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Abstract

We examined the influence of the pre-existing organiza-
tion of the semantic memory on forming new episodic
associations between words. Testing human subjects’
performance we found that a semantic relationship be-
tween words facilitates forming episodic associations
between them. Furthermore, the amount of facilitation
increases linearly as a function of the number of co-
occurrence of the words, up to a ceiling. Constrained by
these empirical findings we developed a computational
model, based on the theory of spreading activation over
semantic networks. The model uses self-organizing maps
to represent semantic relatedness, and lateral connections
to represent the episodic associations. When two words
are presented to the model, the interaction of the two ac-
tivation waves is summed and added to the direct lateral
connection between them. The main result is that the
model is capable of replicating the empirical results.
The model also makes several testable predictions: First,
it should be easier to form an association from a word
with few semantic neighbors to a word with many se-
mantic neighbors than vice-versa. Second, after associ-
ating an unrelated word pair it should be easier to associ-
ate another two words each related to one of the words in
the first pair. Third, a less focused activation wave,
which may be the cause of schizophrenic thought disor-
der, should decrease the advantage in learning rate of
related over unrelated pairs.

Introduction

The principles of forming associations between con-
cepts in memory have been studied since the early days
of psychological research. For example, the British em-
piricist school of philosophers (e.g., Hume, 1738), pro-
posed three main principles of association: Contiguity
(i.e., proximity in time and space), Similarity (or Con-
trast), and Cause and Effect. Fulfilling any of these
conditions should be sufficient to form an association
between concepts. The strength of the association is
determined by the frequency at which any of the above
conditions is fulfilled. An important aspect of this the-
ory is that intentionality is not a necessary condition for
the associative process to occur. Indeed, associations
are frequently established without intention and without

allocating attention to the learning process. We will re-
fer to these associations as incidental associations. This
paper presents a computational component of a larger
study in which we examine characteristics of forming
incidental associations between words.

Phenomenologically defined, two words are associ-
ated if the presentation of one brings the second to the
perceiver’s awareness. Associations between words can
be formed in at least two different ways. First, episodic
associations are formed when two words co-occur in
time and space. An episodic association is therefore a
subjective experience. Second, semantic associations
are based on semantic relatedness between the words.
Words are considered semantically related if they share
common semantic features, for example, if they belong
to the same semantic category. Although the two
classes of associations are based on different properties,
many associated word pairs are also semantically re-
lated, which raises the possibility of an interaction be-
tween the two types of associations.

A well-known interaction of this type is the semantic
priming effect (Meyer and Schvaneveldt, 1971). The
presentation of a related prime word prior to performing
a lexical task, such as naming and/or lexical decision,
results in faster and more accurate performance (see
Neely, 1991, for a review). Ample research was aimed
at isolating the types of word relations that mediate this
phenomenon (e.g. Fischler, 1977; McKoon & Ratcliff,
1979; Moss et al., 1995; Shelton & Martin, 1992). More
specifically, a frequently asked question was whether
words that are related only in one way, either semanti-
cally or episodically, would induce effective priming
and how an interaction between these to types of rela-
tions would affect priming. Although a debate still ex-
ists, it is safe to say that both types of relations prime
effectively and that their combined effect is additive.

A common theory of the organization principles of
the semantic system and the mechanisms underlying
semantic priming is the theory of spreading activation
over semantic networks (Collins & Loftus, 1975). In a
semantic network, a concept is represented as a node.
Semantically related nodes are connected with unidi-
rectional weighted links. When a concept is processed,



the appropriate node is activated and the activation
spreads along the connections of the network, gradually
decreasing in strength. The decrease is proportional to
the weights of the links in the path. In addition, the ac-
tivation decays over time. Awareness of word occurs
when its activation exceeds a threshold. According to
this theory semantic priming occurs when activation
from the prime spreads and partially pre-activates re-
lated targets so that a smaller amount of additional
processing is required to bring its node activation above
threshold.

An alternative and computationally more explicit
modeling approach was recently proposed to explain
semantic priming. Such models represent concepts in
the semantic system by distributed (rather than local)
representations. Concepts are not represented by single
units, but rather by distinguishable patterns of activity
over a large number of units (Hinton, 1990; Masson,
1995; Moss et al., 1994; Plaut, 1995). Each participat-
ing unit accounts for a specific semantic microfeature,
and semantic similarity is thus expressed as overlap in
activity patterns over the set of micro-features. In these
models, recurrent dynamics is employed until the net
settles to a stable state (an attractor). Semantic priming
is explained by the fact that after settling to a prime,
fewer modifications in the nodes’ state are necessary for
settling to a related target, making the latter settling
process faster.

