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Abstract

Beliefs tend to persevere even after evidence for their initial
formulation has been invalidated by new evidence. If people
are assumed to rationally base their beliefs on evidence, then
this belief perseverance is somewhat counterintuitive. We
constructed a constraint-satisfaction neural network model to
simulate key belief perseverance phenomena and to test the
hypothesis that explanation plays a central role in preserving
evidentially challenged beliefs. The model provides a good fit
to important psychological data and supports the hypothesis
that explanations preserve beliefs.

Introduction

It is perhaps surprising that people are so often reluctant to
abandon personal beliefs that are directly contradicted by
new evidence. This tendency to cling to beliefs in the face
of subsequent counterevidence has been well demonstrated
for opinions (Abelson, 1959), decisions (Janis, 1968), im-
pressions of people (Jones & Goethals, 1971), social
stereotypes (Katz, 1960), scientific hypotheses (T. S. Kuhn,
1962), and commonsense ideas (Gilovich, 1991).

Belief perseverance is puzzling because it is commonly
assumed that beliefs are based on evidence. If it is rational
for people to form a belief based on evidence, then why is it
not equally rational for them to modify the belief when con-
fronted with evidence that invalidates the original evidence?

Debriefing Experiments

Some of the clearest cases of apparently irrational belief
perseverance come from debriefing experiments. In these
experiments, subjects learn that the initial evidential basis
for a belief is invalid. For example, Ross, Lepper, and Hub-
bard (1975) first provided subjects with false feedback con-
cerning their ability to perform a novel task. Their subject’s
task was to distinguish authentic from fake suicide notes by
reading a number of examples. False feedback from the
experimenter led subjects to believe that they had performed
at a level that was much better than average or much worse
than average. Then, in a second phase, subjects were de-
briefed about the random and predetermined nature of the
feedback that they had received in the first phase. There

were three debriefing conditions. In the outcome debriefing
condition, subjects were told that the evidence on which
their initial beliefs were based had been completely fabri-
cated by the experimenter. Subjects in the process debrief-
ing condition were additionally told about the procedures of
outcome debriefing along with explanations about possible
mechanisms and results of belief perseverance. Subjects in
this condition were also told that belief perseverance was
the focus of the experiment. Finally, subjects in a no-
debriefing control condition were not debriefed at all after
the feedback phase. Subsequently, subjects in all three con-
ditions rated their own ability at the suicide-note verifica-
tion task. This was to assess the perseverance of their be-
liefs about their abilities on this task that were formed in the
feedback phase.

The mean reported beliefs for the three debriefing condi-
tions are shown in Figure 1. There is an interaction between
debriefing condition and the nature of feedback (success or
failure at the note-verification task). The largest difference
between success and failure feedback occurs in the no-
debriefing condition. In this control condition, subjects who
were initially led to believe that they had succeeded con-
tinue to believe that they would do better than subjects ini-
tially led to believe that they had failed. After outcome de-
briefing, there is still a significant difference between the
success and failure conditions, but at about one-half of the
strength of the control condition. The difference between
success and failure feedback effectively disappears after
process debriefing. This sort of belief perseverance after
debriefing has been convincingly demonstrated for a variety
of different beliefs and debriefing techniques (Jennings,
Lepper, & Ross, 1981; Lepper, Ross & Lau, 1986).

One explanation for such belief perseverance is that peo-
ple frequently explain events, including their own beliefs,
and such explanations later sustain these beliefs in the face
of subsequent evidential challenges (Ross et al., 1975). For
example, a person who concludes from initial feedback that
she is very poor at authenticating suicide notes might attrib-
ute this inability to something about her experience or per-
sonality. Perhaps she has had too little contact with severely
depressed people, or maybe she is too optimistic to empa-
thize deeply with a suicidal person. Then in the second



phase, when told that the feedback was entirely bogus, these
previously constructed explanations may still suggest that
she lacks the ability to authenticate suicide notes. Analo-
gously, a subject who is initially told that he did extremely
well at this task may explain his success by noting his fa-
miliarity with some depressed friends or his sensitivity to
other people’s emotions. Once in place, such explanations
could inoculate the subject against subsequent evidence that
the initial feedback was entirely bogus.
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Figure 1: Mean predicted ability in the Ross et al. (1975)
experiment after debriefing.

