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Abstract

We propose that current models of graph comprehension
do not adequately capture how people use graphs and
complex visualizations. To investigate this hypothesis, we
examined 3 sessions of scientists using an in vivo method-
ology. We found that in order to obtain information from
their graphs, scientists not only read off information di-
rectly from their visualizations (as current theories pre-
dict), but they also used a great deal of mental imagery
(which we call spatial transformations). We propose an
extension to the current model of visualization compre-
hension and usage to account for this data.

Introduction

If a person looks at a standard stock market graph or
a meteorologist is examining a complex meteorological
visualization, how is information extracted from these
graphs? The most influential research on graph and visu-
alization comprehension is Bertin’s (1983) task analysis
that suggests three main processes in graph and visual-
ization comprehension:

1. Encode visual elements of the display: For exam-
ple, identify lines and axes. This stage is influenced by
pre-attentive processes and is affected by the discrim-
inability of shapes.

2. Translate the elements into patterns: For example,
notice that one bar is taller than another or the slope of
a line. This stage is affected by distortions of perception
and limitations of working memory.

3. Map the patterns to the labels to interpret the spe-
cific relationships communicated by the graph. For ex-
ample, determine the value of a bar graph.

Most of the work done on graph comprehension has
examined the encoding, perception, and representation
of graphs. Cleveland and McGill, for example, have
examined the psychophysical aspects of graphical per-
ception (Cleveland & McGill, 1984, 1986). Similarly,
Pinker’s theory of graph comprehension, while quite
broad, focuses on the encoding and understanding of
graphs (Pinker, 1990). Kosslyn’s work emphasizes the
cognitive processes that make a graph more or less diffi-
cult to read. Kosslyn’s syntactic and semantic (and to a
lesser degree pragmatic) level of analysis focuses on en-
coding, perception, and representation of graphs (Koss-
lyn, 1989). Recent work by Carpenter and Shah (1998)

shows that people switch between looking at the graph
and the axes in order to comprehend the visualization.

This scheme seems to work very well when the graph
contains all the information the user needs (i.e., when the
information is explicitly represented in one form or an-
other). Thus, when an undergraduate is asked to extract
specific information from a bar-graph, the above process
seems to hold. However, graph usage outside the labo-
ratory is probably not simply a series of information ex-
tractions. For example, when looking at a stock market
graph, the goal may not be just to determine the current
or past price of the stock, but perhaps to determine what
the price of the stock will be sometime in the future. A
weather forecaster looking at a meteorological visualiza-
tion is frequently trying to predict what the weather will
be in the future, as well as what the current visualization
shows (Trafton, Kirschenbaum, Tsui, Miyamoto, Ballas,
& Raymond, 2000). A scientist examining results from
a recent experiment can not always display the available
information in a way that perfectly shows the answer to
her hypotheses.

How do current theories of graph comprehension hold
up when a graph or visualization does not contain the
exact information needed? Unfortunately, the theories
do not say anything about this situation. In fact, there are
no specifications in any theory of graph comprehension
about how information could or would be extracted from
a visualization where that information is not represented
in some form. If a graph does not contain the information
needed by the user, the graph is often labeled “bad” or
“useless” (Kosslyn, 1989; Pinker, 1990).

Current graph comprehension theories do not have a
great deal to say about what to do when a graph does
not explicitly show the needed information for a variety
of reasons. The main reason is probably that most graph
comprehension studies have used fairly simple graphs for
which no particular domain knowledge is required (e.g.,
Carter, 1947; Lohse, 1993; Pinker, 1990). However, in
real-world situations, people use complex visualizations
that require a great deal of domain knowledge, and all
the needed information would probably not be explic-
itly represented in the graph. This study will thus try to
answer two questions about graph comprehension. Do
expert users of visualizations ever need information that
is not on a specific graph they are using? If so, how do
they extract that information from the graph?



There are several possible things that users could do
when trying to extract information from a graph. In the
simplest case, the information is explicitly available, and
they can simply read off the information from the visu-
alization. What do they do when information they need
is not available on the visualization? They could create
a completely new visualization that does show the infor-
mation. They could also collect more data or consult an-
other source. They could create an explicit plan to look
for more data or run another experiment.

What do they do when the visualization is all they have
to work with? What kind of mental operations could
users perform on graphs and visualizations in order to
extract information that is not explicit? One possibility
is that people use some sort of visual imagery to extract
information that is not explicitly represented on a graph
or visualization. For example, a weather forecaster may
mentally imagine a front moving east over the next sev-
eral days (Trafton et al., 2000), or a stock analyst may
mentally extend a line on a graph and think that a stock
will continue to rise. We have developed a framework
for coding and working with these kinds of graphs and
visualizations called Spatial Transformations that will be
used to investigate these issues. We will argue that spa-
tial transformations are a fundamental aspect of complex
visualization usage.