All the currently computational models of semantic
priming have focused on processes based on existing
associations. The process of acquiring new associations
was abstracted in the training of the network. In the cur-
rent study, we propose a computational model of form-
ing new episodic associations between words on the ba-
sis of an already existing semantic network and show
how this process is influenced by the organization of
the semantic system.

Behavioral Experiments

A series of human performance experiments was con-
ducted to supply constraints on the associating process.
The following is a brief description of the relevant ex-
periments and results (see Silberman & Bentin, sub-
mitted, for an elaborated report).

In one experiment, 10 randomly ordered Hebrew
word pairs were repeated 20 times. In each trial, the two
words were displayed one after the other with a Stimu-
lus Onset Asynchronicity (SOA) of 700 ms. The sub-
jects searched whether a letter presented 800 ms after
the onset of the second word was included in the pre-
ceding word pair. Hence, proximity was achieved by
having the subjects store the two words together in
working memory for 800 ms. Following this "study ses-
sion", the strength of the association between the words
in each pair were unexpectedly tested using cued recall
and a free association tests. In the cued recall test, the
subjects were presented with the first words that oc-
curred in half of the pairs, and asked to remember each

word’s associate. In the free association test, they were
presented with the first words the other pairs, and asked
to respond with their first free associate. We compared
the strength of incidentally formed associations be-
tween semantically related (e.g. milk-soup) and seman-
tically unrelated words (e.g. paint-forest). The results of
this experiment, based on 64 subjects, are presented in
Table 1.

Table 1: Percentage of cued recall and free association
for pairs of semantically related and unrelated words.

Relatedness Cued Recall Free Associations
Related 38.8% 7.5%
Unrelated 19.4% 1.3%'

'Based on 16 subjects only.

As is evident in Table 1, semantic relatedness be-
tween words doubled the probability that an association
would be incidentally formed between them. A be-
tween-subjects ANOVA of the cued recall performance
showed that the difference between the two groups was
statistically reliable [F(1,62)=7.84, p<0.01].

If semantic relationship facilitates the formation of
associations by providing a higher initial linkage base-
line or a smaller pool of candidates in the test phase, its
effect should not interact with the number of episodic
repetitions. Hence the difference between recall per-
formance for related and unrelated word pairs should be
the same, regardless the number of repetitions in the in-
cidental learning phase (obviously, the absolute per-
formance for both groups should positively correlate
with the number of repetitions, up to a ceiling effect).
To test this hypothesis, we manipulated the number of
times each pair of the semantically related and unre-
lated pairs was repeated during the study phase.

Twenty-four Hebrew word pairs were selected for
this experiment. The words in each pair were semanti-
cally related (belonged to the same semantic category)
but not strongly associated (verified using free associa-
tion questionnaires, in which we tested that none of the
words was elicited by its pair among the first three free
associates). Two study lists were prepared. Each con-
sisted of 12 originally related pairs and 12 unrelated
pairs formed by randomly pairing the other words. Pairs
presented in the related condition in one list were used
to form the pairs of the unrelated condition in the other
list. Four groups of 24 subjects each were assigned to
either 1 presentation (i.e., no repetition), 5, 10 or 20
presentations during the incidental study phase, in
which subjects performed in the letter search task. The
results of this experiment are presented in Figure 1.

An ANOVA showed that semantically related pairs
were associated better than semantically unrelated pairs
[F(1,92)=204, p<0.0001], and that the main effect of the
number of repetitions was significant [F(3,92)=25
p<0.0001]. More revealing, however, was the signifi-
cant interaction between the two factors [F(3,92)=19,
p<0.0001], suggesting that each repetition contributed



more to related than to unrelated pairs. These results
suggest that semantic information reinforces the forma-
tion of associations (at least if these are formed inci-
dentally). The semantic effect has a ceiling at which
additional repetition contributes equally to forming both
related and unrelated associations.
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Figure 1: Percentages of correct recall for related and
unrelated pairs in several learning repetition conditions.
It is easier to form associations between related words.

