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Abstract 

In this paper we examine Elman’s position (1999) on 
generalization in simple recurrent networks. Elman’s 
simulation is a response to M arcus et al.’s (1999) 
experiment with infants; specifically their ability to 
differentiate between novel sequences of syllables of the 
form ABA and ABB. Elman contends that SRNs can 
learn to generalize to novel stimuli, just as M arcus et al’s 
infants did. However, we believe that Elman’s 
conclusions are overstated. Specifically, we performed 
large batch experiments involving simple recurrent 
networks with differing data sets. Our results showed 
that SRNs are much less successful than Elman asserted, 
although there is a weak tendency for networks to 
respond meaningfully, rather than randomly, to input 
stimuli. 

Introduction 
In a recent paper, Elman (1999) casts doubt upon the 
widely noted results of M arcus et al. (1999). In the 
M arcus et al.’s experiment, 7-month old infants were 
habituated to sequences of syllables of the form ABA 
or ABB (e.g., “we di we” or “le di di”). M arcus et al. 
found that infants showed an attentional preference for 
novel test sequences of syllables (which we call 
“sentences”), which differed from the habituation 
stimuli1. M arcus et al. argue that the reason for this 
behavior is the fact that infants extracted “algebra-like 
rules that represent relationships between placeholders 
(variables)” (1999). They also concluded that simple 
recurrent networks (and, in general, all networks whose 
training is based on backpropagation of error) were not 
able to display this kind of behavior because they could 
not generalize outside the training space. 
The issue of generalization outside the training space 

was previously addressed in Niklasson and van Gelder 
(1994), and M arcus (1998). In essence, the training 
space represents the n-dimensional hyperplane 
delimited by the set of training vectors. W e say that a 
connectionist model generalizes to novel stimuli when 
correct output is reliably produced for an input item that 

                                                          
1 For example, after habituated to ABA sequences, the infants 
spent more time recognizing novel test sequences of the form 
ABB than did for ABA sequences, and vice versa. 

was not included in the training set (i.e., the network 
was never trained on that stimulus in any position 
within its input layer). M arcus maintains that a neural 
network trained with the backpropagation algorithm (or 
any variant of it) is not able to display such a behavior, 
because the innate structure of the backpropagation 
algorithm 2 precludes the network from generalizing to 
nodes that have not been specifically trained. 
Elman agrees that the M arcus experiment does 

“indicate that infants discriminated the difference 
between the two types of sequences” (1999), but he 
believes that this result m ay be explained by the 
relationship between the last two syllables: infants were 
able to distinguish that in one case the last two syllables 
were identical (ABB), and in the other case the last two 
syllables were different (ABA). M oreover, Elman 
maintains that it is feasible for a simple recurrent 
network to perform this same task, provided the 
network is presented with the same background 
knowledge as infants have (in particular, an exposure to 
a wide range of syllables that infants have before 
participating in the experiment). 
Having said that, Elman performs an experiment 

involving an SRN that aims to simulate the M arcus et 
al.’s experiment. There are three phases in Elman’s 
simulation: 1) the pre-training period, corresponding to 
the prior experience of the infants in learning to 
recognize syllables; 2) a second phase corresponding to 
the habituation task that infants encountered (presenting 
ABA and ABB sentences); 3) a testing phase involving 
novel stimuli, as in the infants’ experiment. At the end 
of his simulation, Elman concludes that his results 
“clearly indicate that the network learned to extend the 
ABA vs. ABB generalization to novel stimuli” (1999). 
Granting Elman’s basic assumptions, we constructed 

an experiment that mimics his simulation. W e did not 

                                                          
2 The weights connecting a given output node are trained 
independently of the weights connecting any other output 
node. Consequently, the set of weights connecting one output 
unit to its input units is entirely independent of the set of 
weights feeding all other output units. This is called input-
output independence, and it is believed to be the major weak 
point of backpropagation neural networks. It is less clear that 
the problem arises for competitive learning networks, 
however. See Hadley et al (1998) for details. 