Spatial Transformations are cognitive operations that
a scientist performs on a visualization. Sample spatial
transformations are mental rotation (e.g., Shepard &
Metzler, 1971), creating a mental image, modifying
that mental image by adding or deleting features to or
from it, animating an aspect of a visualization (Hegarty,
1992) time series progression prediction, mentally
moving an object, mentally transforming a 2D view
into a 3D view (or vice versa), comparisons between
different views (Kosslyn, Sukel, & Bly, 1999; Trafton,
Trickett, & Mintz, 2001), and anything else a scientist
mentally does to a visualization in order to understand
it or facilitate problem solving. Also note that a spatial
transformation can be done on either an internal (i.e.,
mental) image or an external image (i.e., a scientific
visualization on a computer-generated image). What
all spatial transformations have in common is that they
involve the use of mental imagery. A more complete
description of spatial transformations can be found at
http://iota.gmu.edu/users/trafton/405st.html.

We will examine the number of times that users
needed information from a visualization. If all or most
of the information is available explicitly on the visualiza-
tion, we should see primarily read-offs (Kosslyn, 1989;
Pinker, 1990). If, however, a particular visualization does
not explicitly display particular information that a scien-
tist wants, we will examine how the scientist goes about
obtaining that information. We expect that in complex
visualizations, there is a great deal of information that is
needed in addition to what is displayed, and we expect
scientists to use spatial transformations to retrieve that
information.

Method

In order to investigate the issues discussed above, we
have adapted Dunbar’s in vivo methodology (Dunbar,
1995, 1996; Trickett, Trafton, & Schunn, 2000b). This
approach offers several advantages. First, it allows the
observation of experts, who are thus able to use their do-
main knowledge to guide their strategy selection. Sec-
ond, it allows the collection of “on-line” measures of
thinking, which allow the investigation of the scientists’
reasoning as it occurs (Ericsson & Simon, 1993). Fi-
nally, the tasks (experiment design, data analysis, etc.)
conducted by the scientists, as well as the tools they use,
are fully authentic.

Two sets of scientists were videotaped while conduct-
ing their own research. All the scientists were experts,
having earned their Ph.D.s more than 6 years previously.
In the first set, two astronomers, one a tenured profes-
sor at a university, the other a fellow at a research in-
stitute, worked collaboratively to investigate computer-
generated visual representations of a new set of observa-
tional data. At the time of this study, one astronomer had
approximately 20 publications in this general area, and
the other approximately 10. The astronomers have been
collaborating for some years, although they do not fre-
quently work at the same computer screen and the same
time to examine data.

In the second dataset, a physicist with expertise in
computational fluid dynamics worked alone to inspect
the results of a computational model he had built and
run. Two related sessions were recorded with this sci-
entist over consecutive days. He works as a research
scientists at a major U.S. scientific research facility, and
had earned his Ph.D. over 20 years previously. He had
inspected the data previously but had made some adjust-
ments to the physics parameters underlying the model
and was therefore revisiting the data.

Both sets of scientists were instructed to carry out their
work as though no camera were present and without ex-
planation to the experimenter (Ericsson & Simon, 1993).
The relevant part of the astronomy session lasted about
53 minutes, and the two physics sessions each lasted ap-
proximately 15 minutes. All utterances were later tran-
scribed and segmented according to complete thought.
All segments were coded by 2 coders as on-task (pertain-
ing to data analysis) or off-task (e.g., jokes, phone call
interruptions, etc.). Inter-rater reliability for this coding
was more than 95%. Off-task segments were excluded
from further analysis. On-task segments (N = 649 for
the astronomy dataset and N = 189 for the first physics
dataset and N = 176 for the second physics dataset) were
further coded as described below.

The Tasks and the Data

Astronomy The astronomical data under analysis were
optical and radio data of a ring galaxy. The astronomers’
high-level goal was to understand its evolution and struc-
ture by understanding the flow of gas in the galaxy. In or-
der to understand the flow of gas, the astronomers must
make inferences about the velocity field, represented by



Figure 1: An example of the kind of visualizations ex-
amined by the astronomers.

contour lines on the 2-dimensional display. The as-
tronomers’ task was made difficult by two characteris-
tics of their data. First, the data were one- or at best 2-
dimensional, whereas the structure they were attempting
to understand is 3-dimensional. Second, the data were
noisy, and there was no easy way to distinguish between
noise and real phenomena. Figure 1 shows a screen snap-
shot of the type of data the astronomers were examining.
In order to make their inferences, the astronomers used
different types of image, representing different phenom-
ena (e.g., different forms of gas), which represent dif-
ferent information about the structure and dynamics of
the galaxy. Some of these images could be overlaid on
each other. In addition, the astronomers could choose
from images created by different processing algorithms,
each with advantages and disadvantages (e.g., more or
less resolution). Finally, they could adjust different fea-
tures of the display, such as contrast or false color. A
more complete description of this dataset can be found
in Trickett, Fu, Schunn, and Trafton (2000a) and Trick-
ett, Trafton, and Schunn (2000b).