The assumption is that even though contradictory evi-
dence may weaken a belief, it is unlikely to alter every cog-
nition that may have derived from that belief, such as ex-
planations for the belief's existence. The well-known frame
problem emphasizes the computational intractability of
tracking down every implication of an altered belief
(Charniak & McDermott, 1985). People generally do not
have the time, energy, knowledge, or inclination to decide
which other beliefs to change whenever a belief is changed.

In contrast to the view that people have difficulty distin-
guishing explanations from evidence (D. Kuhn, 1991), re-
cent research suggests that people can distinguish explana-
tions from evidence and that they tend to use explanations
as a substitute for missing evidence (Brem & Rips, 2000).

In this paper, we report on our attempt to simulate the be-
lief perseverance phenomena reported by Ross et al. (1975).
Our basic theoretical premise in designing these simulations
is that belief perseverance is a special case of a more gen-
eral tendency for people to seek cognitive consistency.
Striving for consistency has long been considered to cause a
wide variety of phenomena in social psychology (Abelson,
Aronson, McGuire, Newcomb, Rosenberg, & Tannenbaum,
1968). In the case of belief perseverance, we assume that
people form percepts that are consistent with external evi-
dence, then acquire beliefs that are consistent with these
percepts, and finally construct explanations that are consis-

tent with these beliefs. We view resistance to new evidence
that contradicts existing percepts, beliefs, or explanations as
part of an attempt to achieve overall consistency among
current cognitions, given that not all implications of contra-
dictory evidence are actively pursued.

There was a simulation using non-monotonic logic of
how belief can be preserved despite ordinary debriefing, but
it did not cover the quantitative differences between condi-
tions in the Ross et al. experiment (Hoenkamp, 1987).

Neural Constraint Satisfaction

Our simulations use a technique called constraint satisfac-
tion, which attempts to satisfy as many constraints as well
as possible within artificial neural networks. The present
model is closely related to models used in the simulation of
schema completion (Rumelhart, Smolensky, McClelland, &
Hinton, 1986), person perception (Kunda & Thagard,
1996), attitude change (Spellman, Ullman, & Holyoak,
1993), and dissonance reduction (Shultz & Lepper, 1996).
Constraint satisfaction neural networks are comprised of
units connected by weighted links. Units can represent cog-
nitions by taking on activation values from 0 to 1, repre-
senting the strength or truth of the cognition. Connection
weights can represent relations between cognitions and are
assigned positive or negative values representing the sign
and strength of the relations. Connection weights are bi-
directional to permit cognitions to mutually influence each
other. External inputs to units represent influences from the
environment. Biases are represented by internal inputs to a
given unit that do not vary across different network inputs.
Networks attempt to satisfy the soft constraints imposed
by fixed inputs, biases, and weights by changing activation
values of the units. Unit activations are updated according
to these rules:
a; (t + 1)= a; (t)+ net; (Ceiling -aq; (t)), whennet; 20 (1)
a; (t +1)= a; (t)+ net; (a,- (t)— ﬂoor), when net; <0 (2)
where a;(t + 1) is the updated activation value of unit i, a; is
the current activation of unit Z, ceiling is the maximum acti-
vation value for a unit, floor is the minimum activation
value for a unit, and net; is the net input to unit i, as com-
puted by:

net; =in Zwijaj + bias; |+ ex(inputi) 3)
J

where in and ex are parameters that modulate the impact of
the internal and external inputs, respectively, with default
values of 0.1, w;; is the connection weight between units i
and j, g; is the activation of sending unit j, bias; is the bias
value of unit i, and input; is the external input to unit i.

These update rules ensure that network consistency either
increases or stays the same, where consistency is computed
as:

consistency = ZWU a;a ]+Zmputa +Zblas a; “4)
ij



When a network reaches a high level of consistency, this
means that it has settled into a stable pattern of activation
and that the various constraints are well satisfied. In such
stable solutions, any two units connected by positive
weights tend to both be active, units connected by negative
weights tend not to be simultaneously active, units with
high inputs tend to be more active than units with low in-
puts, and units with high biases tend to be more active than
units with low biases.