have access to all Elman’s data, but we used the same 
Plunkett and M archman’s (1993) distinctive feature 
notation of consonants and vowels that Elman 
employed in his experiment. However, since the results 
we obtained led us to a different conclusion than 
Elman’s, in order to have a more complete picture of 
the performances of simple recurrent networks, we 
created a variety of data sets by changing the degree of 
overlapping units in the training/testing vectors. Also, 
to be sure that the results were not obtained by chance, 
we performed batch training, i.e., at least 64 different 
training-test sessions were carried out for each 
individual training corpus (i.e., 64 or 128 different 
weight initializations were assigned to the basic 
configuration, resulting in 64 or 128 separate networks 
trained on each data set). 

Basic structure of Elm an’s and our 
experim ents 

A simple recurrent network architecture was used for 
all experiments. The input layer contains 12 or 24 units 
(depending on the experiment; see details below). The 
number of hidden/context units was varied between 10 
and 40. The output layer contains two units; one was 
used only during the pre-training phase, while the other 
unit was only used during the sentence habituation and 
testing phases. 

Fig. 1. Architecture of the network 

The data set deployed in the pre-training phase 
contained 50,000 syllables (separate tokens) from the 
full set of 120 possible types. Each syllable was 
presented to the network, one at a time, and the SRN 
was trained to distinguish between the current syllable 
and the previous one (whether or not they are identical). 
Only one of the two output units was used during this 
supervised training. 
The habituation phase followed the pre-training 

phase. During this phase the same network was 
presented with 32 distinct sentences formed with 8 
different syllables (these 8 syllables also occurred in the 
set of 120 types of syllables employed in the pre-

training set). The 32 sentences were generated from the 
ABA and ABB grammars (16 ABA sentences, and 16 
ABB sentences). Each sentence was presented to the 
network, one syllable at a time. Following the last 
syllable of a sentence, the network was trained to output 
a 0 in the case of ABA sentences, and a 1 in the case of 
ABB sentences. During this training phase only the 
second output unit was used (the one not used during 
pre-training). Interestingly, the weights were modified 
only after the last syllable of the current sentence was 
presented (no training occurred following the first two 
syllables). This was done in order to ensure that the 
network would learn to make discriminations the same 
way as the infants presumably would, using similar 
stimuli. 
For testing, four sentences were used, formed with 4 

“relevantly novel” syllables (i.e., these syllables 
appeared in the 120-syllable pre-training set, but not in 
the training corpus). Two sentences had the form ABA, 
and the other two had the form ABB. Again, the second 
output unit was used to monitor the network’s 
responses. 
Before presenting our results, we would like to 

clarify the following issues: 
1) Because we were not able to have exactly the data 

set that Elman used, we generated our patterns 
based on Plunkett & M archman’s (1993) feature 
representation of consonants and vowels. Since 
Elman encoded his stimuli using the same notation, 
we believe that the difference between our data set 
and Elman’s is minimal and arguably insignificant 
to the outcome of the experiment. 

2) Elman’s main objective was to challenge M arcus’ 
assertion that SRNs are not able to generalize 
outside the training space. However, we believe his 
claims are overstated. Although a minority of 
sessions in our batch jobs was as good as Elman’s, 
in general, we found that the SRN did not perform 
as well as Elman maintains. 

As noted above, all experiments were based on 
Elman’s simulation. Between our experiments and 
Elman’s there were a few differences, however. These 
consisted in the way in which the data sets were created 
and the way the results were computed. Our first data 
set very closely resembles Elman’s representation of 
vectors, both corpora being based on the same 
distributed representation of syllables. Since the results 
we obtained for this first data set offered only little 
evidence to support Elman’s position, we have created 
a second corpus of patterns, by changing Elman’s 
original vectors in order to have a more uniform and 
more overlapping data set (see below the description of 
Experiment 2). Lastly, our third data set employs 
completely non-overlapping vectors, i.e. we used a 
localist representation of input patterns. 