Physics The physicist was working to evaluate how
deep into a pellet a laser light will go before being re-
flected. His high-level goal was to understand the funda-
mental physics underlying the reaction, an understanding
that hinged on an understanding of the relative impor-
tance and growth rates of different modes. The physicist
had built a model of the reaction; other scientists had in-
dependently conducted experiments in which lasers were
fired at pellets and the reactions recorded. A close match
between model and empirical data would indicate a good

Figure 2: An example of the kind of visualizations ex-
amined by the physicist.

understanding of the underlying theory. Although the
physicist had been in conversation with the experimen-
talist, he had not viewed the empirical data, and in this
session he was investigating only the results of his com-
putational model. However, he believed the model to be
correct (i.e., he had strong expectations about what he
would see), and in this sense, this session may be con-
sidered confirmatory.

The data consisted of two different kinds of represen-
tation of the different modes, shown over time (nanosec-
onds). The physicist was able to view either a Fourier
decomposition of the modes or a representation of the
“raw” data.

Figure 2 shows an example of the physicist’s data. He
could choose from black-and-white or a variety of color
representations, and could adjust the scales of the dis-
played image, as well as some other features. He was
able to open numerous views simultaneously.

Coding Scheme

Our goals in this research are first, to determine if com-
plex visualizations contain all the information needed by
the scientists, and, if not, to investigate what happens
when they do not have all the information they need. We
propose that spatial transformations are a major portion
of extracting information from a visualization when the
data is not explicitly represented. Consequently, we iden-
tified every situation where a scientist wanted to extract
information from a visualization. Next, we coded what
the scientist did to extract information, including read-
ing off the information directly from the graph, spatial
transformations, changing the visualization, plans or dis-
cussions about getting more data, and abandoning their
attempt to get the information. We now describe and pro-
vide examples of this coding scheme in detail.



Example

Explanation

After all, it is ten to the
minus Six...

Scientist is looking at a line
and extracting the y-axis value

I mean, the fact you see such a strong
concentration of gas in the ring, um. ..

Scientist is reading off the
amount of gas in the ring

That’s about 220 km/sec, which is the
velocity spread of a normal galaxy.

Scientist is reading off
the velocity spread

Table 1: Examples of information that is read off the visualizations.

Spatial Transformation

Example

Explanation

Create Mental Image

I mean, in a perfect, in a perfect

Scientist is creating a mental

world, in a perfect sort of
spider diagram...

image of a spider diagram; there
is no spider diagram displayed.

Modify Image So that [line] would be below Scientist is adding a new
the black line (hypothesizied) line to a
current visualization
Modify Image If there was no streaming Scientist has imaged a previous
motion or sort of piling of mental image and is now removing
gas the streaming motions from his mental image
Comparison: Maybe it’s a projection effect, Scientist is comparing a

although if that’s true, there should
be a very large velocity dispersion.

current image to a previously
created mental image.

Table 2: Examples of spatial transformations.

Desire to extract information A scientist would fre-
quently want to extract some amount of information from
a visualization. Comments varied from the very general
(“What do we see?”) to the very specific (“Let’s see, how
does oh-three versus three-oh [look]?”).

Read-Off A scientist would be able to read-off infor-
mation directly from the graph. Information that was
read off a visualization was explicitly on the graph and
the scientist simply had to read-off a particular value. For
every utterance, we evaluated whether a value was read
off the visualization. Table 1 shows several examples of
information that was read off of the visualization.

Spatial Transformations As discussed earlier, spatial
transformations are cognitive operations that a scientist
performs on a visualization. For every utterance in each
protocol we evaluated whether there was a spatial trans-
formation. Spatial transformations were further coded
as Create Image, Modify Image, or Comparison. Ta-
ble 1 shows examples of each category of spatial trans-
formation (note that these utterances are independent of
one another and do not represent a sequence). Table 2
shows several examples of spatial transformations that
were used by the scientists.

Changing the Visualization The scientists were using
their own tools and were able to change the visualization
to a completely different representation. For example, a
scientist could change the data display from the raw data

to a Fourier mode display). Alternatively, the scientists
could “tweak” the current representation (from black and
white to color, for example). We coded the visualiza-
tion changes where the scientists were looking for addi-
tional information. If they simply made a mistake and
tweaked the visualization, we did not count that visual-
ization change. For example, while looking at a particu-
larly compressed visualization, one of the scientists said
“Where’s three-oh at? Don’t see three [oh]. That’s what
I figured, I was gonna get spaghetti. Let’s do a re-plot.”
and then replotted the data with a reduced dataset.