These data demonstrated that semantic information is
involved in forming episodic associations. For words
that are semantically related, each learning repetition is
more efficient. This facilitation is seen even if the sub-
ject’s attention is not directed to the semantic level.

The aim of the present study was to develop a com-
putational understanding of how associations are
formed, including the influence of semantic factors on
that process, as suggested by the above experiments.

Computational Model

Network Architecture

Our model is based on a Self-Organizing Semantic Map
with lateral connections (Kohonen, 1995; Miikkulainen,
1992; Ritter & Kohonen, 1989). Semantic maps are 2-D
networks that represent words by their nodes. The maps
are formed by an unsupervised learning algorithm, such
that words that are close in their meaning are repre-
sented by nearby nodes in the map. Hence, semantic
relatedness is modeled by distance over the map. Se-
mantic maps have been successfully used in various
studies in which aspects of the semantic system were
modeled, such as language acquisition (Li, 2000), se-
mantic priming (Lowe, 1997), and semantic and epi-
sodic memory (Miikkulainen, 1992). Because self-
organizing maps are based on biologically plausible
Hebbian learning, and maps in general are common in
many parts of the cortex (Knudsen, Lac & Esterly,
1987), self-organizing maps are most appealing as a
biologically plausible analogue of classic semantic net-
works.

Based on a semantic map we added all-to-all unidi-
rectional lateral connections to represent the potential
associations between two words. The strength of each
such connection is composed of semantic and episodic
components:

.. .. s (D
Lat (i, )),(u,v)) = Sem (G, ), @)+ Epis (i, j)(w,v))
where Lat ((i, j),(,v)) is the connection weight from
node (#,v) tonode (i, ). The semantic component rep-
resents the distance on the map and is given by the

equation:
Sem ((l, ,])e (u’ v)): 1/(1 + e‘w(i,j)—w(u,v)‘) , 2)

where w(i, j) is the map’s weights vector for neuron (i, j) .
Initially, the episodic part of all the lateral connections
was set to zero. Hence, prior to any learning of associa-
tions, the lateral links only capture the topographic or-
ganization of the map, i.e. the semantic relatedness of
words.

When a word is presented to the model, an activity
bubble is generated surrounding the node that repre-
sents it. The activity wave then spreads according to
synchronized recurrent dynamics. At each time step, the
input to each neuron is the sum of the activities of all
neurons in the previous time step, weighted by the lat-
eral connections. Then, the neuron’s activity is set ac-
cording to a sigmoid function

Sty =0| 2 Lat(G . ww) Sk, | O
(u,v)

c(0)=1/1+e™), 0

and S, ;, is the activity of the neuron (i, j) at time .

When two words are presented to the model (such as
in the learning phase of Experiment 1 below) both ac-
tivities spread independently over the map. The sum of
the intersection of activation (the MIN of the two val-
ues) over all the map’s neurons and over all time steps
is calculated and added to the episodic component of
the lateral connection between these two words. When
the geometric distance between the two words is
smaller (indicating stronger semantic relatedness), the
resulting activity waves overlap more extensively,
causing a greater amplification of the direct link be-
tween them. Thus, it is easier for the model to associate
related words than unrelated words. Conceptually, this
method is an abstraction of Hebbian learning of the as-
sociative links since the resulting connection strength
depends on the intersection of both words’ activation
waves.

where

Input Representations

In order to organize the semantic map, we used numeric
representations based on the lexical co-occurrence
analysis in the Hyperspace Analogue to Language
(HAL) model of Burgess and Lund (1997). These vec-
tors have been shown to capture the semantics of words
quite well (Burgess & Lund, 1997) and have been
found successful in creating sensible Self-Organized
Semantic Maps (Li, 2000). In the current simulations,
HAL representations were based on the 3.8 million
word CHILDES database, a corpus with particularly
clearly defined word semantics.



The semantic map in our model consisted of 250
nouns organized on a 40 by 40 grid. We selected 48
nouns that formed 24 pairs of words, with the criterion
that words in each pair belong to the same semantic
category and thus are semantically related. The words
were English translations of the 48 Hebrew words used
in the behavioral experiment described above. In some
cases, where a direct translation did not exist or the
translation word did not appear in our set of HAL rep-
resentations, a similar English word was selected. An-
other 202 nouns were selected randomly from the set of
representations as "fillers" in the map, to create a richer
semantic neighborhood in which the 48 words of inter-
est could organize. See Figure 2 for the final semantic
map that was used in the current simulations.

baseball
eroun . . . game

ringing

math . . . painting

sauash . . . . . . ironing
soun . . . . . palm
coffee
cheese . . . wine

soda

choco- puddine . . . part

Figure 2: A section of the organized semantic map.
Similar words are mapped to adjacent nodes.