habituation and testing unitpre-training 
unit

output layer 

hidden layer

context layer

input layer 



Experim ent 1 
The input corpus for this experiment was very close to 
the Elman’s data set. W e used distributed 
representations to create the patterns: each syllable had 
12 phonetic features, each syllable being made up from 
a consonant followed by a vowel. All the syllables were 
generated randomly using the whole set of letters, and 
the patterns were created based on Plunkett &  
M archman’s (1993) notation of each letter3. W e created 
120 vectors this way. All of these patterns were used in 
the pre-training phase, while 8 of them were employed 
during training and other 4 vectors were used for 
testing. 
For example, here are 2 of the 8 training syllables and 

2 of 4 testing syllables: 

training
mo -1 1 -1 -1 1 1 -1 1 –1 1 –1 1
wu -1 1 -1 1 1 1 1 1 1 1 –1 1
testing

za -1 1 1 -1 -1 1 1 1 1 1 -1 -1
fe -1 -1 1 -1 1 1 1 1 -1 -1 1 -1

W e tried to generate as diverse and random data set 
as possible, like infants are presumably exposed to prior 
to participating in the M arcus et al’s experiment. 
However, our results showed that these patterns were 
not very “friendly” to our SRNs, and the networks were 
not nearly as successful as infants in discriminating 
those sentences. 
One of the characteristics of this data set was that, 

because of the randomness of patterns, many of the 
testing vectors were very different from the vectors 
employed in training. For instance, the average 
distance4 among training vectors was about 3-4 bits, 
while the difference between training and testing 
patterns exceeded 6-7 bits.  In our opinion, this contrast 
among patterns is responsible for making the testing 
session difficult. 

Experim ent 2 
Since the results based on the first data set failed to 
prove Elman’s strong claims, we generated a different 
corpus of stimuli, trying to make the training process 
successful. Consequently, we have manually created 12 
vectors (8 vectors are used in training, the other 4 in 
testing). The remainder of 108 vectors have been 
generated randomly. All these patterns have been 
distributed uniformly between the two sets of stimuli 
(training and testing). In this way, the distance among 
vectors within the same set of stimuli (whether training 

                                                          
3 For example, the pattern for syllable “da” was a 12-bit 
vector created by concatenating the 6-bit feature 
representation of “d” with the 6-bit feature representation of 
“a”. 
4 The distance between two vectors is given by the number of 
bits by which the two vectors differ. 

or testing) was similar to the distance between vectors 
found in the different corpora. 
For example, here are a few of the vectors used in 

this experiment: 
training
-1 -1 -1 1 1 -1 -1 1 -1 1 1 1
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

testing
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1

In this case, the average difference among the vectors 
within the same corpora is about 4-6 bits. This value is 
close to the difference between training stimuli and 
testing stimuli (6-7 bits). Because the patterns are 
uniformly spread across the training and testing sets, 
this represented a training advantage for networks. 
However, this tactic further reduces the novelty of the 
test “sentences”. 

Experim ent 3 
The third experiment involved a rather different data 
set. This employed completely non-overlapping
vectors. As a result, the vectors were larger (24 bits, 
instead of 12).  
For example, here are 4 of 12 training/testing vectors 

(the rest of the 108 vectors used during pre-training 
were generated randomly): 

1) 1 –1 1 –1 –1 –1 –1 –1 –1 –1 –1 –1
–1 1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
2)–1 1 –1 1 –1 –1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
3)–1 –1 –1 –1 1 –1 1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
4)–1 –1 –1 –1 –1 1 –1 1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

As it may be seen, the patterns were generated by 
moving a 4-bit frame [1 –1 1 –1] along the 24 bit 
vectors. In this way, the resulting vectors do not 
overlap, and the distance among all vectors is the same 
(4 bits). 
Although this corpus of stimuli had little in common 

with Elman’s data, we wanted to examine the 
performance of SRNs in the case of non-overlapping 
vectors and to address M arcus’ issue about 
generalization to genuinely novel items.  