Plans to gather more data Occasionally, the scientists
wanted or needed to gather more data. We coded every
time they made a plan to gather more data. For example,
one scientist said “So that means that this guy is in fact
between him and him, which is exactly what the exper-
imentalist believes he saw. Now, somewhere along the
line I have to get their results.”

Abandoning their attempt to get information Some-
times the scientists either could not decide what data to
get or simply abandoned their quest for a specific infor-
mation. We coded every time the scientists abandoned
their attempt to get information. For example, one scien-
tist, unable to explain a particular feature after extensive
investigation of the image, said “Yeah well, [let’s] gloss
over it.”



Results

Our two goals in this paper are to explore whether scien-
tists are able to directly extract the amount of informa-
tion they need from the visualizations they examine and
if not, to explore how they do get the information that is
needed.

How often is needed information directly
available?

Of the 1014 total utterances in the three sessions, almost
half (481) involved some form of information gathering.

As Figure 3 shows, approximately half of those infor-
mation gathering instances were read-off, suggesting that
the scientist did use the visualization a great deal to ex-
tract information. However, there were many times when
the scientists needed information from a visualization but
it was not available directly from the visualization. Thus,
the visualizations seem to be good, but far from perfect
from an information gathering point of view.

25

20

Percentage of On—Task Utterances

Spatial Vis
Read-Off Transformations Changes Plans Abandon
Information Explicitly Available

on Visualization

Information not Explicitly Available
on Visualization

Figure 3: The number of read-offs, spatial transforma-
tions, visualization changes, plans to collect future data,
and decisions to abandon the attempt to get more data for
all datasets.

How was needed information extracted if it was not
simply read off? As Figure 3 shows, the vast majority of
information that was not read off was gathered by using
spatial transformations. In fact, there was no statistical
difference between the number of times that the scientists
read off information directly from the graph and the num-
ber of spatial transformations, (1) = 1.21, p > .20.

Additionally, scientists chose to use a spatial
transformation to get needed information from
a visualization rather than changing the visual-
ization, x2(1)=122.25,p <.001, making plans
to gather more data y2(1)=184.19,p <.001, or
abandoning their attempt to answer their question,
x2(1) =204.02, p < .001.!

TAll %’s used the Bonferroni adjustment.

General Discussion

E:Bertin, 1983; Kosslyn, 1989; Pinker, 1990 E:Cai[;zer & Shaw, 1998
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Figure 4: Our current theoretical model of complex visu-
alization usage. The “E:” shows evidence for each stage
of the model.

We have conducted a detailed analysis of expert sci-
entists at work in their own laboratories, analyzing data
that they have collected themselves. Our results show
that these scientists do extract a great deal of information
from the visualizations. However, these visualizations do
not provide the scientists with all the information they
need to answer their questions. We found that when they
needed information that was not explicitly provided by
the visualization, they tended to perform spatial transfor-
mations to answer their questions.

It is interesting that the scientists did not simply
change the visualization more frequently to get the
needed information. There was some evidence in the
protocols that it was not easy to create new visualiza-
tions. For example, some of the visualizations had to be
re-done because of an error that was made in the display
(i.e., needed data was not included in the plot or the plot
was not presented logarithmically when it should have
been). However, this problem did not seem to have pre-
vented the scientists from trying to make the changes:
there were no instances of a scientist saying the visual-
ization tool was too complicated or difficult to work with
(though these tools could no doubt be improved). Thus,
the scientists’ use of spatial transformations do not seem
to be a substitute for “bad” graphs, but rather a strategy
to understand the data more thoroughly.

As suggested earlier, current theories of graph com-
prehension can not account for this pattern of results.
Current theories (e.g., Bertin, 1983; Kosslyn, 1989;
Pinker, 1990) deal primarily with how users extract in-
formation that is explicitly available on a graph or vi-



sualization. In this study, we have shown that users do
not simply extract information that is explicitly shown on
a visualization; rather, they extract information and use
mental imagery to create similar visualizations, modify
those mental images, and compare their mental results
to on-screen results. These spatial transformation seem
to be used for a variety of reasons, including hypothesis
testing and understanding their own mental representa-
tion through a process of aligning various mental images
(Trafton et al., 2001).

How can we integrate these new results into current
theories? We believe that the current theoretical model
should be expanded to include spatial transformations as
part of the cognitive processes that users go through to
interpret and use visualizations. Figure 4 shows our cur-
rent model of graph comprehension, along with evidence
that supports each stage of this model.

We believe, as Figure 4 shows, that when people use
graphs or visualizations, they initially go through a pro-
cess to understand the graph itself. Then, when they need
to extract information, they can either read off that infor-
mation directly from the visualization or, if that informa-
tion is not available, perform a spatial transformation to
get the needed information.2 Finally, that information is
actually used by the user.
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