Semantic Facilitation Simulation

The first simulation was aimed at replicating the em-
pirical results of the second behavioral experiment that
demonstrated semantic facilitation of associations’ for-
mation.

Experimental Setup

Out of the 24 semantically related pairs that were em-
bedded in the semantic map, we selected 12 pairs that
had numeric representations with a Euclidean distance
shorter than the theoretical average (0.707) but larger
then a threshold (0.5). Thus, these pairs were semanti-
cally related but not associated to each other prior to the
experiment. In addition, we randomly re-matched the
other 12 pairs such that 12 semantically unrelated pairs
were formed as well.

Procedure

During the simulation of the learning phase of the ex-
periment, in each trial the model was presented with
two words with a certain time delay (i.e. SOA). Note
that the absolute time scale of the network is arbitrary
and can be adjusted to fit the data. Each of the 24 pairs
(12 related and 12 unrelated) was presented once. Since
during the learning phase, the episodic information does
not affect the spreading activation process, the resulting
association from multiple presentations was calculated
simply by multiplying the result of a single presentation

by the number of repetitions. The number of learning
repetitions was varied from 1 to 30. During the simula-
tion of the test phase, only one word was presented to
the model. The resulting activation wave spread based
on the same dynamics, except that in this phase, both
the semantic and the episodic components of the lateral
connections were taken into account. The activity con-
tinued to spread until the first neuron reached an activ-
ity threshold (0.98). The word represented by this node
was then output as the result.

Results and Discussion

In Figure 3 the results that corresponds to the number of
repetitions used in the behavioral experiment (1, 5, 10,
20) are shown. The percentages of correct recall dem-
onstrated by the model for the related and unrelated
pairs are shown for each repetition condition. As shown
by the Figure, the model successfully replicates the re-
sults from the behavioral experiment. In the early
stages, the learning rate of the related pairs is higher
than the learning rate of the unrelated pairs. At about 10
repetitions, a ceiling effect reduces the learning rate of
the related pairs, such that the advantage of these pairs
over the unrelated pairs is abolished. In addition, the
learning rate of the unrelated pairs is relatively constant.
It is important to emphasize that non-linearity is intro-
duced to the testing phase of the simulated experiment
by the recurrent dynamics of the model. Hence, the lin-
ear way in which multiple repetitions were modeled
does not dictate linearity in the output learning rate.
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Figure 3: Percentages of correct recall demonstrated by
the model, matching these obtained in the behavioral
experiments (Figure 1).

Implicit Asymmetry Simulation

Associations between word pairs are directional. In free
association questionnaires, for most pairs the subject
would reply with word B after A with a different prob-
ability than the other way around (Koriat, 1981). In our
model, this explicit asymmetry is achieved by the unidi-
rectional lateral connections, which represent the asso-
ciation between two words in the map. However, our
model demonstrates an additional asymmetry, which we
call implicit asymmetry: it is sometimes easier to form
an association between two words in one direction than
in the opposite direction even before any episodic in-



formation is taken into account. The second simulation
was aimed at quantifying this phenomenon.

Experimental Setup

First, we examined the density of the semantic neigh-
borhoods of the words that were used in experiment 1.
For each of the 48 words of interest we counted how
many of the 250 total words in the model’s semantic
system were within a fixed 100-dimensional distance
(0.4) according to their HAL representations. For each
pair we then calculated the difference in the densities of
the semantic neighborhoods of the two words and se-
lected 3 related and 3 unrelated pairs with the greatest
difference (in absolute values).

Procedure

We replicated the procedure of experiment 1 twice with
the 6 pairs selected. First, the pairs were presented in
the forward direction, from sparse to dense. Then, we
repeated the entire procedure with the pairs presented in
the opposite order (backward).