Results
The performances of SRNs (and, in general, any 
network using the backpropagation algorithm) are 
influenced by several training parameters, such as 
initial weights, learning rate, etc. Usually, the 
initialization of weights is performed randomly and if 
training parameters are not chosen properly (especially 
the learning rate), the network may end up in a region 
of local minimum of the error function. One way to 



reduce this liability is to perform a batch experiment, to 
test the network with a large number of different weight 
initializations and training parameters. Another 
advantage of this approach is that at the end of the 
batch sessions we will have a more precise picture of 
the behavior of the networks, and also know whether or 
not the results are generated accidentally. 
Significantly, in a series of preliminary experiments, 

we found that, very often, the weight initializations we 
used determined poor results for networks, regardless of 
training parameters (including hidden layer size). 
Therefore, we decided to perform at least 64 different 
training-test sessions for each of our 3 experimental 
designs, each session using a different weight 
initialization (there were 64 sessions for the first two 
experiments, and 128 different sessions for the third 
experiment). In this way, we generated at least 64 
separate trained networks for each batch experiment5.
W e chose to use two criteria in order to evaluate the 

results: 
(1) Our first criterion was simply based on the 

percentage of “acceptable” results. W e say that a 
network generates acceptable results when it 
grammatically categorizes each presented test 
sentence within 30%  of its target value. Since there 
are 4 test sentences (2 ABA sentences, and 2 ABB 
sentences), we have 4 output values to record for 
each of the 64 networks (let’s say, A, B, C, D are 
the network outputs for the 4 test sentences). 
Having 0 as the target value for A and B, and 1 as 
the target value for C and D, an acceptable result is 
an output value less than .3 for A and B, and 
greater than .7 for C and D. 

(2) Although the above-mentioned criterion is very 
tolerant, Elman’s results would not be counted as 
acceptable in conformity with this criterion (one of 
Elman’s responses is about .6, outside the 30%  
error margin; see below for more details). 
However, not to reject Elman’s approach on a-
priori grounds, we adopted a second, more 
forgiving criterion: we consider a result as 
“acceptable” if only 3 of the 4 responses are within 
30%  of their target values, while the remaining 
response is within 45%  of its target value.  

Since our extensive set of training-test results were 
significantly different from Elman’s isolated result, we 
tried to see whether, at least, they were better than mere 
chance. For the first criterion, the chance value is given 
by the probability that all 4 test sentences are 
fortuitously, correctly classified, i.e., the network 
outputs are within 30%  of the target values. Clearly, the 
chance probability that the network outputs a value in 
the target range, for any of the 4 test sentences, is .3. 
Therefore, the probability that all 4 sentences are 
correctly recognized is .0081 (=.3 x .3 x .3 x .3), or 

                                                          
5 One could metaphorically regard these trained networks as 
the infants involved in the M arcus et al ‘s experiment. 

.81% . This represents the “chance” value, which we 
compared all our results to. For the second criterion, the 
chance value is slightly different. Here, in order to 
correctly categorize purely by chance, networks should 
report output values within 30%  of the target values for 
3 sentences, and within 45%  for the 4th sentence. 
Consequently, the probability for that happening is 
.01215 (=.3 x .3 x .3 x .45), or 1.215% .  

Experim ent 1 
This experiment is closest to Elman’s simulation. 
Results reported by Elman (1999) were as follows: 
 response  target  response  target 
A 0.004    0    C 0.853    1 
B 0.008    0    D 0.622    1 
Even though the network’s response for the last 

sentence was very close to the chance value of .5, 
Elman asserted, “these responses clearly indicate that 
the network learned to extend the ABA vs. ABB 
generalization to novel stim uli” (1999). In our view, 
based only on these results, Elman overstates the facts. 
In accord with our first evaluation criterion, his result 
would not even have been considered acceptable. W e 
devised the second criterion, even more lenient than the 
first one, in order to cover Elman’s result. In any case, 
in our extended series of experiments, we found that the 
responses of our networks were highly dependent on 
weight initializations.  
W e performed numerous batch experiments, 

systematically varying, in all combinations, the 
available parameters values: learning rate (between 
0.01 and 0.1), the number of hidden/context units 
(between 10 and 40), the momentum (0 and 0.5), 
weight initialization (within the interval [-1, 1], or [-0.1, 
0.1]). The best results were obtained for 30 
hidden/context units, a learning rate of 0.01, momentum  
0 and weight initialization within [-1, 1]. 
Specifically, for this first experiment, our results 

were: 
(1) of the 64 trained networks, 15 generated acceptable 

results in conformity to the first evaluation 
criterion; thus, the percentage of acceptable results 
is 15/64 x 100 = 23.43% ; 