Increases in consistency and constraint satisfaction occur
gradually over time. At each time cycle, n units are ran-
domly selected for updating, where n is typically the num-
ber of units in the network. Thus, not every unit is neces-
sarily updated on every cycle and some units may be up-
dated more than once on a given cycle.

Unusual Simulation Features

The foregoing characteristics of neural constraint satisfac-
tion are quite common. In addition, the present modeling
has a few somewhat unusual features. Perhaps the most
important of these is a two-phase structure that accommo-
dates the two main phases of belief perseverance experi-
ments. It is more typical for neural constraint satisfaction
models to operate in a single phase in which networks are
designed and updated until they settle into a stable state.
Our two phases correspond to the feedback and debriefing
phases of these experiments. After a network settles in the
initial feedback phase, new units can be introduced, and
inputs, connection weights, and biases may be changed in a
second, debriefing phase. To implement continuity between
the two phases, a simple type of memory was introduced
such that activation values from the feedback phase would
be partially retained as unit biases in the debriefing phase.
Final activations in the feedback phase were multiplied by
0.05 to transform them into biases for the debriefing phase.
This is not a detailed implementation of a memory model,
but is rather a convenient shorthand implementation of the
idea that there is a faded memory for whatever conclusions
were reached in the previous, feedback phase.

Two other unusual features derived from our earlier
simulations of cognitive dissonance reduction (Shultz &
Lepper, 1996): a cap parameter and randomization of net-
work parameters. The cap parameter is a negative self-
connection weight for every unit that limits unit activations
to less than extreme values. The purpose of this activation
cap is to increase psychological realism for experiments
about beliefs that reach no more than moderate strength.

Robustness of simulation results was assessed by simul-
taneously randomizing all network parameters (i.e., biases,
inputs, and connection weights) by up to 0%, 10%, 50%, or
100% of their initial values according the formula:
y=x *irand \abs |x*rand%] ) } 5)
The initial parameter value x is multiplied by the proportion
of randomization being used (0, .1, .5, or 1) and converted
to an absolute value. Then a random number is selected
between 0 and the absolute value under a uniform distribu-

tion. This random number is then randomly either added to
or subtracted from the initial value. This parameter ran-
domization allows efficient assessment of the robustness of
the simulation under systematic variations of parameter val-
ues. If the simulations succeed in matching the psychologi-
cal data, even under high levels of parameter randomization,
then they do not depend on precise parameter settings. This
randomization process also enhances psychological realism
because not every subject can be expected to have precisely
the same parameter values.

Network Design

Units

Units represent external input and the three types of cogni-
tions that are critical to belief perseverance experiments,
i.e., percepts, beliefs, and explanations. Percept units repre-
sent a subject’s perception of external input, in this case
feedback provided by the experimenter. Belief units repre-
sent a subject’s beliefs, and explanation units represent a
subject’s explanations of particular beliefs. In each case, the
larger the activation value of a given unit, the stronger the
associated cognition. Activation values range from O to 1,
with O representing no cognition, and 1 representing the
strongest cognition. All unit activations start at O as a net-
work begins to run.

Unit names include a sign of +, -, or 0 to represent the di-
rection of a given cognition. For example, in these simula-
tions, +percept refers to a perception of doing well on a
task, -percept to a perception of doing poorly on the task,
and Opercept to not knowing about performance on the task.
Percept units sometimes have an external input, to reflect
the feedback on which the percept is based. A Opercept unit
is required for simulating debriefing experiments, where
information is encountered that explicitly conveys a lack of
knowledge about performance. Analogously, +belief repre-
sents a belief that one is performing well at a task, —belief
represents a belief that one is performing poorly at a task,
+explanation represents an explanation for a +belief, and -
explanation represents an explanation for a —belief.

Connections

Units are joined by connection weights that have a size and
a sign. The sign of a weight represents a positive or nega-
tive relation between connected units. A positive weight
signals that a cognition follows from, leads to, is in accor-
dance with, or derives support from another cognition. A
negative weight indicates that a cognition is inconsistent
with or interferes with another cognition. Decisions about
signs are based on descriptions of psychological procedures.
Initial nonzero connection weights are + or - 0.5 in our
simulations. Connection weights of O indicate the absence
of relations between cognitions. All connection weights are
bi-directional to allow mutual influences between cogni-
tions.



