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Abstract

Representativeness is a central explanatory construct in
cognitive science but suffers from the lack of a principled
theoretical account. Here we present a formal definition
of one sense of representativeness — what it means to be
a good example of a process or category in the context
of Bayesian inference. This analysis clarifies the rela-
tion between representativeness as an intuitive statistical
heuristic and normative principles of inductive inference.
It also leads to strong quantitative predictions about peo-
ple’s judgments, which compare favorably to alternative
accounts based on likelihood or similarity when evaluated
on data from two experiments.

Why do people think that Linda, the politically ac-
tive, single, outspoken, and very bright 31-year-old, is
more likely to be a feminist bankteller than to be a bank-
teller, even though this is logically impossible? Why do
we think that the sequence is more likely than
the sequence to be produced by flipping a fair
coin, even though both are equally likely? The standard
answer in cognitive psychology (Kahneman & Tversky,
1972) is that our brains are designed to judge “represen-
tativeness”, not probability: Linda is more representative
of feminist banktellers than of banktellers, and is
more representative of flipping a fair coin than is ,
despite anything that probability theory tells us.

Not only errors in probabilistic reasoning, but numer-
ous other phenomena of categorization, comparison, and
inference have been attributed to the influence of repre-
sentativeness (or prototypicality or “goodness of exam-
ple”; Mervis & Rosch, 1981; Osherson, Smith, Wilkie,
Lopez, & Shafir, 1990; Rips, 1975). However, a princi-
pled account of representativeness has not been easy to
come by. Its leading proponents (Kahneman & Tversky,
1996; Mervis & Rosch, 1981) have asserted that rep-
resentativeness should be defined only operationally in
terms of people’s judgments; an a priori, analytic defini-
tion need not be given. Critics have countered that this
concept is too vague to serve as an explanation of intu-
itive probability judgment (Gigerenzer, 1996).

This paper presents a framework for constructing ra-
tional models of representativeness, based on a Bayesian
analysis of what makes an observation a good example
of a category or process. The goal is to identify pre-
cisely one sense of representativeness and show that it
has a rational basis in normative principles of inductive

reasoning. We will first point out some shortcomings
of previous accounts based on likelihood or similarity,
and show how a Bayesian approach can overcome those
problems. We will then compare the quantitative predic-
tions of Bayesian, likelihood, and similarity models on
two sets of representativeness judgments.

Previous approaches

Likelihood. In trying to relate intuitions about repre-
sentativeness to rational statistical inferences, a natural
starting point is the concept of likelihood. Let d denote
some observed data, such as a sequence of coin tosses,
and h denote some hypothesis about the source of d,
such as flipping a fair coin. The probability of observ-
ing d given that h is true, P(d h), is called a likelihood.
Let R(d,h) denote representativeness — how representa-
tive the observation d is of the generative process in A.

Gigerenzer & Hoffrage (1995) have proposed that rep-
resentativeness, to the extent that it can be defined rig-
orously, is equivalent to likelihood: R(d,h) = P(d h).
This proposal is appealing in that, other factors aside, the
more frequently 4 leads to observing d, the more repre-
sentative d should be of 4. It is also consistent with some
classic errors in probability judgment, such as the con-
junction fallacy: a person is almost certainly more likely
to match Linda’s description given that she is a bankteller
and a feminist than given only that she is a bankteller.

While likelihood and representativeness seem related,
however, they are not equivalent. Two observations with
equal likelihood may differ in representativeness. Know-
ing that and are equally likely to be pro-
duced by a fair coin does not change our judgment that
the latter is the more representative outcome. Tversky
& Kahneman (1983) provide several examples of cases
in which a more representative outcome is actually less
likely. Any sequence of fair coin flips, such as ,
is less likely than one of its subseqences, such as or

, but may easily be more representative. More color-
fully, “being divorced four times” is more representative
of Hollywood actresses than is “voting democratic”, but
the former is certainly less likely.