(2) evaluating with the second, more lenient, criterion, 
the percentage of acceptable results is 23/64 x 100 
= 35.93% ;  

W e believe the results lend, at best, weak support to 
Elman's claims. A percentage of good results around 
30%  cannot lead us to the conclusion that “the network 
learned to extend the ABA vs. ABB generalization to 
novel stimuli”, as Elman asserted (1999). Granted, the 
results are significantly larger than the chance values 
(.81%  for the first criterion, and 1.215%  for the second 
one), which means that there is a tendency for the 
networks to train in such a fashion that they give 
meaningful, rather than random results.  
As noted earlier, these results might be partially 

explained by the randomness of patterns used in this 



experiment. There were instances when the training 
vectors were very different from the vectors used for 
testing (up to 90%  of the bits were different). 
To prove that a different corpus of stimuli can 

generate better results, we performed a second set of 
tests, making the data set more uniform and decreasing 
the distance between training and testing patterns. Here 
are the details: 

Experim ent 2 
As noted earlier, most part of the 120 patterns used in 
this second experiment were created randomly, except 
the 12 vectors employed in the training (habituation) 
and testing phases. These 12 vectors were generated 
manually and distributed uniformly over the training 
and testing sets in order to have a similar distance 
among all the vectors. 
In this case, the average difference between training 

and testing vectors is about 6 bits, close to the distance 
among vectors within the sam e set (whether training or 
testing), which is about 7 bits. 
W e varied many training parameters in this case too, 

and we obtained the best result for 40 hidden/context 
units, a learning rate of 0.1 and momentum 0.5. 
As expected, the results were substantially better: 

(1) there were 40 trained networks (out of 64) whose 
responses were acceptable in conformity with the 
first evaluation criterion; thus, the percentage of 
acceptable results is 40/64 x 100 = 62.5% ; 

(2) there were 42 trained networks that responded 
acceptably in accord with the second criterion; the 
percentage of acceptable results is: 42/64 = 
65.62% ; 

Noteworthy, these results were obtained for a number 
of 40 hidden/context units. W hen using 10 
hidden/context units (as Elm an presumably did), the 
results were worse: 29.68%  in accord with the first 
criterion, and 34.37%  evaluating with the second 
criterion. 
Although the percentages of 62.5%  or 65.62%  of 

successfully trained networks are not impressive, in 
contrast with the chance value of .81%  (and 1.215%  
respectively), they represent a significant result (the 
probability to respond acceptably, in conformity to our 
criteria, is 80 times greater than the probability by mere 
chance). Therefore, this experiment demonstrates more 
convincingly what we noted earlier: there clearly is a 
tendency for the networks to train in such a fashion that 
they give meaningful, rather than random results. 
However, we must bear in mind that the training regime 
now under consideration doesnot satisfy the conditions 
for generalization outside the training space.

Experim ent 3 
The third experiment differs from the first two with 
respect to the type of the vectors involved: here we used 
completely non-overlapping vectors, because we 
wanted to address M arcus’ challenge of generalization 

outside the training space. Thus, we tried to discover 
whether simple recurrent networks are indeed able to 
generalize to novel stimuli. 
Initially, it would seem that our testing patterns were 

not novel to the network (since they also appeared in 
the pre-training set). But, there are two arguments 
behind our assumption that the testing vectors are 
actually novel: 
- the output unit used during pre-training is different 

from the output unit used during habituation 
(second training). Since the representation of 
patterns is localist and the training algorithm is 
backpropagation, these two output units are 
purportedly independent: the training of one unit 
should not influence the other unit, as M arcus 
argued (1998). 