The general connection scheme in our simulations of be-
lief perseverance has external inputs feeding percepts,
which are in turn connected to beliefs, which are in turn
connected to explanations. For failure conditions, a -percept
unit receives external input and is connected to a -belief
unit, which is in turn connected to a -explanation unit. For
success conditions, a +percept unit receives external input
and is connected to a +belief unit, which is in turn con-
nected to a +explanation unit. Connection weights between
incompatible cognitions, such as between +belief and -
belief or between -percept and Opercept, are negative.

The principal dependent measure in many belief perse-
verance studies is a subject’s self-rated ability on a task.
This is represented as net belief, computed as activation on
the +belief unit minus activation on the -belief unit, after the
network settles in the debriefing phase. This technique of
using two negatively connected units to represent the differ-
ent poles of a single cognition was used by Shultz and Lep-
per (1996) in their simulation of cognitive dissonance phe-
nomena.

Networks for Feedback Phase

Figure 2 shows specifications for the negative feedback
condition. Negative feedback, in the form of external input,
with a value of 1.0, is positively connected to the —percept
unit. This same network design is used for the no-
debriefing condition of the debriefing phase.

-explanation

Input 1.0 -percept -belief

+belief

Figure 2: Network for negative feedback. Positive connec-
tion weights are indicated by solid lines; negative connec-
tion weights by dashed lines.

A feedback phase represents the presentation of informa-
tion on how a subject is doing on a task. It is assumed that
this information forms the basis for a belief about ability
and to explanations of that ability. Because of the connec-
tion scheme and the fact that all unit activations start at O,
percept units reach activation asymptotes first, followed by
belief units, and finally by explanation units.

Networks for Debriefing Phase

Figure 3 shows network specifications for the debriefing
phase. This network was used for both outcome debriefing
and process debriefing. The particular network shown in
Figure 3 shows a debriefing phase that follows negative
feedback. As noted earlier, an unusual feature here is the

inclusion of biases for percept, belief, and explanation units
from the earlier, feedback phase. These biased units are
represented by bolded rectangles around unit names, and
implement a faded memory of the feedback phase. There is
also a new unit, the Opercept unit, with an input of 1.0, to
represent that nothing valid is known about task perform-
ance. This unit has no bias because it was not present in the
previous phase. It is negatively connected to the — or + per-
cept unit to represent the idea that the feedback data from
the previous phase are false, and thus convey no informa-
tion about task ability.

-explanation
-percept -belief
i i
| |
| |
Input 1.0 Opercept +belief

Figure 3: Network for outcome and process debriefing fol-
lowing negative feedback. Units that have biases from the
feedback phase are indicated by bolded rectangles.

We implemented the stronger, process debriefing by mul-
tiplying bias values by a factor of 0.1. This reflects the idea
that process debriefing is so thorough that it severely de-
grades all cognitions that were created in the preceding
feedback phase. Networks in the no-debriefing condition
were identical to those described in Figure 2, with no topol-
ogy changes after the feedback phase. However, as in all
debriefing conditions, biases of .05 of final activations were
used for any units being carried over from the feedback
phase. Networks were run for 120 update cycles in each of
the two phases; by this time they had typically settled into
stable states.

Principles of Network Design

In summary, network design can be summarized by 13 prin-

ciples:

1. Units represent cognitions.

2. The principal cognitions in belief perseverance experi-
ments are input feedback, percepts, beliefs, and expla-
nations.

3. The sign of unit names represent the positive or nega-
tive poles of cognitions.

4. Unit activation represents strength of a cognition (or a
pole of a cognition).

5. The difference between positive and negative poles of a
cognition represents the net strength of the cognition.

6. Connection weights represent constant implications
between cognitions.

7. Connection weights are bi-directional, allowing possi-
ble mutual influence between cognitions or poles of
cognitions.



8. Cognitions whose poles are mutually exclusive have
negative connections between the positive and negative
poles.

9. Size of external input represents strength of environ-
mental influence, such as evidence or feedback.

10. External inputs are connected to percepts, percepts to
beliefs, and beliefs to explanations, representing the as-
sumed chain of causation in belief perseverance ex-
periments. That is, environmental feedback creates per-
cepts, which in turn create beliefs, which eventually
lead to explanations for the beliefs.