Figure 1 illustrates a simple version of the dissoci-
ation between representativeness and likelihood. Each
panel shows a sample of three points from a Gaussian
distribution. With independent sampling, the total likeli-
hood of a sample equals the product of the likelihoods for
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Figure 1: Given a normal distribution, the left sample has
greater likelihood but the right is more representative.

each item in the sample. Thus the left sample has much
greater likelihood, because each point is much closer to
the peak of the distribution than in the right sample. Yet
the more spread-out sample on the right seems more rep-
resentative. We tested this intuition in a survey of 138
Stanford undergraduates. They were first shown a nor-
mally distributed set of thirty “widgets” produced by a
factory. The widgets were simple drawings resembling
nuts or bolts, varying only in their sizes. They were then
shown three different samples, each with three widgets,
and asked to rate on a scale of 1-10 how representative
each sample was of the widgets produced by this factory.
Each sample contained a point at the mean of the original
distribution, and points at z = 2.85 (“broad sample”),
z= 1 (“intermediate sample”), or z=0.05 (“narrow
sample”). The intermediate sample, with a standard de-
viation similar to the population, received a significantly
higher rating than did the much more likely narrow sam-
ple (7.1 vs. 5.2, p < 05). The broad sample, with lowest
likelihood of all, also received a lower rating (6.9) than
the intermediate sample, but not by a significant margin.

We also tested whether intermediate-range samples
are more representative for natural categories, using as
stimuli black-and-white pictures of birds. In a design
parallel to the widget study, 135 different Stanford un-
dergraduates saw three samples of birds, each contain-
ing three members, and rated how representative they
were of birds in general. The samples consisted of either
three robins (“narrow”); a robin, an eagle, and a seagull
(“intermediate™); or a robin, an ostrich, and a penguin
(“broad”). Although the robins were individually rated
as more representative than the other birds (by a sepa-
rate group of 100 subjects), the set of three robins was
considered the least representative of the three samples.
As with the widgets, the intermediate sample was rated
more representative (6.3) than either the narrow (5.1) or
broad (5.3) samples (p < 05 for both differences).

For natural categories as well as for the artificial wid-
gets, a set of representative examples turns out not to be
the most representative set of examples. Sample likeli-
hood, because it is merely the product of each example’s
individual likelihood, cannot capture this phenomenon.
At best, then, likelihood may be only one factor con-
tributing to the computation of representativeness.

Similarity. Most attempts to explicate the mechanisms
of representativeness, including that of Kahneman &
Tversky (1972), rely not on likelihood but on some sense

of similarity. That is, an observation d is representative
of a category or process h to the extent that it is similar
to the set of observations 4 typically generates.
Similarity seems to avoid some of the problems that
likelihood encounters. may be more representa-
tive of a fair coin than because it is more similar
on average to other coin flip sequences, based on such
features as the number of heads or the number of alter-
nations. Likewise, someone who has been divorced four
times may be more similar to the prototypical Hollywood
actress than someone who votes democratic, if marital
status is weighted more heavily than political affiliation
in computing similarity to Hollywood actresses.
However, the explanatory power of a similarity-based
account hinges on being able to specify what makes two
stimuli more or less similar, what the relevant features
are and how are they weighted. Similarity unconstrained
is liable to lead to circular explanations: having had mul-
tiple divorces is more representative of Hollywood ac-
tresses because marital status is more highly weighted in
computing similarity to Hollywood actresses, but why is
marital status so highly weighted, if not because having
multiple divorces is so typical of Hollywood actresses?
Equating representativeness with similarity also runs
into a problem when evaluating the representativeness
of a set of objects, as in Figure 1. Similarity is usu-
ally defined as a relation between pairs of stimuli, but
here we require a judgment of similarity between two
sets of stimuli, the sample and the population. It is not
immediately obvious how best to extend similarity from
a pairwise to a setwise measure. The individual elements
of the left sample are certainly more similar to the av-
erage member of the population than are the elements
of the right sample. The left sample also comes closer to
minimizing the average distance between elements of the
population and elements of the sample. If similarity be-
tween sets is defined according to one of these measures,
it will fail to match up with representativeness.
Finally, and most problematic for our purposes here,
a definition in terms of similarity fails to elucidate the
rational basis of representativeness, and thus brings us
no closer to explaining when and why representativeness
leads to reasonable statistical inferences. Hence we seem
to be left with two less-than-perfect options for defining
representativeness: the simple, rational, but clearly in-
sufficient concept of likelihood, or the more flexible but
notoriously slippery concept of similarity.