- the training regimes used during the pre-training 
and habituation phases are different (one algorithm 
teaches the network to determine whether or not 
consecutive syllables are identical, while the other 
one teaches the network to differentiate between 
ABA and ABB sentences). Since the testing 
vectors do not appear in the training data set used 
during sentence habituation, they are novel to the 
network in the relevant sense.

For this experiment we performed two sets of tests, 
both involving 128 separate training/testing sessions. 
Although 64 trained networks are presumably enough 
to form a complete picture of the behavior of networks, 
we wanted to see whether or not the general tendency 
noted previously was repeatable for a substantially 
larger batch experiment. The answer was affirmative. 
The first set of experiments employed a test corpus of 

4 sentences, exactly the same number of sentences used 
by Elman, and by us in the experiments 1 and 2. The 
results were as follows: 
(1) there were 8 successfully trained networks (out of 

128); thus, the percentage of well-trained networks 
was, in conformity with the first criterion, 8/128 = 
6.25% ; 

(2) there were 14 trained networks which responded 
acceptably in accord with the second criterion; the 
percentage of acceptable results is: 14/128 = 
10.93% ; 

Although these values are much less impressive than 
those of the previous experiment, they still are better 
than chance. Of course, the absolute percentage of 
successful networks (6.25, or even 10.93) is small, 
indicating that SRNs have problems dealing with novel 
stimuli. However, it is still substantially greater than .81 
(or 1.215 for the second criterion), which would have 
been obtained by pure chance. 
However, for the second set of tests we expanded the 

test corpus to 30 sentences. In this case, none of the 128 
trained networks output good results in accord with any
of the two criteria. This result was consistent for 
different training parameters, such as learning rate and 
number of hidden/context units.  



Discussion
In the three experiments described herein, we have 
systematically varied a wide range of parameters.  
Indeed, in the case of Experiment 1, were Elman's data 
set is very closely approximated, we have 
parametrically varied not only the learning rate and 
weight initialization range, but also the hidden layer 
size (which Elman did not do).  On the basis of all three 
experiments described above, we believe it is fair to say 
that Elman's case has been substantially overstated. 
On the other hand, certain of our results may lend 

some modest confirmation to Elman's position, at least 
with respect to the very simple syntax employed in the 
M arcus et al experiment.  To be sure, in the case of 
Experiment 1, which most closely approximated 
Elman's training data, the percentage of successfully 
trained networks was only 23.43% . However, this 
percentage is far above the purely chance values that 
we have cited. In addition, we have shown that even 
when all input vectors within a given training corpus 
are completely non-overlapping (Experiment 3), as 
many as 6%  of trained networks satisfy our “least 
forgiving” criterion of success, at least when the test 
corpus contained just 4 sentences (as in Elman's case).  
Significantly, though, when the test corpus for 
Experiment 3 was expanded to contain 30 novel 
sentences, no positive results whatsoever were obtained 
even when our more lenient “success criterion” was 
used. This outcome lends clear support to M arcus' 
claims on “generalization outside the training space” -- 
at least with respect to the infant learning experiment 
described by M arcus et al (1999). 
Finally, we must also emphasize that, except in 

Experiment 2 (where we modified the syllable vectors 
to ensure that training and test input vectors were much 
more similar), the preponderance of trained networks 
failed to satisfy even the most forgiving success-
criterion adopted here.  M ore importantly, we have 
replicated the design of Experiment 1 using two 
modestly more complex gram mars, and have obtained 
only negative results.  In particular, when the gram mars 
(ABCA vs. ABCB) and ABCDA vs. ABCDB) were 
employed, we were unable to train even a single
network successfully (from a batch of 64 networks). 
This strongly suggests that the SRN architecture 
deployed in Elman's "refutation" of M arcus is incapable 
of abstracting the underlying structure of anything but 
the very simplest of grammars.  Our view is that the 
"grammar" deployed by M arcus et al (1999) is perhaps 
too simple to present a useful challenge to eliminative 
connectionist networks.  A desirable step for future 
research would be to repeat the "human infant 
experiment" using the m odestly more complex 
grammars just cited. 
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