11. Networks settling into stable states represent a person’s
tendency to achieve consistency among cognitions.

12. Final unit activations from the feedback phase are con-
verted to unit biases for the start of the debriefing phase
of belief perseverance experiments, representing the
participant’s memory of the feedback phase.

13. Multiplying activation bias values by 0.1 represents
thorough, process debriefing.

Results

We focus on the final net belief about one’s ability after the
debriefing phase. This is computed as activation on the
+belief unit minus activation on the -belief unit. Here, we
report only on the 10% randomization level, but similar
results are found at each level of parameter randomization.

Net belief scores were subjected to a factorial ANOVA in
which debriefing condition (none, outcome, and process)
and feedback condition (success, failure) served as factors.
There was a main effect of feedback, F(1, 114) = 29619, p
< .001, and an interaction between debriefing and feedback,
F(2, 114) = 9102, p < .001. Mean net ability scores are
shown in Figure 4. For success feedback, net belief scores
were higher after no debriefing than scores obtained after
outcome debriefing, which were in turn higher than scores
obtained after process debriefing. The opposite holds for
failure feedback.
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Figure 4: Mean predicted ability in the simulation after de-
briefing.

To assess the fit to human data, we computed a regression
F with regression weights based on the pattern of the Ross
et al. (1975) results. The regression weights were 2, -2, 1, -
I, 0, and O for the no debriefing/success, no debrief-
ing/failure, outcome debriefing/success, outcome debrief-
ing/failure, process debriefing/success, and process de-
briefing/failure conditions, respectively. This produced a
highly significant regression F(1, 114) = 47558, p < .001,
with a much smaller residual F(4, 114) = 67, p < .001. The
regression F accounts for 99% of the total variance in net
belief. As with human subjects, there is a large difference
between success and failure with no debriefing, a smaller
but still substantial difference after outcome debriefing, and
very little difference after process debriefing.

To assess the role of explanation in the simulation, we
subjected activations on the explanation unit after the de-
briefing phase to the same ANOVA. There is a main effect
of debriefing, F(2, 114) = 3787, p < .001, a much smaller
main effect for feedback F(1, 114) = 15.37, p < .001, and a
small interaction between them, F(2, 114) = 6.76, p < .005.
The mean explanation scores are presented in Figure 5. Ex-
planations are strong under no-debriefing, moderately
strong under outcome debriefing, and weak under process
debriefing. But because explanations had been strongly ac-
tive in all three conditions at the end of the feedback phase,
these post-debriefing results reflect relative differences in
maintenance of explanations. Explanations are maintained
under no debriefing, partially maintained under outcome
debriefing, and eliminated in process debriefing.
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Figure 5: Mean explanation scores in the simulation after
debriefing.

Discussion

The tendency for beliefs to persevere even after evidence
for them has been fully invalidated challenges some basic
assumptions about human rationality. If people reasonably



base their beliefs on evidence, then why is counter-evidence
not sufficient to eliminate or change beliefs?

We used constraint-satisfaction neural networks to test
the idea that explanation plays a key role in sustaining be-
liefs in these circumstances. The model provides a good fit
to existing psychological data from debriefing experiments
in which subjects are informed that that the principal evi-
dence for their beliefs is no longer valid (Ross et al., 1975).
Simulated beliefs remain strong without debriefing; belief
strength is reduced after standard outcome debriefing, and
eliminated after more thorough, process debriefing. This
pattern of results matches the psychological data, with about
half-strength beliefs under outcome debriefing and elimina-
tion of beliefs by process debriefing. As in our earlier
simulations of cognitive dissonance phenomena, the neural
constraint-satisfaction model is here shown to be robust
against parameter variation. Even a high degree of parame-
ter randomization does not change the pattern of results.

The simulations further revealed that belief perseverance
is mirrored by strength of explanation. Explanations remain
strong with no debriefing, and decrease progressively with
more effective debriefing. Although it is obvious that de-
briefing reduces the strength of erroneous beliefs, the find-
ing that it also reduces explanations is perhaps less obvious.
In our simulations, explanation is reduced by effective de-
briefing via connections from external evidence to percepts,
percepts to beliefs, and beliefs to explanations.