A Bayesian analysis

In this section we present a Bayesian analysis of repre-
sentativeness that addresses some of the shortcomings of
the likelihood and similarity proposals. As with likeli-
hood, Bayesian representativeness takes the form of a
simple probabilistic quantity, which in fact includes like-
lihood as one component. But like the similarity ap-
proach, it can account for dissociations of representative-
ness and likelihood, when a less probable feature of the
stimuli is also more diagnostic of the process or category
in question. Moreover, it applies just as well to evaluat-



ing the representativenes of a set of examples (e.g. Figure
1) as it does to individual examples.

Our notion of a “good example” is defined in the con-
text of a Bayesian inductive inference task. As above, let
d denote some observed data, and let H = hy,...h,
denote a set of n hypotheses (assumed to be mutually ex-
clusive and exhaustive) that might explain the observed
data. For each h;, we require both the likelihood P(d h;)
and a prior probability, P(h;), which expresses the degree
of belief in k; before d is observed. Let h; = hj H :
j =1 denote the negation of hypothesis 4;, the asser-
tion that some hypothesis other than 7; is the true source
of d. Then we define our measure of representativeness
R(d, h;) to be the logarithm of the likelihood ratio
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This definition is motivated by Bayes’ rule, which pre-
scribes a degree of belief in hypothesis 4; after observing
d given by the posterior probability

P(/’ll’ d) _ P(d;lézii(hl)

Defining the posterior odds O(h; d) = P(h; d) P(h; d) =
P(h;d) (1 — P(h;d)), and the prior odds O(h;) =
P(h;) (1—P(h;)), we can write Bayes’ rule in the form:

logO(h; d) =logL(d h;) logO(h;). 3)

2

Equation 3 shows why the log likelihood ratio,
logL(d h;), provides a natural measure of how good an
example d is of A;: it indicates the extent to which ob-
serving d increases or decreases the posterior odds of
h; relative to the prior odds. Researchers in statistics
(Good, 1950), artificial intelligence (Pearl, 1988), and
philosophy of science (Fitelson, 2000) have previously
considered log L(d h;) as the best measure for the weight
of evidence that d provides for 4;, because it captures the
unique contribution that d makes to our belief in /; inde-
pendently of all other knowledge that we have (reflected
in P (/’l,))

To compute R(d, h;) in the presence of more than one
alternative hypothesis, we express it in the form

o P(d h)
S, P(d hy)P(hj hi)

R(d,h;) =1lo )

P(h; h;) is the prior probability of h; given that h; is not
the true explanation of d: 0 when i = j and P(h;) (1—
P(h;)) otherwise. Equation 4 shows that d is representa-
tive of A; to the extent that its likelihood under 4; exceeds
its average likelihood under alternative hypotheses.

To illustrate the analysis concretely, consider the sim-
ple case of two coinflip sequences, and
Unlike the likelihood model, we cannot compute how
representative an observation is of a hypothesis with-
out specifying the alternative hypotheses that an ob-
server might consider. In the interests of simplic-
ity, we consider just three relevant hypotheses about

the origins of and : a fair coin (hp), a
two-headed coin (hr), and a weighted coin (hw) that
comes up heads with probability 3/5. The likelihoods
of the two sequences under these hypotheses are, for

the fair coin, P( hr) = P( hr) = (1 2)° =
0.03125; for the two-headed coin, P( hr) =1
while P( hr) = 0; and for the weighted coin,
P( hw) = (3 5)°> =0.0778 while P( hy) =

(3 5)3(2 5)> = 0.0346. For concreteness, we choose
specific prior probabilities for these hypotheses: P(hp) =
09, P(hr) = 0.05, and P(hw) = 0.05.  Substi-
tuting these numbers into Equation 4, we have