Results and Discussion

Figure 4 shows the percentages of correct recall as
demonstrated by the model for pairs in the forward and
backward direction in each repetition condition. Word
pairs in the forward direction (sparser neighborhood —
denser neighborhood) show advantage in correct recall
as well as in learning speed throughout the first ten
repetitions. The reason for this implicit asymmetry is
the spreading of activation over a non-uniformly dis-
tributed high-dimensional space (elaborated in the Gen-
eral Discussion below). Although implicit asymmetry
has not yet been observed experimentally, there is indi-
rect evidence that suggests that such a process might
indeed exist in the brain. Dagenbach, Horst and Carr
(1990) found that it is easier to add a new word to se-
mantic memory than to establish a link between two
formerly unconnected words already in semantic mem-
ory. This result may apply to our prediction since we
may assume that newly learned words were not yet well
embedded into their semantic neighborhood and thus
have a sparser semantic neighborhood than familiar
words. In future work, we intend to test this prediction
of the model with behavioral experiments.
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Figure 4: Percentages of correct recall demonstrated by
the model for forward and backward pairs in several

learning repetition conditions. The results show that
learning is easier from sparse to dense neighborhoods.

General Discussion

As described in the "Behavioral Experiments" section,
in a series of experiments we investigated semantic
factors that affect the process of forming associations
between words. The goal of this study was to present
and evaluate a computational model that could account
for these results and to produce further predictions re-
garding the process of associating words. Our model
suggests that semantic relatedness between words, as
well as episodic associations, could be implemented in
a single structure using two distinct types of represen-
tations. On one hand, semantic relatedness is expressed
as geometrical proximity in a high-dimensional (100D)
feature space. On the other, episodic associations are
represented by arbitrary "physical" connections be-
tween the units that represent the concepts. Both types
of relations are implemented simultaneously in a se-
mantic map with lateral connections artificial neural
network.

As was demonstrated in human subjects, the model
shows the facilitation semantic information has on
learning new associations. This facilitation emerges in a
natural, mechanistic manner, without involvement of
top-down, intentional processes. It is achieved by im-
plementing Hebbian link strengthening based on inter-
sections of activation waves over a semantic map.

The asymmetric nature of relationships between
words and more specifically of associations imposes
difficulties for computational models that rely on geo-
metric distances between high-dimensional numeric
representations of words. Our model is also based on
such high-dimensional vectors and the self-organization
algorithm that establishes the semantic map is symmet-
ric. Nonetheless, the model demonstrates two kinds of
asymmetries. The first, explicit asymmetry is achieved
by the unidirectional lateral connections that are im-
plemented on top of the symmetric organization of the
semantic map. These connections make it possible to
have asymmetric associations between two words,
based on the episodic experience of the two possible di-
rections of the word pair. The second, implicit asym-
metry, emerges from the non-uniform distribution of
concepts in the high-dimensional space. This non-
uniform distribution induces asymmetric distances in
terms of spreading activation between two points in the
semantic space that otherwise would have equal dis-
tance from one another in both directions.

Further empirical studies can be derived from this
computational research. The model suggests that when
an association is formed between two semantically dis-
tinct words, it can serve as a "pipeline" that enhances
the spreading of activity from the semantic neighbor-
hood of the first word to the semantic neighborhood of
the second. Since this activity is, in turn, used to form
other associations, we infer that the existence of an as-



sociation between words from distinct semantic neigh-
borhoods (e.g. different categories) would facilitate
forming other associations between unrelated pairs that
belong to those semantic neighborhoods.

Another possible implication of this model is in test-
ing one of the theories concerning Schizophrenic
Thought Disorder (hereinafter STD) as suggested by
Spitzer (1997). According to Spitzer’s theory, the acti-
vation over the semantic network of STD patients
spreads faster and further than that of normal subjects.
This unfocused activation can explain experimental re-
sults in STD patients that show stronger semantic
priming and indirect semantic priming. It may also ex-
plain the clinical STD phenomena of loose, oblique and
derailed associations. By manipulating our model we
can computationally test this theory. It is possible to
vary the parameters of the functions that govern the
spreading activation (equations 1-4) to make it less fo-
cused. By examining the resulting changes in the
model’s behavior, we may be able to gain insight re-
garding the processes that lead to this pathology.

Conclusion

We set out to study the process of creating new asso-
ciations between words in human memory during inci-
dental learning. Empirical results suggest that semantic
information enhances the process of forming episodic
associations. A model based on spreading activation on
a laterally connected self-organizing map matches these
results and leads to further insights into why such asso-
ciations tend to be asymmetric. In future work, we plan
to test some of the model’s predictions, including im-
plicit associations and processes of abnormal behavior.
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