People spontaneously generate explanations for events as
a way of understanding events, including their own beliefs
(Kelley, 1967). If an explanation is generated, this explana-
tion becomes a reason for holding an explained belief, even
if the belief is eventually undercut by new evidence.

Future work in our group will extend this model to other
belief perseverance phenomena and attempt to generate
predictions to guide additional psychological research.

Acknowledgments

This research was supported by a grant to the first author
from the Social Sciences and Humanities Research Council
of Canada and by grant MH-44321 to the third author from
the U.S. National Institute of Mental Health.

References

Abelson, R. P. (1959). Modes of resolution of belief dilem-
mas. Conflict Resolution, 3, 343-352.

Abelson, R. P., Aronson, E., McGuire, W. J., Newcomb, T.
M., Rosenberg, M. J., & Tannenbaum, P. H. (Eds.)
(1968). Theories of cognitive consistency: A sourcebook.
Chicago: Rand McNally.

Brem, S. K., & Rips, L. J. (2000). Explanation and evidence
in informal argument. Cognitive Science, 24, 573-604.

Charniak, E., & McDermott, D. (1985). Introduction to ar-
tificial intelligence. Reading, MA: Addison-Wesley.

Gilovich, T. (1991). How we know what isn’t so: The falli-
bility of human reason in everyday life. New York: Free
Press.

Hoenkamp, E. (1987). An analysis of psychological ex-
periments on non-monotonic reasoning. Proceedings of
the Tenth International Joint Conference on Artificial In-
telligence (Vol. 1, pp. 115-117). Los Altos, CA: Morgan
Kaufmann.

Janis, 1. (1968). Stages in the decision-making process. In
R. P. Abelson, E. Aronson, W. J. McGuire, T. M. New-
comb, M. J. Rosenberg, & P. H. Tannenbaum (Eds.)
(1968). Theories of cognitive consistency: A sourcebook.
Chicago: Rand McNally.

Jennings, D. L., Lepper, M. R., & Ross, L. (1981). Persis-
tence of impressions of personal persuasiveness: Perse-
verance of erroneous self-assessments outside the de-
briefing paradigm. Personality and Social Psychology
Bulletin, 7,257-263.

Jones, E. E., & Goethals, G. R. (1971). Order effects in im-
pression formation: Attribution context and the nature of
the entity. In E. E. Jones et al. (Eds.), Attribution: Per-
ceiving the causes of behavior. Morristown, NJ: General
Learning Press.

Katz, D. (1960). The functional approach to the study of
attitudes. Public Opinion Quarterly, 24, 163-204.

Kelley, H. H. (1967). Attribution theory in social psychol-
ogy. In D. Levine (Ed.), Nebraska Symposium on Moti-
vation. Vol. 15. Lincoln: University of Nebraska Press.

Kuhn, D. (1991). The skills of argument. Cambridge: Cam-
bridge University Press.

Kuhn, T. S. (1962). The structure of scientific revolutions.
Chicago: University of Chicago Press.

Kunda, Z., & Thagard, P. (1996). Forming impressions
from stereotypes, traits, and behaviors: A parallel-
constraint satisfaction theory. Psychological Review, 103,
284-308.

Lepper, M. R., Ross, L., & Lau, R. R. (1986). Persistence of
inaccurate beliefs about self: Perseverance effects in the
classroom. Journal of Personality and Social Psychology,
50, 482-491.

Ross, L, Lepper, M. R., & Hubbard, M. (1975). Persever-
ance in self-perception and social perception: Biased at-
tributional processes in the debriefing paradigm. Journal
of Personality and Social Psychology, 32, 880-892.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., &
Hinton, G. (1986). Schemata and sequential thought pro-
cesses in PDP models. In D. E. Rumelhart & J. L.
McClelland (Eds.), Parallel distributed processing: Ex-
plorations in the microstructure of cognition (Vol. 2).
Cambridge, MA: MIT Press.

Shultz, T. R., & Lepper, M. R. (1996). Cognitive disso-
nance reduction as constraint satisfaction. Psychological
Review, 103, 219-240.

Spellman, B. A., Ullman, J. B., & Holyoak, K. J. (1993). A
coherence model of cognitive consistency: Dynamics of
attitude change during the Persian Gulf war. Journal of
Social Issues, 49, 147-165.