_ 0.03125 _
R( vhr) = 10g 1756501 oors00s 01 = —2-85

. _ 0.03125 _
while R( vhi) = 108 55505707 005965005 07 =

0.59. This result, that is more representative of
a fair coin than , accords with intuition and holds
regardless of the prior probabilities we assign to the three
alternative hypotheses. In a later section, we go be-
yond a qualitative reconstruction of intuitions to test a
quantitative model of representativeness judgments for
sequences of coin flips.
The Bayesian approach also accounts for cases where
a sample with lower likelihood appears more repre-
sentative. For instance, P( hr) is strictly
lower than either P( hr) or P( hr), but
is no less representative than . The
Bayesian account also offers an intuitively compelling
definition of representativeness for a set of examples,
such as the widgets in Figure 1. We demonstrate by
computing the representativeness for a sample X from
a Gaussian population i;. Let xi,...,xy be the N ex-
amples in X, m be the mean of X, and § = ¥, (x; —m)? the
sum-of-squares. Let #; have mean y and variance o2, We
take the hypothesis space H to include all possible Gaus-
sian distributions in one dimension — each a conceivable
alternate explanation for the sample X. Because H is
an uncountably infinite set, the sum in the denominator
of Equation 4 becomes an integral. Assuming an unin-
formative Jeffreys prior on u,6 (Equation 3 of Minka,
1998), our expression for Bayesian representativeness in
Equation 4 then reduces to

1
R(X,h) =Nlog§— — [Nm—p)?* ], (5)

plus a term that depends only on N and 2.

Equation 5 is maximized when m = u and S N =
(52, that is, when the mean and variance of the sam-
ple X match the mean and variance of the population
hy. This result is intuitive, and it accounts for why peo-
ple preferred intermediate samples of widgets or birds
over broad or narrow samples in the surveys described
above: the NlogsS term penalizes narrower samples and
the —S o2 penalizes broader samples. Yet this result
is also not particularly surprising. More interestingly,
Equation 5 gives a general metric for scoring the rep-
resentativeness of any sample from a Gaussian distribu-
tion, which we will test quantitatively against people’s
judgments in the following section.



Quantitative modeling

In this section, we present quantitative models of repre-
sentative judgments for two kinds of stimuli: sequences
of coin flips and sets of animals. For each data set, we
compare the predictions of Bayesian, likelihood-based,
and similarity-based models.

Coin flips

Methods. 278 Stanford undergraduates rated the rep-
resentativeness of four different coin flip sequences for
each of four hypothetical generative processes, under the
cover story of helping a casino debug a new line of gam-
bling machines. The sequences were d; = ,
d2= ,d3= ,andd4= .
The generative processes were h; = “A fair coin”, hy =
“A coin that always alternates heads and tails”, h3 = “A
coin that mostly comes up heads”, and 4 = “A coin that
always comes up heads”. The orders of both sequences
and hypotheses were randomized across subjects. Rep-
resentativeness judgments were made on a scale of 1-7.

Bayesian model. While people could construct an ar-
bitrarily large hypothesis space for this task, we make
the simplifying assumption that their hypothesis space
can be approximated by just the four hypotheses that they
are asked to make judgments about. We constructed sim-
ple probabilistic models for each hypothesis 4; to gener-
ate the necessary likelihoods P(d; h;). Priors for all hy-
potheses were assumed to be equal. To model A, “a fair
coin”, all likelihoods were set equal to their true values
of 1 28. To model hs, “mostly heads”, and A4, “always
heads”, we used binomial distributions with p = 0.85
and p = 0.99, respectively. In some sense, these p val-
ues represent free parameters of the model, but their val-
ues are strongly constrained by the meaning of the words
“mostly” and “always”. Their exact values are not cru-
cial to the model’s performance, as long as “always” is
taken to mean something like “almost but not quite al-
ways” (i.e. p < 1.0). To model h4, “always alternates
heads and tails”, we used a binomial distribution over the
seven possible state transitions in each sequence, again
with “always” translated into probability as p =0.99. All
model predictions were then given by Equation 4.

Likelihood model. This model treats representative-
ness judgments simply as P(d; h;), as specified above.

Similarity model. We defined a simple similarity-
based model in terms of two intuitively relevant fea-
tures for comparing sequences: the number of heads in
each sequence and the number of alternations in each se-
quence. Let o; be the number of heads in sequence j,
and B3; be the number of alternations. Then the similarity
of sequences d; and d; is defined to be

Sim(d,',dj) = exp (*W(x o —0j —wp B,’*B]‘ ), (6)

where wg, and wg are the weights given to these two fea-
tures. To compute similarity between a sequence and a
generating hypothesis, we construct a prototype for each

hypothesis based on the mean values of o and B over
the whole distribution of sequences generated by that hy-
pothesis. For example, for h, o0 =4 and B = 7; for A3
(again assuming “mostly” means with probability 0.85),
o 6.8 and 3 1.8. Lastly, we define the represen-
tativeness of sequence i for hypothesis j as R(d;, h;) =
sim(dj,hj) Yy sim(d;,hy). The dimensional weights wg
and wg are free parameters optimized to fit the data, giv-
ing wg =1, wg=0.4.

