc. of the 2000
Congress on Evolutionary Computation, pages 720–
727, Piscataway, NJ. IEEE Service Center.

Tooby, J. and Cosmides, L. (1994). Origins of domain
specificity: The evolution of functional organisation.
In Hirschfeld, L. and Gelman, S., editors, Mapping
the Mind, pages 85–116. Cambridge University Press.

Watson, R., Hornby, G., and Pollack, J. (1998). Model-
ing building-block interdependency. Parallel Problem
Solving from Nature, proceedings of the Fifth Interna-
tional Conference, pages 97–106.

Watson, R. and Pollack, J. (1999). Hierarchically-
consistent test problems for genetic algorithms. In
Angeline, P. J., Michalewicz, Z., Schoenauer, M.,
Yao, X., and Zalzala, A., editors, Proceedings of 1999
Congress on Evolutionary Computation, pages 1406–
1413. IEEE Press.

Wiles, J., Schulz, R., Bolland, S., Tonkes, B., and Hal-
linan, J. Selection procedures for module discovery:
Exploring evolutionary algorithms for cognitive sci-
ence. This volume.