Results. To compensate for nonlinear transformations
that might affect the 1-7 rating scale used by subjects,
the predictions of each model were first transformed ac-
cording to a power function with a power y chosen to op-
timize each model’s fit, and then mapped onto the same
interval spanned by the data. This gives both the likeli-
hood model and the Bayesian model one free parameter
plus two constrained parameters (corresponding to the
meanings of “mostly” and “always”), while the similar-
ity model has three free parameters (wq,wp, and Y) and
the same two constrained parameters. All three models
correlate highly with subjects’ representativeness judg-
ments, although the Bayesian model has a slight edge
with r = 0.94, versus 0.87 for the likelihood model and
0.92 for the similarity model. Figure 2 presents an item-
by-item analysis, showing that the Bayesian model cap-
tures virtually all of the salient patterns in the data.

Animals

Methods. We used data reported by Osherson, Smith
et al. (1990; Tables 3 and 4) in a study of category-
based induction. They asked one group of subjects to
judge pairwise similarities for a set of 10 mammals, and
a second group of subjects to judge the strengths of 45
arguments of the form x; has property P, x, has prop-
erty P, x3 has property P, therefore all mammals have
property P , where x1,x, and x3 are three different kinds
of mammals and P is a blank biological predicate. Such
judgments of argument strength are not the same thing
as judgments of representativeness, but for now we take
them as a reasonable proxy for how representative the
sample X = x1,x2,x3 is of the set of all mammals.

Bayesian model. We assume that people’s hypothesis
space includes the category of all mammals (%), as well
as an infinite number of alternative hypotheses. For sim-
plicity, we model all hypotheses as Gaussian distribu-
tions in a two-dimensional feature space obtained from a
multidimensional scaling (MDS) analysis of the similar-
ity judgments in Osherson et al. (1990). This allows us to
apply essentially the same analysis used in the previous
section to compute the representativeness of a sample
from a Gaussian distribution (Equation 5), and also par-
allels the original approach to modeling category-based
induction of Rips (1975). The MDS space for animals is
shown in Figure 3. The large gray oval indicates the one-
standard-deviation contour line of &), which we take to
be the best fitting Gaussian distribution for the set of all
ten mammals. We assume the set H of alternative hy-
potheses includes all Gaussians in this two-dimensions
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Figure 2: Representativeness judgments for coin flip sequences. Each panel shows subjects’ mean judgments and
the Bayesian model predictions for the representativeness of one sequence with respect to four different generating
hypotheses: h; = “A fair coin”, hy = “A coin that always alternates heads and tails”, k3 = “A coin that mostly comes

up heads”, and h4 = “A coin that always comes up heads”.

space, and we again use the uninformative Jeffreys’ prior
P(h) (Minka, 1998; Equation 3). How representative a
sample X (e.g. horse,cow,squirrel ) is of all mammals
can then be computed from a multidimensional version
of Equation 5 (ignoring terms equal for all samples):

R(X,hy) = Nlog S —N(m—u)"'V"!(m—p)
—trace(SV™!), )

where m is the mean of X, S = ¥,;(x; — m)T(x; —m), x;
are the MDS coordinates of example 7, N is the number
of examples in X, and u and V are the mean and covari-
ance matrix of hy; (Minka, 1998). Equation 7 measures
the representativeness of any sample X of N mammals
in terms of the distance between the best fitting Gaus-
sian for the sample (mean m, covariance S/N) and the
best fitting Gaussian for the set of all mammals (mean
u, covariance V). Figure 3 illustrates this graphically, by
plotting one-standard-deviation contours for three sam-
ples that vary in how representative they are of the set of
all mammals. Observe that the more representative the
sample, the greater the overlap between its best-fitting
Gaussian and the best-fitting Gaussian for the whole set.

Similarity-based models. Osherson et al. (1990) re-
port pairwise similarity judgments for the animals, but to
construct a similarity-based model of this representative-
ness task, we need to define a setwise measure of simi-
larity between any sample of three animals and the set of
all mammals. The similarity-coverage model proposed
by Osherson et al. defines this quantity as the sum of
each category instance’s maximal similarity to the sam-
ple: R(X,hy) = ¥ jmax;sim(i, j), where j ranges over
all mammals and i ranges over just those in the sample X.
A more traditional similarity-based model might replace
the maximum with a sum: R(X,hy) = X; ¥, sim(i, j).
Osherson et al. (1990) consider both max-similarity and
sum-similarity models but favor the former as it is more
consistent with their phenomena. However, there seems
to be little a priori reason to prefer max-similarity, and
indeed most similarity-based models of classification are
closer to sum-similarity, so we consider both here.

Other models. We also compare the predictions of a
simple likelihood model, which equates representative-
ness with P(X hy), and Sloman’s (1993) feature-based
model. Heit (1998) also presented a Bayesian model of
category-based induction tasks, but because his model
depends heavily on the choice of priors, it does not make
strong quantitative predictions that can be evaluated here.

Results. Figure 3 plots the argument strength judg-
ments for 45 arguments versus the representativeness
predictions of the probabilistic and similarity-based
models. Both the Bayesian and max-similarity models
predict the data reasonably well (r = 0.80 vs. r = 0.88),
with no significant difference between them (p > .2).
Neither of these models has any free numerical param-
eters. With one free parameter, the feature-based model
performs slightly worse (r = 0.71). Interestingly, both
the likelihood and sum-similarity models show a weak
negative correlation with the data (r = —.31, r = —.26).
This discrepancy directly embodies the insight of Fig-
ure 1: high likelihood can yield low representativeness
when the sample is tightly clustered near the mean, as in
the sample of horse,cow,rhino (ellipse C in Figure 3).
Sum-similarity performs as poorly as likelihood because
it is essentially a nonparametric estimate of likelihood;
likewise, max-similarity performs well because it corre-
lates highly with Bayesian representativeness.

Discussion

Overall, the Bayesian models provide the most satisfy-
ing account of these two data sets. On the coinflip data,
not only does Bayes obtain the highest correlation, but it
does so with the minimal number of free parameters. On
the animals data, Bayes obtains a correlation competitive
with the best of the other models, max-similarity, even
though it is based on less than half as much input data (20
MDS coordinates versus 45 raw similarity judgments)
and may be hindered by information lost in the MDS pre-
processing step. Most importantly, the Bayesian models
are based on a rational analysis, which provides a sin-
gle principled definition of representativeness applicable
across the two quite different domains of coinflips and
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Figure 3: Modeling representativeness for sets of mammals. Ellipses in the MDS space of animals (left) mark one-
standard-deviation contours for the set of all mammals (thick), a representative sample ( horse,chimp,seal , A), a
somewhat representative sample ( horse, mouse, rhino , B), and a less representative sample ( horse,cow,rhino , C).
Scatter plots (right) compare strength judgments for 45 arguments with the predictions of four models (see text).

animals. In contrast, the similarity-based models have
no rational grounding and take on very different forms
in the two domains. They achieve high correlations, but
only through the introduction of multiple free parame-
ters, such as the feature weights on the coin flip data, or
ad hoc assumptions, such as the choice of max-similarity
over sum-similarity on the animal data. On the other
hand, similarity-based models do have the advantage of
requiring only simple computations. Thus both Bayesian
and similarity-based models may have something to of-
fer, but at different levels of analysis. Similarity may
provide a reasonable way to describe the psychologi-
cal mechanisms of representativeness, while a Bayesian
analysis may provide the best explanation of why those
mechanisms work the way they do: why different fea-
tures of sequences are weighted as they are in the coinflip
example, or why max-similarity provides a better model
for inductive reasoning than does sum-similarity.

Conclusion

We have argued that representativeness is best under-
stood as a Bayesian computation, rather than as a judg-
ment of similarity or likelihood. Our analysis makes pre-
cise one core sense of representativeness — the extent to
which something is a good example of a category or pro-
cess — and exposes its underlying rational basis. Ratio-
nal models have been successfully applied to a number
of cognitive capacities (Shepard, 1987; Anderson, 1990;
Oaksford & Chater, 1998) but not previously to analyz-
ing representativeness, which is traditionally thought of
as an alternative to normative probabilistic judgment. By
clarifying the relation between our intuitive sense of rep-
resentativeness and normative principles of statistical in-
ference, our analysis may lead to a better understanding
of those conditions under which human reasoning may
actually be rational or close to rational, as well as those
situations in which it truly deviates from a rational norm.
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